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a b s t r a c t 

During the last decades photogrammetric computer vision systems have been well established in scien- 

tific and commercial applications. Recent developments in image-based 3D reconstruction systems have 

resulted in an easy way of creating realistic, visually appealing and accurate 3D models. We present a 

fully automated processing pipeline for metric and geo-accurate 3D reconstructions of complex geome- 

tries supported by an online feedback method for user guidance during image acquisition. Our approach 

is suited for seamlessly matching and integrating images with different scales, from different view points 

(aerial and terrestrial), and with different cameras into one single reconstruction. We evaluate our ap- 

proach based on different datasets for applications in mining, archaeology and urban environments and 

thus demonstrate the flexibility and high accuracy of our approach. Our evaluation includes accuracy 

related analyses investigating camera self-calibration, georegistration and camera network configuration. 

© 2016 Elsevier Inc. All rights reserved. 

1

 

c  

a  

u  

l  

c  

(  

a

r

a  

a

 

a  

s  

i  

m  

a  

t  

h

1

. Introduction 

Creating and visualizing realistic and accurate 3D models is be-

oming a central ambition of research in the field of spatial data

cquisition. In this domain passive cameras have become very pop-

lar as measurement devices due to their inherent flexibility and

ow cost compared to traditional surveying equipment. As passive

ameras are also very light-weight they can be mounted on UAVs

unmanned aerial vehicles), which have emerged in recent years as
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 promising platform to perform close range aerial data acquisition

nd surveying tasks ( Rehak et al., 2013 ). 

UAVs help to overcome geometric constraints and combine the

dvantages of both aerial and terrestrial photogrammetry and also

erve as a low-cost alternative to the classical manned survey-

ng. Typical applications reach from agriculture and environmental

onitoring, surveying tasks for mining, archaeology or architecture

s well as inspection of objects that are difficult and dangerous

o reach for human operators. Multi-copter UAVs in particular, are

ble to capture highly overlapping images from almost terrestrial

amera view points to oblique and nadir aerial images, due to the

bility to navigate at very low airspeed and hover at nearly any

osition. 

Together with an automated multi-view processing pipeline,

ense 3D point clouds from images are generated in a flexible,

ast and cheap way and can compete with point clouds from laser

cans in terms of accuracy ( Leberl et al., 2010 ). Such multi-view
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Fig. 1. Automated processing workflow for geo-accurate reconstructions. Top row: Image set, sparse reconstruction, dense point cloud and triangle-based surface mesh of a 

quarry wall. 
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processing pipelines have been integrated in many software

packages (e.g. VisualSfM, Acute3D, Pix4D, Agisoft PhotoScan, Pho-

toModeler, etc.). These pipelines are able to calculate the intrinsic

and extrinsic camera parameters as well as scene structure rep-

resented as a (sparse) 3D point cloud from an unordered set of

images. In subsequent steps, the model gets refined to generate a

denser point cloud ( Furukawa and Ponce, 2009; Hirschmueller,

2005 ). 

Many of the afore mentioned software packages show increas-

ing robustness and result in high quality and visually appealing 3D

models ( Tscharf et al., 2015 ). However, there are three main draw-

backs. 

The first drawback is that the reconstruction errors of the mod-

els are not always clear and so they are often not directly suited

for photogrammetric applications. 

The second drawback is that nearly all of the software pack-

ages include manual steps e.g. for indirect georeferencing to estab-

lish tie point correspondences and aligning the reconstructions in

a world coordinate frame. 

The third drawback is that none of these software packages pro-

vides the operator with sufficient information to judge the com-

pleteness of the reconstruction at acquisition time. Especially com-

plex object geometries require high overlap and a very dense im-

age network to guarantee completeness, which cannot be ensured

by using terrestrial or aerial nadir images exclusively. Only a com-

bination of terrestrial and aerial viewpoints is able to guarantee

completeness of the model. 

In this context, we see the need for a user-friendly, fully au-

tomated processing pipeline including user guidance during image

acquisition, an easy to use camera calibration procedure and accu-

rate georeferencing of reconstructed models in a world coordinate

system having absolute geographic position and orientation with

predictable reconstruction accuracy ( Fig. 1 ). 

In the first part of our paper ( Section 2 ) we present our fully

automated multi-scale end-to-end workflow ( Fig. 1 ) to create pre-

cise and geo-accurate reconstructions in complex environments by

the combined use of different camera platforms (aerial and terres-

trial). Our contribution is three-fold. Firstly, we present and advo-

cate the use of planar fiducial markers as a target pattern to obtain

accurate and reliable camera calibration. Secondly, with known

ground control point (GCP) positions or GPS measurements of the

camera positions, we are able to automatically set the generated

3D model into its geographic reference coordinate frame. By addi-

tionally integrating GCPs and camera self-calibration in the bundle

adjustment optimization, we are able to create precise and geo-

accurate 3D reconstructions without any manual interaction. Lastly,

we integrate user guidance ( Hoppe et al., 2012 ) into the data ac-

quisition step to ensure that acquired images are suited for au-

tomated photogrammetric processing ( Section 3 ). Photogrammet-

ric methods need to cope robustly with unordered sets of images,

where scale, depth and ground sampling distance (GSD) changes
Please cite this article as: M. Rumpler et al., Evaluations on 
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re immanent. Our online feedback approach thus ensures that the

nal Structure-from-Motion (SfM) reconstruction meets predefined

ccuracy requirements and results in a complete reconstruction of

he object. To our knowledge, this is the first approach of this

ind. 

The largest part of this paper ( Section 4 ) gives insights how we

valuated and describes what is important during image acquisi-

ion to obtain highly accurate reconstructions. We present accuracy

elated analyses investigating camera self-calibration, georegistra-

ion, camera network configuration and ground sampling distance

nd show how to obtain geo-accurate reconstructions for complex

bject geometries with high precision using aerial UAV imagery in

ombination with terrestrial images. 

We evaluate our approach based on five different scenarios for

pplications in mining and archaeology, as well as urban environ-

ents and demonstrate the flexibility and high accuracy of our ap-

roach. 

. Reconstruction pipeline 

In this section, we describe our fully automated multi-view pro-

essing pipeline to reconstruct geo-accurate 3D models and cam-

ra positions with input images captured with different cameras

t different scales and view points. The reconstruction pipeline

s roughly divided into four parts: camera calibration; determina-

ion of the exterior parameters of camera positions and orienta-

ions together with the reconstruction of sparse 3D object points;

eo-registration by transforming the 3D model into a geographic

eference coordinate frame; densification of the object points and

nally generation of a polygonal surface model and texturing.

he reconstruction step takes pre-calibrated images from different

ources, groups them according to their intrinsic parameters and

rocesses them jointly to finally generate a textured polygonal sur-

ace model. 

.1. Calibration 

Accurate intrinsic camera calibration is critical to computer vi-

ion methods that involve image based measurements. Traditional

fM pipelines such as Bundler, Agisoft, etc. employ a direct use of

ncalibrated views for 3D reconstruction, and can inherently deal

ith a dataset having images taken at varying focal length, scale

nd resolution. However, in our experience, we have found that

ccuracy of Structure-from-Motion computation is expected to be

igher with an accurately calibrated setup ( Irschara et al., 2007;

trecha et al., 2008 ). 

In most of the calibration literature ( Zhang, 20 0 0 ), a strict re-

uirement on the target geometry and a constraint to acquire the

ntire calibration pattern has been enforced. This is often a source

f inaccuracy when calibration is performed by a typical end-user.

dditionally, these methods tend to fail when images are taken at
multi-scale camera networks for precise and geo-accurate 
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Fig. 2. Fiducial markers, typical calibration image with printed marker sheets arranged on the planar surface of a floor and reliably detected markers with center position 

and ID. 

Fig. 3. Histogram for an unrolled circular marker and rotation invariant binning of the code stripe. The numbers from top to bottom indicate the probabilities for center, 

binary code and outer circle. The marker with ID 20 has been successfully decoded. 

Fig. 4. Significant bending is prevalent in the facade reconstruction using OpenCV calibration (middle). In contrast, accurate camera parameters delivered by our 

method ( Daftry et al., 2013 ) results in a straight facade reconstruction (bottom). 
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onsiderably different distances to the object. Hence, aiming at the

ccuracy of target calibration techniques while factoring out im-

ge space variations due to occlusion, reflection, etc., we advocate

he use of a recently proposed fiducial marker based camera cal-

bration method ( Daftry et al., 2013 ). The calibration routine fol-

ows the basic principles of planar target based calibration and

hus requires simple printed markers to be imaged in several views

 Fig. 2 ). 

Each marker includes a unique identification number as a

achine-readable black and white circular binary code, arranged

otationally invariant around the marker center ( Fig. 3 ). 

A novel technique for robustly estimating the focal length and

etermining the calibration matrix K is employed, where an error

unction is exhaustively evaluated to obtain globally optimal values

f focal length f , principal point and radial distortion. For details

n the calibration routine please refer to the original paper ( Daftry

t al., 2013 ). 

There are significant qualitative and quantitative benefits of the

resented calibration method towards a multi-scale robust image

equence. Fig. 4 shows a reconstruction of a facade that, although

isually correct in appearance, suffers from geometric inconsis-

encies (significant bending) that is prevalent along the fringes

hen using standard calibration and undistortion results from

penCV ( Bradski, 20 0 0 ). In contrast, our method results in an al-

ost straight wall. 

In our findings, this method works very robustly and performs

uch better for a multi-scale image sequence acquired at varying

epths to the object, as compared to traditional methods that em-

loy a non-linear minimization technique for intrinsic parameter
Please cite this article as: M. Rumpler et al., Evaluations on 
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stimation. In addition, we facilitated the method with an easy to

se GUI. Our calibration software is available online. 1 

.2. Structure-from-motion 

Calculation of the exterior camera orientations called Structure-

rom-Motion (SfM), or Aerial Triangulation (AT), includes fea-

ure extraction and feature matching, estimation of relative cam-

ra poses from known point correspondences and incrementally

dding new cameras and computation of 3D object coordinates of

he extracted feature points ( Hartley and Zisserman, 2004 ). Cam-

ra orientations and 3D coordinates of the object points are then

ptimized using bundle adjustment. 

For our method we assume pre-calibrated images, i.e. images

hat have already been undistorted together with an initial guess

f the focal length (see Section 2.1 ). We group all input images

nto subsets sharing the same camera and focal length in a prepro-

essing step. The grouping and assignment to an initial calibration

nd focal length is performed according to meta information from

pecific tags provided with the image file (e.g. Exif information in

PEG or TIFF images), or given by the user. 

The first processing step in our pipeline is feature extraction

n every image in all subsets. A variety of methods exist for au-

omated detection of feature points. The scale-invariant feature

ransform (SIFT) ( Lowe, 2004 ) proved to be very robust against ro-

ation, illumination changes and view point variations and scaling.

t is therefore ideally suited to match images automatically from
https://aerial.icg.tugraz.at/ 

multi-scale camera networks for precise and geo-accurate 

idance, Computer Vision and Image Understanding (2016), 

https://aerial.icg.tugraz.at/
http://dx.doi.org/10.1016/j.cviu.2016.04.008


4 M. Rumpler et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–19 

ARTICLE IN PRESS 

JID: YCVIU [m5G; April 23, 2016;19:47 ] 

Fig. 5. Rows and columns of the epipolar graph represent individual cameras and 

their connections to each other based on shared feature matches and image overlap. 

(a) shows a traditional aerial survey with regular flight pattern, (b) the connections 

between cameras for an unordered oblique image data set. 
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different view points, i.e. aerial images from a UAV and terrestrial

images as well as inside views of an object taken with different

cameras into one single reconstruction. The only prerequisite is

that there is overlap between the images showing sufficient tex-

ture and salient features that can be matched across the views.

The extracted features for all images are then stored and further

processed. 

Matching of the extracted features is performed between all im-

ages and all subsets. Since we assume that no further information

about the images is known, feature matching would require an ex-

haustive comparison of all the extracted features in an unordered

image set between all possible pairs of images to preserve as many

image measurements as possible for an object point. Exhaustive

comparison in an unordered set of images, however, requires a lot

of computation time and is the most time consuming step in ev-

ery Structure-from-Motion pipeline. The expense related to corre-

spondence search and matching is thus quadratic in terms of the

number of extracted feature points in the scene, which can lead

to a critical amount of time in data sets with several thousands

of images. To speed up the correspondence analysis in large data

sets, methods based on vocabulary trees are applied to achieve a

rough pre-selection of similar image pairs ( Nistér and Stewenius,

20 06; Sivic and Zisserman, 20 03 ). The computation time for fea-

ture extraction and matching is additionally reduced through the

extensive use of graphics processing hardware (GPUs). 

Established feature correspondences between images are then

used to estimate the relative camera orientations between pairs of

images. Geometric verification of the relative camera orientations

is performed using the five-point algorithm ( Nistér, 2003 ) within

a RANSAC loop ( Fischler and Bolles, 1981 ). Starting from an initial

image pair, new images are incrementally added to the reconstruc-

tion using the three-point algorithm ( Haralick et al., 1991 ). The

relative orientations between cameras are represented in a graph

structure, the so-called epipolar connectivity graph ( Fig. 5 ). Images

in the graph are represented by the nodes and the relationships

between them (based on common feature points and overlap) are

represented by the edges of the graph that correspond to the rela-

tive orientations between cameras. 

Camera orientations and triangulated 3D feature points are then

simultaneously refined by minimizing the reprojection error be-

tween the projected 3D point and its corresponding 2D feature

measurement in the image in a bundle adjustment step ( Triggs

et al., 20 0 0 ). Optimization in the bundle adjustment is carried out

based on Google’s Ceres Solver for non-linear least squares prob-

lems Agarwal et al . 

2.3. Automatic georeferencing 

Reconstructions created by purely image-based approaches like

the method described here are initially not metric due to the lack
Please cite this article as: M. Rumpler et al., Evaluations on 
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f scale information in the images. A metric scale of the recon-

truction can be accomplished easily for example by one known

istance in the scene. This might be a distance measure between

wo distinct points that is also easily recognizable in the digitally

econstructed 3D model, or a known distance between two camera

ositions. 

However, in most cases and in surveying applications in partic-

lar, the absolute position of object points is important. In addi-

ion, we want the created 3D model stored and displayed in posi-

ion and orientation in its specific geographic context. 

Georegistration is achieved by a rigid similarity transforma-

ion (also called 3D Helmert transformation ( Watson, 2006 ) or

-parameter transform) of the model into a desired metric tar-

et coordinate system using at least 3 known non-collinear point

orrespondences between model points and points in the ref-

rence coordinate system (control points). A more robust trans-

ormation result is obtained by a larger number of points and

 robust estimation of the transformation parameters for rota-

ion, translation and scaling. The method of least squares within

 RANSAC loop ( Fischler and Bolles, 1981 ) improves clearly the

egistration quality of the model in the presence of noise and

utliers. 

.3.1. Georegistration and GPS alignment 

Flying platforms for aerial data acquisition are often equipped

ith a GPS receiver, that allows positioning of the aircraft in flight,

tabilization and, depending on the application autonomous navi-

ation between waypoints. Recording of GPS data during the flight

nables to track and monitor positions and travelled distances of

he UAV. It is then necessary to link the recorded images to the

orresponding position data in order to use the GPS information

or georeferencing ( Nilosek and Salvaggio, 2012 ). This is achieved

y synchronized timestamps of the images with the GPS signal.

everal professional products instead offer a direct interface be-

ween on-board GPS receiver and camera to instantly assign a

PS location to a captured image and store the information in

he meta data of the image file. Recorded information from in-

rtial sensors may also be available in the meta data, providing

nformation about the platform orientation of the aircraft at the

ime of capturing the image, given by the rotation angles for roll,

itch and yaw. During SfM, this additional information of approxi-

ate camera positions is used for guidance to speed up the search

or neighboring images and match image features through guided

atching. 

Position data stored for each image is now used to metri-

ally scale the previously calculated reconstruction and to trans-

orm the model into a desired reference system. However, the

uality and accuracy of location data is not sufficient in most

ases to allow an accurate three-dimensional reconstruction and

eliable measurements in the scene solely based on GPS posi-

ions and IMU (inertial measurement unit) data. Due to weight

estrictions of UAVs and a maximum payload depending on the

sed aircraft, usually very small GPS receivers are used that al-

ow only limited accuracy in the range of 1-2 meters in position

nd 1-2 ° orientation accuracy ( Pfeifer et al., 2012 ). But, the accu-

acy is sufficiently high for a rough positioning and metric scal-

ng of the image-based reconstruction because transformation pa-

ameters can be estimated robustly when using a large number

f images. The more images and GPS positions, the more robust

he transformation gets. The accuracy of the absolute position-

ng of the reconstruction might be low, but the precision of the

etric scaling is high enough, because relative position errors be-

ween GPS positions are better distributed and compensated, the

arger the number of position measurements, i.e. the number of

mages. 
multi-scale camera networks for precise and geo-accurate 
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Fig. 6. Illustration of the bending-effect for the railway dataset. Camera positions and 3D points drift away from fixed control points due to systematic errors (top). The 

surveying area has an extent of about 2.1 × 0.6 kilometers. 403 images were taken with a senseFly eBee fixed-wing drone at a constant flying height of 85 meters above 

ground level. We used 19 ground control points (GCPs) to geo-register the scene. Errors caused by the bending in this dataset without external information resulted in 

positional shifts of 3D points and camera positions of up to 8 meters from their measured GPS position (bottom). 

Fig. 7. Results of the photogrammetric reconstruction without (left) and with additional GPS positions and optimization of camera intrinsics in the bundle adjustment (right). 

The direct comparison shows the reduction of the initially clearly visible distortion of image block and object points. 

Table 1 

Quantitative accuracy improvements for the railway dataset 

using GPS information and ground control points (GCPs). With 

external constraints in the bundle adjustment the reconstruc- 

tion error decreases from almost 8 meters to less than 25 cm. 

Error [m] 

Method Mean Std.dev. Median 

BA + rigid GPS alignment 7 .272 2 .170 7 .514 

BA + rigid GCP alignment 4 .824 6 .499 2 .309 

Constrained BA with GPS 2 .708 0 .789 2 .622 

Constrained BA with GCPs 0 .247 0 .550 0 .232 
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.3.2. Constrained bundle adjustment with GPS and ground control 

oints 

Pure image-based approaches suffer from systematic errors. We

xperienced that especially for a few datasets showing long elon-

ated, large-scale scenes our pipeline resulted in large errors up to

 few meters due to a deformation of the whole image block intro-

uced in the bundle adjustment. Depending on the fixed reference

oint locations from the georegistration step, the errors drift away

rom these fixed points and cause a bending-effect like in the rail-

ay dataset shown in Figs. 6 –7 and Table 1 . 

Observed camera block deformations are very often caused by

ncorrectly estimated radial distortion parameters of the camera.

s a consequence the reprojections of 3D points onto the image

lane are not correct and thus cause wrong error measures in the

undle adjustment process. Furthermore, the reprojection error as

he sole evaluated error measure has impact on many independent

arameters (3D positions of the object points as well as intrinsic

nd extrinsic camera parameters). Errors can be passed back and

orth during the optimization and camera positions may undergo

arge changes. 

These systematic errors can be avoided by either a more ac-

urate initial camera calibration or by adding external constraints

n the bundle adjustment. For photogrammetric applications, we

herefore use (roughly) known GPS positions of the cameras de-

ermined by an on-board GPS receiver and fixed control points to

llow for camera self-calibration within the optimization. 

Georegistration of the reconstruction as described in the previ-

us subsection alone does not solve this issue. The model defor-

ations are still present due to the shape-preserving character of

he transformation. Instead, after rough georegistration and GPS-

lignment, we use known GPS locations of the images in an ad-

itional bundle adjustment step to constrain the positions of the
Please cite this article as: M. Rumpler et al., Evaluations on 
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ameras and to reduce an initial distortion of the image block.

e do that by calculating the deviations of the calculated cam-

ra positions from the Structure-from-Motion result and penalize

he deviation to their measured GPS positions in the optimization

tep. The influence of the deviation between the measured posi-

ion is weighted by a Huber loss function ( Huber, 1964 ). The cam-

ra positions can move only within a certain range around their

easured positions and thus, are softly linked to their measured

PS positions. This leads to smaller residuals on the one hand, and

n the other, a direct transition from the model coordinate sys-

em into a desired geographic reference system is accomplished

imultaneously. The bundle adjustment step is again carried out

ased on Google’s Ceres Solver for non-linear least squares prob-

ems Agarwal et al . 

In addition, ground control points (GCPs) are also used to cor-

ect distortions or a small geographic misalignment of the model

nd to tie the reconstruction to a certain geographic position. Be-

ides camera positions and 3D points we therefore use the GCPs

lso for self-calibration in the bundle adjustment step and opti-

ize common intrinsic camera and distortion parameters for each

amera group. 

GCPs signal points that are usually easily recognizable natural

r artificial landmarks in the scene. Their position is known and

or example determined by means of conventional survey meth-

ds or DGPS (Differential Global Positioning System) with high

ccuracy. For this purpose, the bundle adjustment is further ex-

ended to the use of control points and their corresponding image

easurements. The additional information is seamlessly integrated

nto the reconstruction process. The reprojection error between the

mage measurements and projected control points is additionally

eighted and penalized in the bundle adjustment in a similar way

o the mass of natural features obtained by the SIFT keypoint de-

ector. Important in this case is an appropriate weighting that bal-

nces the residual reprojection errors of the GCPs compared to the

IFT-generated points. Usually, low number of GCPs (around a cou-

le of dozen) is confronted with a large number of natural feature

oints (hundreds of thousands or millions of points). 

For GPS positions and ground control points together, the opti-

ization problem is defined as 

f ∗ = min 

{ R,t,K} , { P} , { R } , { S} 
∑ 

P 

E(P ) + λ
∑ 

R 

E gcp (R ) + ω 

∑ 

S 

E gps (S) , (1)

ith R, t as the rotation and translation of the cameras and K the

ntrinsic camera matrix. { P }, { R } are the sets of natural 3D points

nd reference points represented by the GCPs, including their 2D

mage measurements. { S } denotes the set of GPS measurements
multi-scale camera networks for precise and geo-accurate 
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and the corresponding camera positions. E, E gcp and E gps are the

error functions for 3D points, GCPs and GPS camera positions. λ
and ω denote scalar weighting factors. 

The error function for 3D points is defined as 

E(X ) = 

∑ 

x i ∈ X P 
ρ(C P (�i (X ) , x i )) . (2)

ρ denotes the robust Huber loss function, �i projects a 3D point

X into image I i . For the point case C P , a common choice is the 2D

reprojection error defined as the Euclidean distance between the

projected 3D point ( �i (X)) and the observed 2D measurement ( x i ).

GCPs are handeled in the similar way. 

In case of GPS measurements for camera positions, Eq. 2 sim-

plifies to 

E(C) = 

∑ 

M∈ S 
ρ(C gps (M, C)) . (3)

C gps is the Euclidean distance in 3D between the measured GPS

position ( M ) of the camera and the reconstructed camera center

( C ). 

The weighting terms λ and ω in Eq. 1 are dynamically selected

depending on the number of 3D points |{ P }|, GCPs |{ R }| and GPS

measurements |{ S }| to balance the weights between them such

that all parts contribute equally. 

Integrating both mechanisms (using ground control points and

GPS positions of the cameras) distributes the residual errors

equally over all cameras and object points and allows for 3D recon-

structions with very low geometric distortions. Furthermore, in the

case of regular camera networks we experience that an additional

cross flight and images at different scales taken at different dis-

tances to the object help to stabilize the intrinsic camera parame-

ters. 2D image measurements, feature matches across overlapping

images and triangulated 3D points are then better constrained.

This leads to a more robust self-calibration result and furthermore

to a more stable image block and increased point position accuracy

even for very large, elongated surveying areas ( Figs. 6 and 7 ). 

2.4. Surface reconstruction and texturing 

The results of the previous steps so far are the external ori-

entations of the cameras, optimized intrinsic camera parameters

and a 3D point cloud from triangulated object feature points. Due

to the comparably low number of triangulated feature points (ap-

proximately 50 0 0 features per image, depending on the texture)

and their non-uniform distribution on the surface compared to the

dense number of pixels in one image (millions of pixels), the mod-

eling of the surface is only an approximation of the real surface.

To increase the number of 3D points, stereo ( Hirschmueller, 2005 )

or multi-view methods ( Furukawa and Ponce, 2009; Irschara et al.,

2012 ) are used for pixel-wise image matching. 

For better visualization and for further use as a digital surface

model (DSM) for surveying tasks, we extract a closed surface from

the point cloud using a method based on 3D Delaunay triangula-

tion and graph cuts ( Labatut et al., 2007 ). The method produces

watertight triangle meshes from unstructured point clouds very

robustly even in the presence of noise and gross outliers in the

raw 3D sample points. The meshes can then be textured ( Waechter

et al., 2014 ) from the input images to generate a photorealistic

representation of the scene. Fig. 1 shows a comparison between a

sparse reconstruction, a densified point cloud and a reconstructed

triangle surface mesh of a quarry wall consisting of about 10 mil-

lion 3D points. 
Please cite this article as: M. Rumpler et al., Evaluations on 
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. Data acquisition with user guidance 

To evaluate the presented workflow and the achieved accuracy,

everal image flights were carried out to record datasets typical for

rban, mining and archaeological applications. 

We used different platforms and cameras to acquire each of the

atasets. One is a Falcon 8 octocopter by AscTec, equipped with a

ony Nex-5N digital system camera or alternatively with a GoPro

ero 3+ action camera. The second flying platform is a senseFly

Bee, a small fixed-wing UAV with a Canon IXUS 127HS compact

amera. The main advantages of multi-copters are their flexibility

nd the ability to fly at very low airspeed to record datasets with

igh overlap, hover and observe objects from any possible position,

ven very close to an object to capture images at a very high level

f detail. The fixed-wing UAV, however, is able to fly and survey

arge areas in short time with certain details not been detected

ue to the in general larger flying altitude and higher airspeed.

n addition we use a Canon EOS 5D full-frame digital SLR and a

onsumer-grade Panasonic compact camera for terrestrial images

n areas, where highly detailed views from the inside of an object

re required and an airborne mission cannot be performed. A com-

iled summary of cameras and sensors used is given in Table 2 . 

To guarantee a certain accuracy, a desired image overlap and

inimum ground sampling distance has to be defined beforehand.

ased on Eqs. 4 and 5 for nadir image acquisition in aerial pho-

ogrammetry, 

 ixelSize = 

SensorW idth [ mm ] 

ImageW idth [ px ] 
, (4)

SD = 

P ixelSize [ mm 

px 
] ∗ Ele v ationAbov eGround [ m ] 

F ocalLength [ mm ] 
, (5)

e estimate a maximum flying height above ground and imaging

istance to the object, respectively. 

The field of view (FOV) calculates from Eq. 6 , 

= 2 · arctan 

SensorW idth [ mm ] 

2 · F ocalLength [ mm ] 
. (6)

he scene coverage for one image captured from height h above

round is calculated from Eq. 7 , 

 = 2 · h · tan 

α

2 

≈ ImageW idth [ px ] · GSD. (7)

he baseline b between views then calculates from the overlap

atio o r = 

o 
c with o being the overlap o = 2 · h · tan 

α
2 − b to b =

(1 − o r ) · c. 

To enable analysis of which parameters influence the recon-

truction accuracy we oversample the scenes and record images at

he minimum of 70% overlap in previously defined distances and

eights from the object. 

Apart from the imaging distance, the baseline between partic-

lar cameras has a strong influence on the triangulation geometry

nd ray intersection. Especially for the canonical stereo configura-

ion with parallel optical axes, the distance to baseline ratio is a

ood parameter to quantify the quality of a camera network. Small

aselines lead to small triangulation angles and to high depth un-

ertainty. But to enable feature matching, high image overlap and

ntersection angles below 30 ° are optimal ( Zeisl et al., 2009 ). 

.1. Online-feedback for image acquisition 

We support image acquisition by an online feedback system to

ssess the recorded images with respect to the parameters of im-

ge overlap, ground sampling distance and scene coverage defined

n the previous section to ensure completeness and redundancy of

he image block. 
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Table 2 

Camera and sensor specifications (focal length given in 35mm equivalent). 

Camera Sensor size Resolution Focal length Pixel size 

Sony Nex-5N 23.4 × 15.6 mm 4912 × 3264 24 mm 4.76 μm 

Canon IXUS 127HS 6.16 × 4.62 mm 4608 × 3456 24 mm 1.35 μm 

Canon EOS 5D 36.0 × 24.0 mm 4368 × 2912 24 mm 8.24 μm 

Panasonic DMC-TZ22 6.2 × 4.6 mm 4320 × 3240 24 mm 1.44 μm 

GoPro Hero 3+ 6.25 × 4.68 mm 40 0 0 × 30 0 0 17 mm 1.55 μm 
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The automated offline pipeline described in Section 2.2 yields

igh accuracy, as we will show in Section 4 . However, processing

akes several hours, thus, results are only available hours later. If

he reconstruction result does not meet the desired expectations,

.g. due to a lack of images in areas that would have been rel-

vant to the survey, a repetition of the flight is necessary which

ause additional costs and time delays. In order to be able to al-

eady judge the results on site whether the captured images are

uited for fully automated processing, we apply a recently de-

eloped method for online Structure-from-Motion ( Hoppe et al.,

012 ). The method calculates the exterior orientation of the cam-

ras and a sparse point cloud reconstruction already during or

ight after the flight on site. 

We expect that a user does not acquire images in a totally ran-

om order. Further, we assume that a new input image has an

verlap to an already reconstructed scene part. We can then split

he SfM problem into two tasks that are easier to solve: localiza-

ion and structure expansion ( Irschara et al., 2009 ). More formally,

iven a freshly acquired input image I and a reconstructed scene

 , we find the position of I within M and finally, we expand the

ap M . The presented method is similar to visual SLAM, but it

atches wide-baseline features instead of tracking interest points.

ince some of the features are already used for the triangulation of

D points, we can directly establish 2D-3D image correspondences

etween I and M . Given a set of 2D-3D correspondences and a cal-

brated camera, we solve the absolute pose problem robustly in a

ANSAC loop ( Fischler and Bolles, 1981 ). 

The images may be streamed down from the UAV via Wi-Fi

o a laptop computer on the ground. High-resolution images can

e processed in real time on a standard notebook computer. The

ethod requires a stream of consecutively captured images and

eeds about two seconds to determine the outer orientation of a

0 megapixel image and calculating new object points. The online

econstruction does not claim high accuracy, because we restrict

mage matching and bundle adjustment to immediate neighbor-

ng cameras. However, the method allows online feedback to es-

imate the achievable reconstruction quality and is very beneficial

o determine completeness of the final reconstruction during im-

ge recording. 

For the user, the quality of the reconstruction can be judged

nly poorly from the triangulated sparse feature points. Two main

elevant parameters determine the accuracy: redundancy, which

tates how often a surface point is seen, and the ground resolu-

ion. To determine both parameters from the actual reconstruction,

 surface is incrementally extracted from the sparse points ( Daftry

t al., 2015; Hoppe et al., 2013 ). The surface extraction method is

ased on Labatut et al. (2007) , which uses a Delaunay triangula-

ion of 3D points and robustly labels the tetrahedra into free and

ccupied space using a random field formulation of the visibility

nformation. Having defined all terms for our random field formu-

ation, we are then able to derive a globally optimal labeling solu-

ion for our surface extraction problem using dynamic graph cuts.

he surface is extracted as the interface between free- and occu-

ied space. 

We visualize the current ground sampling distance and image

edundancy as quality indicators on the surface model to guide the
Please cite this article as: M. Rumpler et al., Evaluations on 
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ser throughout the acquisition (see Fig. 8 ). For the user it is then

bvious, how often parts of the scene are observed and at which

round resolution they can be reconstructed. This assists the pilot

n planning the next steps of the flight so that a uniform coverage

f the scene with constant ground resolution can be achieved. 

To demonstrate the benefits of our feedback system, we asked a

ser experienced in image-based 3D reconstruction to acquire im-

ges with sufficient overlap (from the inside and outside) of a com-

lex (non-convex shaped) building entrance which we then pro-

essed with our online SfM system. We performed the experiment

wice: One time with user feedback and one time without. For the

rst experiment 100 images were acquired without feedback. 74

f them were successfully integrated in the reconstruction. 26% of

he images could not be integrated, mainly because of missing fea-

ures on the object through underexposure, and overexposure in

he background which the user did not recognize during acquisi-

ion time. 

With user feedback, missing correspondences between images

nd the reconstruction are instantly reported to the user (see

ig. 9 ). After three images that failed to be aligned, the acquisi-

ion strategy and camera settings where adapted successfully. In

he end, 100 images out of 118 were successfully integrated into

he reconstruction, which is a rate of 15% missed images compared

o 26% in the experiment without feedback ( Hoppe et al., 2012 ). 

Fig. 10 shows a sample image of a reconstructed building over-

aid by the redundancy and resolution information. The images

ere acquired by a manually controlled UAV. The redundancy map

hows that images where mostly captured at the center part of

he building whereas the resolution is distributed equally within

he atrium of the building. The overall shape of the inner part of

he building is extracted correctly, but the outer parts are missing.

he visualization of the 3D geometry and color coding helps to se-

ect new camera positions and obtain a complete 3D model of the

uilding. 

Quantitatively, our method achieves the same accuracy as state-

f-the-art methods but reduces the computational effort signif-

cantly. The difference in computational effort is mainly caused

y the definition of the energy function. Other methods such

s Labatut et al. (2007) have to perform a full raycast for each

ay, the used methods from Daftry et al. (2015) ; Hoppe et al.

2013) only have to identify the tetrahedra in front and behind the

ertex and the first triangle that is intersected by the ray. Hence,

he combination of the dynamic graph cut with the energy formu-

ation of Daftry et al. (2015) allows to extract the surface from an

ncreasingly growing point cloud independent of the overall scene

ize in real-time. 

. Experiments and results 

In this section we analyze the performance of the presented

orkflow based on different datasets. For our investigations we

hose five different test sites: A facade dataset of a building in

n urban environment, two datasets are showing mining applica-

ions. One of them is located at the ”Styrian Erzberg”, another one

s a small gravel pit situated in Upper Austria. Furthermore, we
multi-scale camera networks for precise and geo-accurate 
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Fig. 8. Visualization of ground resolution using an online Structure-from-Motion system to assess reconstruction accuracy and scene coverage during image acquisition (color 

coding: red = high, blue = low resolution). 

Fig. 9. Images that could not be aligned to the reconstruction are indicated by a red frame around the image (left). With feedback the user can instantly recognize problems 

and adapt the image acquisition strategy to recover image alignment (right). 

Fig. 10. Sample image from a building acquired by a manually controlled UAV (left). Visualization of the redundancy map (middle) and resolution map (right). 
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recorded two archaeological sites, one in Valcamonica, Northern

Italy and one in Side, Turkey. 

For photogrammetric applications the accuracy of reconstructed

object points is of prime interest. Thus we perform a point-wise

comparison of reconstructed object points to corresponding, clearly

identifiable 3D reference point coordinates. The two mining sites

are therefore equipped with a dense network of ground truth

points to assess the quality of the reconstruction. For both the fa-

cade dataset and the archaeological site in Italy, we have dense

surface scans for a ground truth comparison. 

4.1. Urban facade dataset 

We acquired a dataset (Graz500 Multi-scale Facade) with a

multi-scale image sequence of an outdoor facade scene consist-

ing of 500 images ( Daftry et al., 2015 ). For image acquisition we

used the Falcon octocopter from AscTec as a flying platform. The

overview of the multi-scale camera network design is depicted

in Fig. 11 . Images were acquired at different depths, heights and

viewing angles to the facade using the online feedback method

described above. The dataset thus also offers an opportunity for

detailed analysis and evaluation of various factors in image-based

facade reconstruction. The dataset is publicly available online. 2 
2 https://aerial.icg.tugraz.at/ 

t  

1  

d

Please cite this article as: M. Rumpler et al., Evaluations on 
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We have acquired accurate terrestrial laser scanning (LIDAR)

ata, having a GSD of 1.5 cm and point measurement uncertainty

f 2 mm using a Leica Total Station that will serve as geometrical

round truth to evaluate the quality of the image based reconstruc-

ions. The data was acquired in a single scan and hence does not

nvolve any irregularities due to scan registrations. To assess the

chieved absolute accuracy in 3D, the facade (which is about 30 m

igh and 50 m long) is equipped with a reference network (17

ducial targets) of ground control points. The ground truth data for

ach GCP is measured using a theodolite and has an uncertainty of

ess than 1 mm. 

ulti-scale camera network. In 3D reconstruction literature, the

istance to the reconstruction object has always been considered

n important and contributing factor but seldom has been stud-

ed in an empirical way. The closer we go to the object, more fine

etails are captured and more information is gained, and thus, ac-

uracy is improved. However, our experience with Structure-from-

otion has shown that also drift increases when we get closer

o the object. A bending of the reconstruction is introduced (see

ection 2.1 and 2.3.2 ). We performed a systematic study on the

round control point accuracy with respect to distance of image

cquisition from the facade and ground sampling distance. Our fa-

ade dataset was further quantified into 3 row-subsets based on

he distance of acquisition from close to distant (4 m, 6 m and

0 m), and reconstruction was performed on each subset indepen-

ently using the proposed pipeline. 
multi-scale camera networks for precise and geo-accurate 
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Fig. 11. Left: Graz500 multi-scale facade dataset. Middle: The reconstruction of a facade computed with a well-known state-of-the-art method ( Snavely et al., 2008 ) shows, 

though visually correct in appearance, holes and geometric inconsistencies (significant bends along the fringes). Right: In comparison, using our multi-scale approach and 

online feedback support results in a straight wall and complete scene reconstruction. 

Fig. 12. Resolution (i.e. point density) for SfM results from individual row subsets at distance: 4 m (left), distance: 6 m (middle) and distance: 10 m (right). A larger number 

of finely textured feature points are only visible in the close-by images due to a higher GSD. 

Table 3 

Accuracy results on the surveyed ground control 

points for individual row subsets and for the com- 

plete multi-scale camera network. 

Mean Error [mm] 

Images Ours Bundler AgiSoft 

Near Row (4 m) 45 .2 51 .3 57 .1 

Middle Row (6 m) 23 .1 27 .2 32 .3 

Far Row (10 m) 5 .7 11 .2 16 .1 

Multi-scale BA 9 .1 15 .5 21 .6 

4

 

a  

a  

r  

t  

g  

a  

t  

t  

r  

s  

d  

e  

d  

F  

p  

I  

r  

b  

a  

t  

c  

i

 

o  

p  

t  

a  

m  

S

4

 

c  

d  

r

M  

q  

c  

r  

p  

i  

s  

m  

f  

s  

i  

b  

s  

t  

f  

o  

t  

h  

r  

p

4

 

m  

d  

3 http://www.agisoft.com/ 
.1.1. Resolution versus high accuracy 

It can be observed from the results in Table 3 that the mean

bsolute error on the GCPs decreases significantly as we go further

way from the facade. Images taken further away from an object

educe camera drift and bending. This is contrary to the belief that

he closer one gets to the object i.e. the higher the resolution the

reater will be the accuracy. Thus after an exhaustive evaluation

nd study of various parameters we can state that the influence of

he geometric configuration of the multi-view camera network on

he resulting accuracy is very high and there is a significant accu-

acy gain as we go away from the facade. This is because of the

trong drift effect caused in the camera pose estimation when the

istance between the camera and the object is very small. How-

ver, we also observe that as we go closer to the facade the point

ensity of the reconstruction is greatly improved as can be seen in

ig. 12 . This is because a larger number of finely textured feature

oints are only visible in the close-by images due to a higher GSD.

t can be thus concluded that there is a trade-off between accu-

acy and resolution (i.e. point density) as we change the distance

etween the image acquisition and facade. We generalize this as

 systematic behavior as they can also be consistently observed in

he standard software packages. Hence, we infer that a model in-

orporating the knowledge of this trade-off could help in improv-

ng the metric accuracy of the final reconstruction. 

In order to give a full quantitative evaluation of the influence of

ur interactive SfM framework on reconstruction accuracy we com-

are our methodology to state-of-the-art pipelines using ground
Please cite this article as: M. Rumpler et al., Evaluations on 
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ruth 3D data. The Bundler (open source) ( Snavely et al., 2008 )

nd Agisoft 3 (commercial) software packages were used as our pri-

ary reference, as they represent the most popular methods for

fM within the computer vision community. 

.1.2. Absolute error 

We perform a point-wise comparison and evaluation. First, we

alculate the absolute mean over all the points as the 3D Euclidean

istance between the corresponding ground control point and the

econstructed and georeferenced point (see Fig. 13 ). 

ulti-scale camera network benefits. We extend our evaluation to

uantitatively and qualitatively assess the benefits of a multi-scale

amera network based acquisition when applied to incremental 3D

econstruction methods. Experiments on accuracy evaluation are

erformed with and without a multi-scale network based match-

ng and bundle adjustment. The results of the experiments are

hown in the last row of Table 3 . We observe that the proposed

ulti-scale camera network using the constrained bundle block

ormulation helps to overcome drift. It facilitates accurate recon-

tructions without compromising on scene completeness. The qual-

tative benefits on the geometric fidelity of the reconstruction has

een shown in Fig. 11 . As a ground truth, we know that the recon-

tructed wall of the facade should be straight. However on a de-

ailed inspection, we clearly see that the reconstructed wall suffers

rom significant bending using a uni-scale acquisition approach,

wing mainly to the drift due to map building in an incremen-

al SfM framework. In contrast, the use of a multi-scale approach

elps to constrain the bundle block from deformation due to er-

or accumulation and consequently results in an accurate and com-

lete reconstruction. 

.1.3. Relative error 

Next, we calculate the one way Hausdorff distance (similarity

easure) between the reconstructed point cloud (densification was

one using PMVS ( Furukawa and Ponce, 2009 )) and the point cloud
multi-scale camera networks for precise and geo-accurate 
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Fig. 13. Automatically detected ground control points with plotted marker centers and corresponding marker IDs. 

Fig. 14. Color coded dense 3D point clouds based on Hausdorff distance obtained using Ours (left) and Bundler (right). 

Table 4 

Time performance. 

Time Taken [sec] 

Time Performance Ours Bundler AgiSoft 

SfM 880 6220 6455 
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obtained from the laser scanner. The number of points in the re-

constructed point cloud was about 9 million with a GSD of 1 mm. 

Similar steps were performed for the sparse point cloud ob-

tained from the Bundler software. The reconstructed point clouds

were then color coded based on the Hausdorff distance. The results

are shown in Fig. 14 . 

It can be seen that using our method the absolute mean error

for surveyed GCPs is in the range of 9 mm and the overall relative

accuracy of 90 % of the facade is within 2 mm error range with

respect to the laser point cloud, which is within the uncertainty

range of the total station. A closer inspection reveals that the high

errors are only along the sections of the point cloud missing in

the laser scanner such as roof, missing window panes, etc. Thus,

we observe that our method considerably outperforms the state-

of-the-art methods in both the absolute and relative error analysis

to get highly accurate results comparable to the uncertainty of the

laser point cloud. 

4.1.4. Time performance 

To evaluate the performance of the online SfM approach, we

compare the runtime of the presented online SfM to a state-of-

the-art batch-based SfM approach. For both methods, we use 50 0 0

SIFT features per image with the largest scale. The features are

extracted by the SiftGPU 

4 implementation. Our approach requires

880 seconds to process all 500 images of the dataset, which is

7.1 times faster than Bundler, see Table 4 . On average, our ap-

proach requires 1.75 seconds to integrate a new image into the

structure and to extend the map. This is within the latency of

the time constraints of the UAV to transmit back a new im-

age from the next possible camera network position, and hence

we conclude that the online SfM method is approximately in

real-time. 
4 http://www.cs.unc.edu/ ∼ccwu/siftgpu/ 
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.2. Mining datasets 

Here we will investigate what are the relevant parameters de-

ermining accuracy in general and try to answer the following

uestions: How does accuracy increase with the use of external

nformation in the reconstruction process given by ground con-

rol points and, how many control points are necessary to achieve

atisfactory results with respect to absolute position accuracy and

ow should they be distributed. 

As reference points in the two presented mining datasets

e use binary coded, individually identifiable fiducial mark-

rs ( Rumpler et al., 2014 ) printed on durable weather proof plas-

ic foil, already introduced in Section 2.1 . In addition, non coded

ed circular targets are used to densify the reference network in

ertain parts of the two mining datasets. Different subsets of the

oints are used as ground control points (GCPs) for automated geo-

eferencing, and others are used as check points (CPs) to evalu-

te the achieved accuracy. All reference points were conventionally

urveyed using a Trimble S6 total station with an average precision

f 10 mm for 3D point surveying without prism. 

tyrian Erzberg. The Styrian Erzberg is the biggest iron ore open

it mine in central Europe. Our test site represents one quarry

all, which is about 24 m high and 100 m long with the typical

eometry of an open pit hard rock mine. It is equipped with 129

eference points with known ground truth positions. 45 are real-

zed as fiducial markers on the top and bottom of the wall and on

he adjacent benches and are used as temporary GCPs. Addition-

lly, the wall is equipped with 84 circular targets, which are used

o evaluate the reconstruction accuracy. This dense network (see

ig. 15 ) enables an extensive evaluation of accuracy and allows us

o quantify systematic deformations of the image block and recon-

tructed 3D geometry. 

Due to complex geometry and steep slopes at the test site, we

sed the AscTec Falcon 8 octocopter for image acquisition. Using

he octocopter we were able to approach and hold any possible

amera position, enabling the opportunity to acquire images under

table conditions for our further investigations. All together 850

mages were recorded in different flying altitudes, viewing angles

nd distances to the object with a mean GSD of 1.5 cm. 

ravel Pit. Our second test site is a small gravel pit situated in Up-

er Austria. As shown in Fig. 16 the scene includes the actual pit

s well as the surroundings and covers an area of about 0.43 km 

2 .
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Fig. 15. The reference point network allows an extensive accuracy evaluation. Markers (right) indicating GCP positions are shown in green, circular targets (left) for quanti- 

tative evaluation are in red. 

Fig. 16. Colored model of a gravel pit with surroundings. 
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Table 5 

Accuracy improvement by GCP constrained bundle adjustment. 

Error [cm] 

Method Mean Std.dev. Median 

BA without GCPs 4.54 1.64 4.40 

Constrained BA with GCPs 2.45 1.18 2.16 
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eference points are temporarily signalled in the same manner as

escribed for the Erzberg dataset and are evenly distributed over

he whole site. 27 control points are realized as fiducial markers

nd 19 as red circular targets. Additionally a small part of the pit

as scanned at high level of detail (4 points per m 

2 ) using the

utonomous scan function of a Trimble S6 total station. 

Images were recorded using a senseFly eBee fixed-wing UAV in

ifferent flying altitudes (75, 100 and 140 m). Due to camera speci-

cations and higher elevation above ground the mean GSD is about

.5 cm in this test scenario. The dataset consists of 533 images in

otal with an overlap within each altitude held constant at 70%.

he resulting 3D model ( Fig. 16 ) includes more than 400 million

oints and represents the scene at a level of detail not achievable

ith manual surveying methods. 

.2.1. Absolute position error 

Fig. 17 shows the absolute point error for each check point of

he Erzberg dataset, where a mean accuracy of less than 2.5 cm is

eached using all 850 images and constrained bundle adjustment

ith GCPs. 

Table 5 shows the improvement in accuracy by comparing the

ean absolute point error for rigid similarity transform and opti-

ization using GCP constrained bundle adjustment. The mean er-

or which is already very good before GCP bundling then decreases

urther. The decreasing standard deviation indicates an equaliza-

ion of the error distribution and a less deformed image block after

he optimization. 

For the gravel pit dataset an overall accuracy of 14 cm is

chieved, primarily due to a higher flying altitude, a different cam-
Please cite this article as: M. Rumpler et al., Evaluations on 
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ra with lower resolution (see Table 2 ) and different camera net-

ork. 

For a better understanding of block stability and accuracy we

nvestigate in the following relevant parameters influencing the re-

onstruction quality. For this purpose, a high oversampling of the

cene was performed, as already described in Section 3 . Parame-

ers with large impact on accuracy are, besides image overlap and

riangulation angle, foremost the ground sampling distance deter-

ined by image resolution and imaging distance to the object and

he distance to baseline ratio given by the camera network. In

rder to quantify the influence of these parameters and to give

uidelines for image acquisition, a systematic parameter analysis is

arried out based on different subsets of the previously described

atasets. 

.2.2. Georegistration 

One of the most important and critical steps with respect to the

bsolute position accuracy in the presented workflow is georegis-

ration. Because of the fact that results of a Structure-from-Motion

ipeline are initially in a local Euclidean coordinate system, geo-

egistration or at least scaling has to be done every time, regardless
multi-scale camera networks for precise and geo-accurate 

idance, Computer Vision and Image Understanding (2016), 
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Fig. 17. Using all 850 images and all available GCPs in the constrained bundle adjustment, a mean measurement error dropping from 4.54 cm (bundle adjustment without 

GCPs) to below 2.45 cm (constrained bundle adjustment with GCPs) is reached ( Rumpler et al., 2014 ). 

Fig. 18. The overall reconstruction error after pure rigid georegistration decreases very quickly and saturates at a low level after 7 to 8 ground control points. A higher 

number of GCPs is not necessarily needed for accuracy reasons. The GCPs were sampled randomly each time. The slight performance drop and increasing error after the 

minimum at 7 GCPs results from a non-optimal selection of the randomly chosen control points within the scene. 
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of how images are recorded. As already mentioned, accurate geo-

registration is possible by integrating GCPs in the bundle adjust-

ment. The number of points and their spatial distribution within

the scene strongly affects the achievable accuracy. Fig. 18 shows

that the error clearly decreases with an increasing number of GCPs,

but it is also apparent that even a small number of seven or eight

GCPs is sufficient to get good results. In our case studies, adding

more GCPs does not necessarily improve the result with respect to

the overall accuracy. 

Regarding the spatial distribution, the GCPs should be evenly

distributed over the whole scene, especially concerning the height-

component. Height tie points are at least as important as control

points of position. If for example all GCPs are along one row sys-

tematic deformations can be observed because the reconstruction

can tilt around that axis. Moreover, in contrast to traditional bun-

dle adjustment approaches ( Kraus, 1994 ), control points should be

situated not entirely at the boundaries of the scene, because of less

image coverage and a weak triangulation network. To guarantee a

desired accuracy the used ground control point should be robustly

detected in at least 10 images. 

Our investigations also show that georeferencing using GPS in-

formation of the aircraft exclusively without any additional posi-

tion constraints is not sufficient for surveying tasks with respect

to the absolute pose of the reconstruction. Indeed, integrating a

large number of camera positions in the reconstruction process

mitigates systematic deformations of the image block and might

result in highly precise metric scaling, but it is not possible to

achieve absolute position accuracies below the meter range due

to the high uncertainty of the small on-board GPS sensors on

UAVs. 
f
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.2.3. Number of observations 

Rumpler et al. (2011) shows in a synthetic simulation on a tra-

itional regular aerial flight pattern that accuracy increases with

 higher number of image measurements and with increasing tri-

ngulation angles. Fig. 19 derived from the Erzberg dataset includ-

ng oblique views shows as well, that the mean object point error

ecreases with increasing total number of images used for the re-

onstruction. But it is also obvious, that there is a fast saturation

n accuracy improvement within larger datasets. 

Thus, a higher number of images in the dataset leads to an ac-

uracy improvement, but considering the number of image mea-

urements per reference point does not necessarily reduce the er-

or, as already shown in Rumpler et al. (2014) . In contradiction

o synthetic results of Rumpler et al. (2011) , it is not possible to

xemplify the achievable accuracy alone on the number of used

mages or observations for unordered and oblique datasets. The

hanging camera configuration influences feature matching, trian-

ulation angle and ray intersection geometry, and from this we

rgue, opposing to Fraser (1996) , that not every additional image

easurement necessarily leads to an improvement in accuracy in

ractice with real world image data. 

.2.4. Camera network and resolution 

We have shown that the influence of geometric configuration of

he multi-view camera network on the resulting accuracy is higher

han the influence of redundancy in image acquisition. In this sec-

ion we present further investigations on the influence of camera

etwork and resolution and compare a terrestrial dataset with dif-

erent aerial networks for the Erzberg scene. 
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Fig. 19. Error curve for different image subsets. With increasing total number of images used for the reconstruction, the mean point error decreases. 

Fig. 20. Adjustable camera angle, low airspeed and high image overlap using a multi-rotor UAV for image acquisition enables best results. 
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The ground sampling distance, or resolution respectively, has a

trong influence on the achievable accuracy. The uncertainty of a

oint in 3D increases with increasing distance to the camera, thus

mages that are further away introduce larger errors. First, this

s because of a lower ground sampling distance, and thus, lower

evel of detail in the images. Secondly, the influence of localiza-

ion errors on the reconstruction uncertainty increases with point

epth. Image noise is approximately constant for all images, how-

ver, the resulting positional error increases with larger distances

ue to a larger angular error and smaller triangulation angles. See

q. 8 with b being the baseline, f the focal length, d the disparity

nd z the the point depth. 

z ≈ b f 

d 
− b f 

d + εd 

≈ z 2 

b f 
. (8) 

Fig. 20 shows the mean error for all targets of the Erzberg

ataset with respect to the different subsets. It clearly shows that

he viewing angle has to be carefully adapted to the object ge-

metry. Using exclusively vertical images, the steep wall is shad-

wed and the mean error increases to 17.1 cm. The smallest error

s achieved using a combination of different views (vertical, hori-

ontal and oblique), which is only possible by using a multi-copter

AV. Because of the adjustable camera angle and low airspeed, im-

ges can be always optimally adapted with respect to the surface
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eometry and a high overlap and level of detail can be achieved

asily. 

It is apparent that pure terrestrial photogrammetric systems are

ot flexible enough compared to data acquisition with UAVs. Be-

ause of imaging positions bound to ground level it is mostly not

ossible to observe the object completely or from a certain dis-

ance or view point due to geometric or safety reasons, especially

n hazardous environments. The combination of different distances

nd image resolutions in a multi-scale camera network also affects

he achievable accuracy positively. Images taken further away miti-

ate the error propagation within the first row, they help connect-

ng the camera network over longer tracks reducing drift and the

mage block is stabilized. In general, flying at different altitudes is

 common approach in airborne photogrammetry, to optimize the

ntrinsic camera parameters, which furthermore also results in bet-

er reconstruction accuracy. 

.3. Turkey 

Our next test site is an archaeological excavation in Side,

urkey, where we show a qualitative performance analysis. The

ite shows complex geometry with arches, partly collapsed walls

nd chambers. We used an AscTec Falcon 8 equipped with a Sony

ex-5N camera for aerial image acquisition, together with
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idance, Computer Vision and Image Understanding (2016), 

http://dx.doi.org/10.1016/j.cviu.2016.04.008


14 M. Rumpler et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–19 

ARTICLE IN PRESS 

JID: YCVIU [m5G; April 23, 2016;19:47 ] 

Fig. 21. Image acquisition with an AscTec Falcon 8 octocopter for archaeological site documentation and reconstruction. 

Fig. 22. Rendered views from an automatically reconstructed and textured 3D model of an archaeological excavation site in Side, Turkey, obtained from 4.722 terrestrial and 

aerial images captured with 3 different cameras from the air and from the ground. 
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5 http://www.arctron.de/en/ 
terrestrial images in areas which could not be observed from the

air ( Fig. 21 ). 

The terrestrial images were recorded from the inside and out-

side of the object with a Canon EOS 5D DSLR with a 24 mm

wide angle lens for high resolution terrestrial images and a small

consumer-grade Panasonic DMC-TZ22 zoom camera. 

We took 5.014 images within four days in total with all three

cameras, giving 38.4 GB of raw image data. Aerial images were

captured in a classic raster flight pattern with cross flights in two

different heights (40 and 90 meters above ground with a mini-

mum overlap of about 80%) and in a hemisphere flight around the

object with tilted camera to ensure enough overlap with terres-

trial images for automated matching. We were able to align 4.722

images fully automatic into one single reconstruction of the site.

Seven markers as ground control points were used to georeference

the model. An overview image of the reconstruction together with

detail views of the object are presented in Fig. 22 . 

4.4. Italy 

We use this experiment to evaluate three factors of the acqui-

sition pipeline. First, we analyze the reconstruction accuracy using

multiple combinations of cameras. Then, we benchmark the geo-

referencing performance of our system using the fiducial markers.

Finally, we demonstrate the benefit of the optimization of the in-
Please cite this article as: M. Rumpler et al., Evaluations on 
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rinsic camera parameters for the reconstruction accuracy as well

s the georeferencing performance. 

.4.1. Dataset details 

This dataset shows a rock formation (Seradina R.12C) sur-

ounded by vegetation in the region of Valcamonica in Northern

taly, shown in Fig. 23 . The rock surface is covered with prehis-

oric rock carvings and has a size of approximately 17 × 13 meters.

 ground truth mesh of the rock was obtained through terrestrial

aser scanning (TLS) by Arctron3D 

5 . The mesh has a resolution of

 mm edge length and the accuracy of the laser scanner (Riegl VZ-

00) is 5 mm. 

For registering the ground truth mesh and the SfM reconstruc-

ions, we used a local coordinate system with four surveying points

round the rock surface. First, the four points were measured with

he laser scanner and then the points were used (a year later) for

ositioning a Leica total station. This second total station was then

sed to measure the center of 13 fiducial markers, which were

laced circular around the rock (see Fig. 23 ). 

For image acquisition, we used a UAV (Asctec Falcon 8) and

hree different cameras (Sony Nex-5N, Panasonic DMC-TZ22 and a

oPro Hero 3+). Two cameras were simultaneously mounted on

he UAV (GoPro and Nex-5N) and with the third camera (TZ22)

e acquired images in a hand-held manner by walking circularly
multi-scale camera networks for precise and geo-accurate 
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Fig. 23. Rock 12C in Seradina, Valcamonica, Italy. 13 fiducial markers were placed around the rock. 
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round Rock 12C. During the acquisition 601 images were taken

ith the Nex-5N camera in a regular time-interval of 2 seconds.

he GoPro was operated with 24 frames per second at a resolu-

ion of 1920x1440. The video was stored with lossless compres-

ion and shows a high signal-to-noise ratio. From the 20 minutes

ideo footage from the GoPro camera we also extract frames in the

ame time interval, which resulted in roughly the same number of

mages. With the hand-held camera (TZ22) 498 images were ac-

uired. 

The whole SfM pipeline was executed independently four times

ith different sets of images. It is executed once for each of the

ameras mounted on the UAV (Nex-5N and GoPro separately), once

ith the images from Nex-5N and TZ22 combined and finally with

ll available images (Nex-5N, GoPro and TZ22 combined). 

.4.2. Reconstruction accuracy 

After the automatic georeferencing both reconstructions were

ligned with the ground truth using the iterative closest point

ICP) implementation of CloudCompare. 6 This eliminates any er-

ors introduced by the georeferencing and allows for a fair com-

arison of the reconstructions using the ground truth mesh.

n Fig. 24 we show the TLS ground truth of Arctron as well

s the resulting sparse reconstructions. In Fig. 25 we show

he absolute error between the sparse reconstruction and the

round truth mesh. The corresponding error histogram is shown

n Fig. 26 . 

The experiment shows that the SfM Pipeline is quite flexible to

he input data and can easily use multiple cameras in a coherent

ay. The comparison between GoPro and Nex-5N shows the ex-

ected effect. On the one hand the GoPro reconstruction shows

ore of the area surrounding the rock, on the other hand the re-

onstruction error is approximately twice as high. This factor of

wo in the uncertainty is very likely due to the fact that the GoPro

mages are roughly half the size of the Nex-5N images. From the
6 http://www.cloudcompare.org/ 
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xperiments with the TZ22 camera, it can be seen that the com-

ination of aerial images with the hand-held images can signifi-

antly boost the reconstruction accuracy. While the vast majority

f 3D points for the Nex-5N reconstruction show an accuracy of

elow 2 cm, the accuracy for the Nex-5N + TZ22 reconstruction

ies clearly below 1 cm. 

.4.3. Georeferencing 

For all four reconstructions in the previous experiment the au-

omatic georeferencing was accurate enough to work as a suffi-

iently good initialization for the ICP alignment. In Fig. 27 we show

he error distribution of the reconstructions without performing

CP alignment. Even without the ICP alignment the absolute recon-

truction error stays clearly below 8 cm in all cases. With the im-

ges from the TZ22 cameras the error can even drop below 3 cm.

his suggests that registration based on fiducial markers is accu-

ate enough for many applications. 

.4.4. Optimization of camera calibrations 

For the cameras Nex-5N and TZ22 the initial camera calibra-

ions were already very accurate (reprojection error approximately

.1 pixel), but for the GoPro camera with its extreme wide angle

ens the reprojection error after calibration was quite significant

larger than 3 pixels). In the case of a good initial calibration the

ptimization of the higher order distortion parameters (especially

he radial distortion) does not result in significantly higher recon-

truction accuracy, but in the case of a bad initial calibration the

ffects are quite drastic. In Fig. 28 we show the benefit of the op-

imization of the higher order distortion parameters (radial distor-

ion). In this example the reconstruction accuracy is improved by

 factor 10. 

In Fig. 29 we show the impact of the camera self-calibration

outine on the automatic georeferencing. With the routine the ab-

olute error drops by a factor of approximately three. 
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Fig. 24. Seradina Rock 12C. Top: Terrestrial laser scanning (TLS) ground truth mesh. Middle and Bottom: Sparse reconstructions using images from different cameras. 

Fig. 25. Absolute error of the sparse reconstructions with images from different cameras. Note that the color is scaled differently for the reconstructions (top left: max = 

6 cm, top right: max = 3 cm, bottom: max = 1 cm). 
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Fig. 26. Error histograms of the sparse reconstructions with images from different cameras. Note that the ranges are scaled differently for the reconstructions (top left: max 

= 6 cm, top right: max = 3 cm, bottom: max = 1 cm). 

Fig. 27. Comparison of sparse reconstructions with different cameras directly after automatic georeferencing. Note that the bottom left figure is scaled differently (max. 

3.5 cm opposed to 1 cm). In all cases the error stays clearly below 8 cm. 

Fig. 28. Benefit of optimizing the radial distortion in the bundle adjustment on the example of the GoPro reconstruction. The absolute error to the ground truth is shown 

after performing ICP. The left figure shows a reconstruction without, and on the right with radial distortion optimization. The reconstruction accuracy is improved by a factor 

of approximately 10. The circular error distribution in the left figure indicates that the reconstruction is bent, which can be observed if the estimate of the radial distortion 

is off. 
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Fig. 29. Benefit of the camera self-calibration routine for georeferencing. The absolute error to the ground truth is shown directly after georeferencing. The left image shows 

a reconstruction without, and on the right with performing camera self-calibration. With the routine the absolute error drops by a factor of approximately three. 
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5. Conclusion 

In this paper we presented a fully automated processing

pipeline for precise, metric and geo-accurate 3D reconstructions

of complex geometries using various imaging platforms. Firstly, we

advocated the use of planar fiducial markers as a target pattern to

obtain accurate and reliable camera calibration. Secondly, we inte-

grated an online feedback to guide the user during data acquisition

regarding ground sampling resolution and image overlap to guar-

antee automated photogrammetric processing, that the final recon-

struction meets predefined accuracy requirements and results in

a complete reconstruction of the object. Lastly, we utilize known

GPS positions and ground control points in the scene and integrate

them into our image-based reconstruction pipeline. We use the ad-

ditional information given by GPS and GCPs for self-calibration in

the bundle adjustment step and optimize common intrinsic cam-

era and distortion parameters for each individual camera group. 

We show that combining these technologies, adapting the im-

age acquisition strategy and the developments in UAV technology

together can return metrically accurate data that has immense ap-

plications in architecture, engineering and construction domains. 

Low and equally distributed mean point position errors are

achieved when integrating additional external constraints in the

bundle adjustment to avoid systematic deformations and bending

of the reconstruction due to an initially inaccurate camera calibra-

tion. We showed that the reconstruction accuracy is not only in-

fluenced by ground sampling distance and the image overlap, but

is strongly influenced by the structure of the camera network. Im-

ages taken further away cause larger errors, but when using only

images taken from a very close view point to the object, the recon-

struction is more affected by drift and distortions. Combining im-

ages taken at different distances, view points and viewing angles

stabilizes the image block and mitigates the error propagation. 

Although many investigations and concepts discussed in this

paper including bundle block adjustment approaches, camera self-

calibration or optimal distribution of control points are well known

in photogrammetric literature for decades, we presented a best

practice example for different use cases, engineered to state-of-

the-art performance. Our approach is suited for seamlessly match-

ing and integrating images with different scales from different

view points and cameras into one single reconstruction. 

Based on five different datasets for applications in mining, ar-

chaeology and urban environments, we evaluated our approach

and demonstrated its flexibility and high accuracy. 
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