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ABSTRACT:

Photogrammetric computer vision systems have been well established in many scientific and commercial fields during the last decades.
Recent developments in image-based 3D reconstruction systems in conjunction with the availability of affordable high quality digital
consumer grade cameras have resulted in an easy way of creating visually appealing 3D models. However, many of these methods
require manual steps in the processing chain and for many photogrammetric applications such as mapping, recurrent topographic
surveys or architectural and archaeological 3D documentations, high accuracy in a geo-coordinate system is required which often
cannot be guaranteed. Hence, in this paper we present and advocate a fully automated end-to-end workflow for precise and geo-
accurate 3D reconstructions using fiducial markers. We integrate an automatic camera calibration and georeferencing method into
our image-based reconstruction pipeline based on binary-coded fiducial markers as artificial, individually identifiable landmarks in
the scene. Additionally, we facilitate the use of these markers in conjunction with known ground control points (GCP) in the bundle
adjustment, and use an online feedback method that allows assessment of the final reconstruction quality in terms of image overlap,
ground sampling distance (GSD) and completeness, and thus provides flexibility to adopt the image acquisition strategy already during
image recording. An extensive set of experiments is presented which demonstrate the accuracy benefits to obtain a highly accurate and
geographically aligned reconstruction with an absolute point position uncertainty of about 1.5 times the ground sampling distance.

1 INTRODUCTION

Photogrammetric methods and image-based measurement sys-
tems have been increasingly used in recent years in different ar-
eas of surveying to acquire spatial information. They have be-
come more popular due to their inherent flexibility as compared
to traditional surveying equipment such as total stations and laser
scanners (Leberl et al., 2010). Traditional aerial photogrammetry
demands resources and occasions high costs for manned, spe-
cialized aircrafts and is therefore only economical for very large
survey areas. In contrast, terrestrial photogrammetry is cheaper
and more flexible, but is limited by the ground based camera
positions. Hence, scene coverage is limited as visibility prob-
lems may arise depending on the scene geometry in certain ar-
eas which are not visible in images taken from ground level.
Photogrammetry with Unmanned Aerial Vehicles (UAVs) has re-
cently emerged as a promising platform which closes the gap and
combines the advantages of aerial and terrestrial photogramme-
try and also serves as low-cost alternative to the classical manned
surveying.

The availability of affordable high quality digital consumer grade
cameras combined with the use of lightweight, low-cost and easy
to use UAVs offers new ways and diverse capabilities for aerial
data acquisition to perform close range surveying tasks in a more
flexible, faster and cheaper way. In conjunction with an auto-
mated multi-image processing pipeline, 3D reconstructions and
dense point clouds from images can be generated on demand,
cost-efficient and fast. Fully automated methods for image-
based 3D reconstructions originate in the field of image process-

∗Corresponding author.

ing (Hartley and Zisserman, 2004) and have been integrated in
many, partly freely available software packages (e.g. VisualSfM,
Acute3D, Pix4D, Agisoft PhotoScan, PhotoModeler, etc.). The
methods are able to calculate the camera orientations and scene
structure represented as a (sparse) 3D point cloud from an un-
ordered set of images. In subsequent steps, the model gets re-
fined to generate a more dense point cloud (Furukawa and Ponce,
2009, Hirschmueller, 2005).

Most of the UAVs used as photogrammetric sensor platforms and
even some of today’s cameras are equipped with a global naviga-
tion satellite system (GNSS) such as GPS, an electronic compass,
barometric pressure sensors for altitude and an inertial measure-
ment unit (IMU) to estimate the platform orientation within 1-
2 meters in position and 1-2◦ orientation accuracy (Pfeifer et al.,
2012) for direct georeferencing (Nilosek and Salvaggio, 2012).
Nevertheless, these parameters are just an approximation for met-
ric and automated applications. In general, the uncertainty in the
position estimation and camera orientation by GNSS and IMU
on-board sensors does not allow for sufficient accuracy (due to at-
tenuation/blocking, shadowing or reflection of GPS signals near
buildings, steep slopes, special materials, etc.) that is necessary
for fully automated image-based reconstructions and measure-
ments.

Many of these afore mentioned 3D vision methods demonstrate
increasing robustness and result in high quality and visually ap-
pealing models. However, the model uncertainty of the recon-
structions is not always clear and so they are often not directly
suited for photogrammetric applications. Many methods either
use a fixed given calibration or try to estimate camera parame-
ters during the processing, but nearly all of them include manual



Figure 1: Automated processing workflow for precise and geo-accurate reconstructions. Top row: Image set, sparse reconstruction,
dense point cloud and triangle-based surface mesh of a quarry wall in open pit mining.

steps e.g. for indirect georeferencing to establish tie point cor-
respondences and aligning the reconstructions in a world coordi-
nate frame. In this context, we see the need for a user-friendly,
fully automated processing pipeline including user guidance dur-
ing image acquisition, an easy to use camera calibration proce-
dure and accurate georeferencing of reconstructed models in a
world coordinate system having absolute geographic position and
orientation with predictable reconstruction accuracy.

In this paper we propose the use of uniquely perceptible fidu-
cial markers such that they can be automatically detected, recon-
structed and integrated into the different steps of a fully auto-
mated end-to-end workflow to obtain precise and geo-accurate
reconstructions (Figure 1). Our contribution is three-fold. Firstly,
we present and advocate the use of planar printed paper based
fiducial markers as a target pattern to obtain accurate and re-
liable camera calibration. Secondly, we integrate online feed-
back (Hoppe et al., 2012) during the data acquisition step to en-
sure that acquired images are suited for subsequent automated
photogrammetric processing and satisfy predefined quality re-
quirements. Automated processes impose high demands on the
quality and especially on the geometric configuration of the im-
ages. Photogrammetric methods need to handle and cope robustly
with convergent, oblique and unordered sets of images, where
scale, depth and ground sampling distance (GSD) changes are
immanent. This step thus ensures that the final Structure-from-
Motion (SfM) reconstruction meets the accuracy requirements
and results in a complete reconstruction of the object. Lastly,
with known ground control point (GCP) positions of the markers,
we are able to automatically set the generated 3D models into
its geographic reference coordinate frame by subsequent indirect
geo-referencing. By additionally integrating GCPs and optimiza-
tion for camera calibration parameters in the bundle adjustment,
we show that we are able to create precise and geo-accurate 3D
reconstructions needing no manual interaction.

In the following sections, we outline the workflow of our auto-
mated multi-image reconstruction pipeline from image acquisi-
tion and camera calibration to processing and georeferencing in
detail. We show in an extensive evaluation that our method al-
lows geo-accurate position measurements with accuracies in the
range of a few centimeters. In two typical scenarios and datasets
in open pit mining (Figure 7) and architectural facade reconstruc-
tion (Figure 3) we show that a measurement uncertainty of about
1.5 times the ground sampling distance is reached.

2 RECONSTRUCTION PIPELINE

In this section, we describe a fully automated processing pipeline
for the reconstruction of camera positions, geo-accurate 3D ob-
ject geometry and the generation of surface models. Our image-

Figure 2: Fiducial markers, typical calibration image with printed
marker sheets arranged on the planar surface of a floor and reli-
ably detected markers with center position and ID.

based reconstruction pipeline can be roughly divided into four
parts: camera calibration; determination of the exterior parame-
ters of camera positions and orientations together with the recon-
struction of sparse 3D object points; geo-registration by trans-
forming the 3D model into a geographic reference coordinate
frame; densification of the object points and generation of a
polygonal surface model.

2.1 Calibration

Accurate intrinsic camera calibration is critical to most computer
vision methods that involve image based measurements, and of-
ten a prerequisite for multi-view stereo (MVS) tasks (Stretcha et
al., 2008). In particular, accuracy of Structure-from-Motion com-
putation is expected to be higher with an accurately calibrated
setup as shown in the work of (Irschara et al., 2007). Given its
crucial role with respect to overall precision, camera calibration
has been a well-studied topic over the last two decades in both
photogrammetry and computer vision. However, in most of the
calibration literature, a strict requirement on the target geometry
and a constraint to acquire the entire calibration pattern has been
enforced. This is often a source of inaccuracy when calibration is
performed by a typical end-user. Hence, aiming at the accuracy of
target calibration techniques without the requirement for a precise
calibration pattern, we advocate the use of a recently proposed
fiducial marker based camera calibration method from (Daftry et
al., 2013).

The calibration routine follows the basic principles of planar tar-
get based calibration (Zhang, 2000) and thus requires simple
printed markers to be imaged in several views. Each marker
includes a unique identification number as a machine-readable
black and white circular binary code, arranged rotationally in-
variant around the marker center. The marker patterns are printed
on several sheets of paper and laid on the floor in an approximate
grid pattern (see Figure 2). There is no strict requirement for
all markers to be visible in the captured images. To ensure that
each marker is classified with a high degree of confidence and to
eliminate any false positives in case of blurred or otherwise low
quality images, a robust marker detection is employed (see also
Section 2.3.1). An initial estimate of lens distortion parameters



Figure 3: In the facade reconstruction using OpenCV calibration significant bending is prevalent (middle). In contrast, accurate camera
parameters delivered by the method from (Daftry et al., 2013) results in a straight facade reconstruction (bottom).

attempts to minimize the reprojection error of extracted feature
points based on homographies between the individual views. Af-
ter determining the constant, but unknown focal length f and de-
termining the calibration matrix K, bundle adjustment is applied
in a subsequent step to perform non linear optimization of the
intrinsics (f ,uo,vo) with uo,vo the principal point and radial dis-
tortion θ. For details on the calibration routine please refer to the
original paper.

Significant accuracy gains, both quantitative and qualitative, can
be observed using the proposed method. Figure 3 shows a re-
construction of a facade that, although visually correct in appear-
ance, suffers from geometric inconsistencies (significant bend-
ing) that is prevalent along the fringes when using standard cal-
ibration and undistortion results from OpenCV (Bradski, 2000).
In contrast, using accurate camera parameters delivered by the
method proposed in (Daftry et al., 2013) results in an almost
straight wall.

2.2 Structure-from-Motion

Steps for the calculation of the exterior camera orientation in-
clude feature extraction and feature matching, estimation of rela-
tive camera poses from known point correspondences, incremen-
tally adding new cameras by resection and computation of 3D
object coordinates of the extracted feature points, followed by
bundle adjustment to optimize camera orientations and 3D coor-
dinates of the object points. A variety of methods exist for auto-
mated extraction and description of salient feature points. A well
known method that is robust to illumination changes, scaling and
rotation is the scale-invariant feature transform (SIFT) (Lowe,
2004). Since we assume that no further information about the
images are known, feature matching requires an exhaustive com-
parison of all the extracted features in an unordered image set
between all possible pairs of images. The expense related to cor-
respondence search and matching is thus quadratic in terms of the
number of extracted feature points in the scene, which can lead to
a critical amount of time in data sets with several thousands of im-
ages. The complete correspondence analysis between all possible
pairs of images is necessary in order to preserve as many image
measurements as possible for an object point. The number of
image measurements and a large triangulation angle is important
for reconstruction accuracy. The theoretically optimal intersec-
tion angle is at 90◦. Practically relevant is an angle between 20◦

and up to 40◦ when using the SIFT descriptor. By geometric ver-
ification of the found feature correspondences based on the five-
point algorithm (Nistér, 2003), the relative camera orientations
between image pairs can now be estimated and represented as an
epipolar connectivity graph (Figure 4). Because the correspond-
ing image measurements of the feature point matches may be cor-

(a) (b)

Figure 4: Rows and columns of the epipolar graph represent in-
dividual cameras and their connections to each other based on
shared feature matches and image overlap. (a) shows a traditional
aerial survey with regular flight pattern, (b) the connections be-
tween cameras for an unordered oblique image data set.

rupted by outliers and gross errors, the verification of the relative
camera orientations is performed by means of a robust estima-
tion method within a RANSAC loop (Fischler and Bolles, 1981).
The determined epipolar graph expresses the spatial relations be-
tween images and represents the pairwise reconstructions and rel-
ative camera orientations, wherein the nodes of the graph rep-
resent the images and the edges correspond to the relationships
and relative orientations between them. Starting from an initial
image pair, new images are incrementally added to the recon-
struction using the three-point algorithm (Haralick et al., 1991).
Camera orientations and 3D point coordinates are then simulta-
neously optimized and refined using bundle adjustment (Triggs
et al., 2000) by minimizing the reprojection error/residual be-
tween image measurements of the SIFT features and predicted
3D coordinates of the corresponding object point, formulated as
a non-linear least squares problem. The results of the fully au-
tomated workflow so far are the outer orientations of the cam-
eras and the reconstructed object geometry as a sparse 3D point
cloud.

2.3 Automated Marker-based Georeferencing

The reconstruction and external orientation of the cameras so far
is initially in a local Euclidean coordinate system and only up to
scale and therefore not metric. However, in most cases the abso-
lute position accuracy of the measured object points is of interest.
In addition, we want the created 3D model correctly stored and
displayed in position and orientation in its specific geographic
context. Based on known point correspondences between re-
constructed object points and ground control points (GCPs), we
first transform the 3D model from its local source coordinate
frame into a desired metric, geographical target reference frame
by shape-preserving similarity transform, also known as Helmert
transformation (Watson, 2006). The transformation parameters
for rotation, translation and scaling can be computed from a min-
imum number of three non-collinear point correspondences be-
tween reconstructed model and reference measurements. In prac-



tice, more than three point correspondences are used to allow
for better accuracy in the registration of the model. Again, the
method of least squares is used within a RANSAC loop to esti-
mate a robust fit of the model to the reference points.

2.3.1 Marker-based Rigid Model Geo-Registration

To facilitate automation and to avoid erroneous point cor-
respondences by manual control point selection, the association
of point correspondences between image measurements and
ground control points is encountered again using fiducial
markers introduced for camera calibration. A requirement for
full automation is that markers are detected robustly and stable
in at least two images of the dataset and are clearly identified
individually by their encoded ID. The detection also needs to
work reliably from different flying altitudes and distances from
the object. Instead of paper print outs, we make use of larger

Figure 5: Histogram for an unrolled circular marker and rotation
invariant binning of the code stripe. The numbers from top to
bottom indicate the probabilities for center, binary code and outer
circle. The marker with ID 20 has been successfully decoded.

versions (∼50 cm diameter) of the markers printed on durable
weather proof plastic foil to signal reference points in the scene
used as GCPs. The markers are flexible, rolled up easy to
carry, though robust and universally applicable even in harsh
environments.

The markers are equally distributed in the target region and
placed almost flat on the ground or attached to a facade. The
3D positions of the marker centers are then measured by theodo-
lite, total station or differential GPS with improved location accu-
racy (DGPS), which is the only manual step in our reconstruction
workflow besides image acquisition. All input images are then
checked in the marker detection. After thresholding and edge de-
tection, we extract contours from the input images and detect po-
tential markers by ellipse fitting. The potential markers are then
rectified to a canonical patch and verified, if circles are found us-
ing Hough transform. If the verification is positive, we sample
the detected ellipse from the original gray scale image to unroll it
and build a histogram (Figure 5). In the thresholded and binned
histogram we extract the binary code of the marker if the code
probability is high. The marker ID is obtained by checking the
code in a precomputed lookup table.

The detected ellipse center describes the position of the image
measurement of the respective marker (see Figure 6). By triangu-
lating multiple image measurements of one and the same marker
seen in several images, we calculate its 3D object point position
in the local reference frame of the model. The markers can be
directly matched and automatically associated with their corre-
sponding ground control reference points as long as they share
the same ID. Once, corresponding point pairs have been estab-
lished between model and reference, they are used to calculate
the transformation parameters. This results in a geo-registered
model of the object.

2.3.2 Constrained Bundle Block Optimization with GCPs

In a purely image-based reconstruction it can be observed that the
error at the border parts of the reconstruction slightly increases,
as already shown in Figure 3. This leads to a deformation of
the image block in the bundle adjustment. Two reasons can be

Figure 6: Automatically detected ground control points with plot-
ted marker centers and corresponding marker IDs.

identified that cause this type of deformation. First cause is the
quality of the calibration. An improper or inaccurate calibration
leads to false projections of features and image measurements,
e.g. due to a misalignment of the camera’s principal point. A
wrongly estimated focal length of the camera shifts the problem
from the intrinsics away and may get compensated by the distor-
tion parameters and vice versa. But, the original problem persists
which is the reason for camera calibration to be carried out with
adequate care. Even with a carefully calibrated camera, the pa-
rameters may change during image acquisition, e.g. due to harsh
weather conditions and a temperature change between last cali-
bration and the time of survey.

The second reason causing drift lies in the actual camera network.
This can be explained that the scene is covered by fewer images
towards the borders of the surveying area compared to the center
of the object. Less image overlap leads to fewer image measure-
ments per object point and thus cause the camera network and
epipolar graph, as described in Section 2.2, to have fewer connec-
tions at the borders. This has the effect that the optimization of
camera positions and 3D object points in the bundle adjustment is
less constrained, thus the optimized positions can undergo larger
changes.

A way to avoid systematic errors arising from the deformation of
the image block is to introduce known reference points as well
as directly measured GPS coordinates of the camera positions in
the bundle adjustment. On the one hand, this leads to smaller
position error residuals, on the other hand a simultaneous tran-
sition into a reference coordinate system can be accomplished.
The additional information introduced by the artificial fiducial
markers in the scene can be seamlessly integrated into the recon-
struction process. The global optimization of camera positions
and 3D object point positions in the bundle adjustment is carried
out based on Google’s Ceres Solver for non-linear least squares
problems (Agarwal et al., 2012). For this purpose, we perform
an additional bundling step and extend the bundle adjustment be-
sides the mass of object points from natural landmarks from SIFT
points by a second class for ground control points and image mea-
surements of the fiducial marker detections. In contrast to a naive
approach constraining the 3D position errors of the GCPs, we
avoid any metric scale problems and penalize the reprojection er-
ror of the GCPs in image space with a Huber error norm (Huber,
1964). The additional reference points are intended to constrain
the optimization problem so that the solution sticks to the GCPs.
Furthermore, we let the initial camera parameters for intrinsics
and lens distortion be commonly refined and corrected for all
cameras in the bundle adjustment step. Thus, GCP integration
distributes the residual errors equally over all markers and allows
3D reconstructions with very low geometric distortions, even for
elongated objects of large extent.



2.4 Densification and Meshing

Due to the comparably low number of triangulated feature points
(about 500-1000 features per image, depending on the texture)
and their non-uniform distribution on the surface compared to
the dense number of pixels in one image (millions of pixels), the
modeling of the surface is only an approximation of the real sur-
face. To increase the number of 3D points, stereo (Hirschmueller,
2005) or multi-view methods (Irschara et al., 2012, Furukawa and
Ponce, 2009) can be used for pixel-wise image matching. Stereo
methods use two rectified images to determine a depth for each
pixel in the image. In the case of unordered oblique images that
were taken from a UAV, image rectification is often only possi-
ble with great loss in image resolution due to the geometric con-
figuration of the cameras. Therefore, multi-view methods that
are able to cope with arbitrary camera configurations such as the
freely available PMVS2 (Furukawa and Ponce, 2009) are well
suited for oblique image sets. For many tasks a closed surface
model is necessary, such as visibility calculations where a point
cloud is not sufficient. A well-known method for surface recon-
struction from a set of densely sampled 3D points also used for
laser scanning data is the Poisson surface reconstruction (Hoppe
et al., 1992), which interpolates the densified points to a closed
surface. Figure 1 shows a comparison between a sparse recon-
struction, a densified point cloud and a reconstructed triangle sur-
face mesh of a quarry wall consisting of about 10 million 3D
points.

3 IMAGE ACQUISITION

To evaluate the presented automated workflow and the achieved
accuracy respectively, several image flights were carried out
to record typical datasets for architectural and mining applica-
tions.

3.1 Test Site and Flight Planning

One of our test sites is located at the ”Styrian Erzberg”, which
is the biggest iron ore open pit mine in central Europe. To asses
the achieved accuracy, a reference point network of ground truth
measurements is needed. Therefore, one wall (which is about
24 m high and 100 m long) is equipped with 84 circular targets.
This dense target network enables an extensive evaluation of re-
construction accuracy, and systematic deformations of the image
block and reconstructed 3D geometry can be quantified. In ad-
dition and especially for automated georeferencing, all together
45 binary coded fiducial markers, as described in Section 2.1
and 2.3, are used as temporary GCPs on top and bottom of the
wall and in the adjacent area around the object. The spatial distri-
bution of the markers in the target region allows different selec-
tions of GCPs, and offers the opportunity to study the influence
of the GCP network on the achievable accuracy of the 3D recon-
struction. In addition to the well-textured quarry wall open pit
mining dataset, we also recorded a facade dataset of a building
with large homogeneous areas. All reference points were conven-
tionally surveyed using a Trimble S6 total station with an average
precision of 10 mm for 3D point surveying without prism. Fig-
ure 7 shows the spatial distribution of markers (green) and targets
(red).

For image acquisition we used an AscTec Falcon 8 octocopter as
a flying platform. The UAV is equipped with a Sony NEX-5N
digital system camera. The APS-C CMOS sensor has an image
resolution of 16.1 megapixels and is equipped with a fixed focus
lens with a focal length of 16 mm (Table 1). The open pit mine
dataset consists of 850 images, for the facade reconstruction 997
images were captured in three rows regarding the distance to the
object.

Figure 7: The reference point network allows an extensive accu-
racy evaluation. Systematic deformations of the image block and
reconstructed object geometry can be quantified. Markers (bot-
tom right) indicating GCP positions are shown in green, circular
targets (left) for quantitative evaluation are in red.

Sensor dim. Resolution Focal len. Pixel size
23.4× 15.6mm 4912× 3264 16mm 4.76µm

Table 1: Camera and sensor specifications.

We define a desired minimum ground sampling distance of
1.5 cm per Pixel and a minimum overlap between images of at
least 70%. Based on Equation 1 and 2 for nadir image acquisi-
tion in aerial photogrammetry,

PixelSize =
SensorWidth [mm]

ImageWidth [px]
, (1)

GSD =
PixelSize [mm] ∗ ElevationAboveGround [m]

FocalLength [mm]
,

(2)
we obtain a maximum flying height above ground and imaging
distance to the object, respectively, of about 50 meters.

The angle of view calculates from Equation 3,

α = 2 · arctan SensorWidth [mm]

2 · FocalLength [mm]
, (3)

to α = 72.35◦. The scene coverage for one image cap-
tured from height h above ground can be calculated from Equa-
tion 4,

c = 2 · h · tan α
2

≈ ImageWidth [px] ·GSD . (4)

The required baseline b between views then calculates from the
overlap ratio or = o

c
with o being the overlap o = 2·h·tan α

2
−b

to b = (1 − or) · c, resulting in a maximum baseline between
images of b = 21.94m in 50 meters distance to the object and
b = 4.39m in close distance of 10 meters in front of the object.
These geometric requirements together with the maximum reso-
lution of the camera also constrains the size of the markers in the
scene, since the robust decoding of the marker IDs requires an
image of the marker with at least 25-30 pixels in diameter. The
minimum marker size then yields a marker size of approximately
45-50 cm in diameter to be robustly decoded from a distance of
50 meters.

To enable analysis of which parameters influence the reconstruc-
tion accuracy with respect to triangulation angle, redundancy (i.e.
overlap), distance to the object and camera network, we per-
form an oversampling of the scene and therefore record images
with approximately 90% overlap in three different distances and
heights from the object.



3.2 Online-Feedback for Image Acquisition

We support image acquisition by an online feedback system to as-
sess the recorded images with respect to the parameters of image
overlap, ground sampling distance and scene coverage defined in
the previous section to ensure completeness and redundancy of
the image block.

Figure 8: Visualization of ground resolution using an online
Structure-from-Motion system to assess reconstruction accuracy
and scene coverage during image acquisition.

The automated offline pipeline described in Section 2.2 yields
high accuracy, as we will show in Section 4. However, processing
takes several hours, thus, results are only available hours later. If
the reconstruction result does not meet the desired expectations,
e.g. due to a lack of images in areas that would have been rel-
evant to the survey, a repetition of the flight is necessary which
cause additional costs and time delays. In order to be able to al-
ready judge the results on site whether the captured images are
suited for fully automated processing, we apply a recently de-
veloped method for online Structure-from-Motion (Hoppe et al.,
2012). The method calculates the exterior orientation of the cam-
eras and a sparse point cloud reconstruction already during or
right after the flight on site. The images may be streamed down
from the UAV via an SD card in the camera with Wi-Fi capability
to a laptop computer on the ground. The method is able to pro-
cess high-resolution images on a notebook with quad-core CPU
and powerful graphics card in real time. The method requires
a stream of consecutively captured images and needs about two
seconds to determine the outer orientation of a 10 megapixel im-
age and to calculate new object points. Due to the restrictions in
image matching and bundle adjustment to immediate neighboring
cameras, the online reconstruction does not claim high accuracy.
However, the method allows the estimation of achievable recon-
struction quality and is very beneficial to determine completeness
of the final reconstruction during image recording.

For the user, the quality of the reconstruction can be judged only
poorly from the triangulated sparse feature points. Two main
relevant parameters determine the accuracy: redundancy, which
states how often a surface point is seen, and the ground resolu-
tion. To determine both parameters from the actual reconstruc-
tion, a surface is extracted from the sparse points using (Labatut
et al., 2007). This surface is then used to visualize ground resolu-
tion and redundancy of the reconstruction using color coding. For
the pilot it is then apparent, which parts of the scene are observed
often and at which ground resolution they can be reconstructed.
This assists the pilot in planning the next steps of the flight so that
a uniform coverage of the scene with constant ground resolution
can be achieved. Figure 8 shows the reconstruction result during
image acquisition.

4 EVALUATION AND RESULTS

In this section we analyze the performance of our presented au-
tomated method for georeferenced 3D reconstructions. In liter-
ature, the reprojection error of object or feature points has often
been used as an adequate measure for evaluating the accuracy
of the exterior camera orientation. However, for photogrammet-
ric applications the accuracy of the reconstructed object points is
of prime interest. We thus perform a point-wise comparison of
reconstructed object points to corresponding, clearly identifiable
3D reference point coordinates from circular targets. Since the
reconstruction has been already geo-registered by a rigid trans-
formation, we approximately know the location of the individ-
ual target points in the images, thus we perform a guided search
for circular targets in the images for each of the reference points
(see Figure 7). The object points for comparison with the known
ground truth point positions are then triangulated from the cen-
ter point measurements of the detected circular targets in the im-
ages.

It can be shown that highly geo-accurate reconstructions are ob-
tained with our system. In Figure 9, we show the absolute point
error for each evaluation target in the quarry wall after con-
strained bundle adjustment with GCPs. Using all 850 images of
the open pit mining dataset and all available GCPs for the bun-
dle block optimization a mean accuracy of less than 2.5 cm is
reached. For the facade dataset we are even able to achieve an
overall accuracy of 0.5 cm due to the closer distance to the object
(4-10 m) and resulting a much higher GSD, respectively. To avoid

Figure 9: Using all 850 images and all available GCPs in the
constrained bundle adjustment, a mean measurement uncertainty
dropping from 4.54 cm to below 2.45 cm is reached.

systematic deformations of the image block, we use our fiducial
markers as ground control points (GCPs) in a constrained bundle
adjustment. Table 2 shows the improvement in accuracy by com-
paring the mean absolute point error for rigid similarity transform
and optimization using GCP constrained bundle adjustment. The
mean error which is already very good before GCP bundling then
drops further from 3 times the GSD to a factor of 1.5 times the
GSD. The decreasing standard deviation indicates an equalization
of the error distribution and a less deformed image block after the
optimization.

Method Mean Std.dev. Median
Similarity Transform 4.54 cm 1.64 cm 4.40 cm

GCP bundler 2.45 cm 1.18 cm 2.16 cm

Table 2: Accuracy improvement by GCP constrained bundle ad-
justment

Next, we investigate relevant parameters influencing the recon-
struction accuracy, which is important to understand better the
aspects of block stability and the most influencing factors. A
high oversampling of the quarry wall was done for this purpose
and is represented in the open pit mining dataset as mentioned
in section 3.1. The most prominent parameters that have a large
impact on accuracy are, besides image overlap and triangulation



angle, foremost the ground sampling distance determined by im-
age resolution and the imaging distance to the object. In order
to identify and quantify these parameters and furthermore give
guidelines for image acquisition, a systematic parameter analysis
is carried out. We build different image subsets for both the open
pit mine as well as for the facade dataset to study the effect of
different camera configurations.

4.1 Number of Observations

As shown in (Rumpler et al., 2011) in a synthetic simulation on
a regular aerial flight pattern, accuracy increases with a higher
number of image measurements and with increasing triangulation
angles. Plotting the mean object point error over the total number
of images for different subsets, it can be shown in Figure 10 that
the point error decreases with increasing total number of images.
Figure 10 also shows, that there is a fast saturation and accuracy
improvement within larger datasets.

Figure 10: Error curve for different image subsets before GCP
constrained bundle adjustment. With increasing total number of
images per subset, the mean reconstruction accuracy increases.

It can be shown that a higher number of images in the dataset
leads to an accuracy improvement. But, considering the number
of image measurements per evaluation target does not necessar-
ily reduce the error and does not directly lead to higher accuracy
as shown in Figure 11. The error in the graph looks rather os-
cillating over the track length. Thus, it is not possible to exem-
plify the achievable accuracy alone on the number of used im-
ages or observations for unordered and oblique datasets as the
camera configuration and its influence on feature matching, tri-
angulation angle and ray intersection geometry may change dras-
tically. From Figure 11 we argue that not every additional image

Figure 11: Mean evaluation target track length. A larger number
of image measurements has not necessarily a positive effect on
the achievable accuracy. The graph looks uniformly distributed
or rather oscillating.

measurement necessarily leads to an improvement in accuracy.
There are various influences which can not be compensated by
high redundancy. Each image contributes to the resulting accu-
racy through different ways. Apart from redundancy especially
camera network, triangulation angle as well as the quality of fea-
ture detection and localization of image measurements and target
points due to image noise have large influence.

4.2 Camera Network and Resolution

As indicated above, the influence of the geometric configuration
of the multi-view camera network on the resulting accuracy is
higher than the influence of redundancy in image acquisition. To
investigate the influence of the distance to the object and ground
sampling distance, i.e. image resolution respectively, we build
different image subsets. The direction of the camera’s optical axis
is kept constant in narrow bounds so that the cameras are looking
almost perpendicular to the wall and the facade. The distance
to the object varies from close to distant in three different rows
(15 m, 35 m and 50 m). In each row we select images to ensure
a constant overlap of 70% for all three rows between the views.
First, each row is processed separately and subsequently all rows
combined. The distance to the object has a large and systematic
influence on the achievable accuracy. With increasing distance to
the object the calculated error increases as well. Figure 12 shows
the mean error for all targets with respect to the different subsets
and distances to the wall. The best accuracy can be achieved
using images from all three rows together.

Figure 12: Considering the mean error over all targets, it can
be observed, that the mean error increases with larger distances
to the object, and with decreasing ground sampling distance, i.e.
resolution respectively.

Flying at different altitudes is a common approach in airborne
photogrammetry to enhance the accuracy of the IO parameters,
thus a combination of the different flying heights/distances deliv-
ers better results. This indicates that the images of the first row
influence the accuracy positively due to their higher GSD, but the
first row is more affected by drift and distortions, which is not
obvious directly from the shown mean error. Images that are fur-
ther away cause larger errors. On the one hand, this is caused by
a lower ground sampling distance, and thus, lower level of detail
in the images. On the other hand, the influence of image noise on
the reconstruction uncertainty increases with point depth. Image
noise and small localization errors of the image measurements
are approximately constant for all images, however, the resulting
positional error increases with larger distances due to a larger an-
gular error in the triangulation. Nevertheless, the combination of
different image resolutions effects the achievable accuracy posi-
tively, because images taken further away mitigate the error prop-
agation within each row and help connecting the camera network
over longer tracks. Additionally, the first row consists of 173
images, whereby the second and third row are containing only
half the number, namely 87 images. According to Figure 10 the
higher number of images in the first row leads also to a higher
accuracy.

In aerial photogrammetry, the typical depth error for a triangu-
lated 3D object point is in the range of 1.5-2 times the GSD.
Based on Equation 2 and a GSD of 1.5 cm per Pixel in images
taken from 50 m distance, the expected point uncertainty would
then be in the range of 2.25 cm. Overall, we achieve a mean
position error of the object points of 2.45 cm (Table 2) which
is perfectly in consent with the expected measurement uncer-
tainty.



5 CONCLUSIONS

We have presented a system for fully automated generation of
precise and georeferenced 3D reconstructions based on fiducial
markers. Firstly, we advocated the use of planar printed pa-
per based fiducial markers as a target pattern to obtain accurate
and reliable camera calibration. Secondly, we integrated an on-
line feedback to guide the user during data acquisition regard-
ing ground sampling resolution and image overlap so that auto-
mated photogrammetric processing is possible, the final recon-
struction meets predefined accuracy requirements, and results in
a complete reconstruction of the object. Lastly, we utilize known
ground control points signalled by fiducial markers in the scene
and integrate them into our image-based reconstruction pipeline.
The produced 3D models are accurately reconstructed and trans-
formed into a geographic reference coordinate frame by seam-
lessly integrating the GCPs given by the markers and additional
optimization of camera calibration parameters in the bundle ad-
justment.

We showed that our approach is able to produce very good re-
sults in two typical scenarios and datasets in open pit mining and
an architectural facade reconstruction. We achieve an equally dis-
tributed measurement uncertainty of about 1.5 times the ground
sampling distance. The most prominent parameter with large im-
pact on accuracy is, besides image overlap and triangulation an-
gle given by the camera network, foremost the ground sampling
distance determined by image resolution and imaging distance to
the object.

In the case of nadir aerial imaging mainly the camera network
geometry is crucial for determining reconstruction accuracy, but
that cannot be inferred to unordered image sets of oblique views
straight forward. Combining images taken at different distances
leads to better block stability of the camera network and points
and helps to enhance the accuracy of the IO parameters. But there
are various influences which cannot be compensated by high res-
olution, redundancy or larger triangulation angles. Apart from
those parameters, the quality of feature detection and localiza-
tion of image measurements has a large influence due to heavily
changing view points, illumination changes or image noise. This
will be the subject of future research.
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