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Abstract. Typical photogrammetric processing pipelines for digital sur-
face model (DSM) generation perform aerial triangulation, dense image
matching and a fusion step to integrate multiple depth estimates into a
consistent 2.5D surface model. The integration is strongly influenced by
the quality of the individual depth estimates, which need to be handled
robustly. We propose a probabilistically motivated 3D filtering scheme
for range image integration. Our approach avoids a discrete voxel sam-
pling, is memory efficient and can easily be parallelized. Neighborhood
information given by a Delaunay triangulation can be exploited for pho-
tometric refinement of the fused DSMs before rendering true-orthophotos
from the obtained models. We compare our range image fusion approach
quantitatively on ground truth data by a comparison with standard me-
dian fusion. We show that our approach can handle a large amount
of outliers very robustly and is able to produce improved DSMs and
true-orthophotos in a qualitative comparison with current state-of-the-
art commercial aerial image processing software.

1 Introduction

Digital surface models (DSMs) represent height information of the Earth’s sur-
face including all objects (buildings, trees, . . . ) on it. In geographic information
systems, they form the basis for the creation of relief maps of the terrain and
rectification of satellite and aerial imagery for the creation of true-orthophotos.
Applications of DSMs and orthophotos range from engineering and infrastruc-
ture planning, 3D building reconstruction and city modeling to simulations for
natural disaster management or wireless signal propagation, navigation and flight
planning or rendering of photorealistic 3D visualizations.

A typical photogrammetric processing pipeline comprises Aerial Triangula-
tion (AT) or Structure-from-Motion (SfM) for camera pose estimation, depth
estimation by dense image matching, and range image fusion for the integration
of multiple 2.5D raw range images into a single consistent DSM. Many large-scale
3D reconstruction techniques compute a final model by merging depth hypothe-
ses from multiple, pairwise estimated range images a posteriori (i.e. one depth
map from all possible stereo pairs). This is important to create a reliable fused
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Fig. 1. Range image integration results on the ISPRS Vaihingen test dataset [2].
(a) Fused DSM computed by median fusion, which shows considerably non-robust
results. Single isolated outliers are still present in the results. (b) Our probabilistic
fusion approach effectively discards outliers and produces visually clean results.

3D point cloud and a dense, watertight surface mesh. The fusion step is influ-
enced by accumulated registration errors of the cameras and noise from false
depth estimates. These erroneous depth estimates and outliers usually lead to a
poor integration and consequently, need to be handled robustly (Figure 1).

Methods for range image integration in related work operate on different rep-
resentations. They can be roughly categorized into mesh-based, volumetric and
point-based methods.

2.5D range images can be converted directly into polygonal range meshes.
Turk and Levoy [16] describe an explicit polygonal approach for merging sev-
eral depth maps by zippering together adjacent meshes into a single continuous
surface. More general 3D reconstruction and surface extraction methods often
utilize a volumetric representation to handle arbitrary objects [3, 19, 6]. These
methods extract a final surface by computing an averaged signed distance field
separately on all voxels induced by the range images. Surface regularization can
be integrated to allow for spatial coherence and smoothness within a global en-
ergy minimization framework, which can then be optimized using variational
techniques [20] or graph cuts [18].

Most of the methods mentioned above are, due to the limited scalability of
the volumetric representation, not well suited for large scale scenes with respect
to memory consumption and runtime performance. Other methods [9] try to
reconstruct a surface from oriented sample points, but do not perform very well
in the presence of gross outliers. Merrell et al . [10] tries to identify conflicts and
errors for depth hypotheses by fusing information of neighboring views based on
visibility violations of the free-space constraint to clean the initial depth maps.
Afterwards, the unprojected 3D points of cleaned depth maps adjacent to each
other are merged to extract a surface mesh.

Point-based methods try to fuse information of neighboring views locally by
a voting scheme. In the simplest approach, a robust fusion with respect to some
isolated outliers may be performed by selecting the median depth value of all
depth estimates projecting into the same cell.
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Gallup et al . [5] reduce the memory consumption compared to volumetric
approaches by computing a height value to minimize the amount of empty space
below and filled space above. The votes for empty and filled are accumulated
from viewing rays of all cameras contributing to the 2D grid cell. While being
parallelizable for each DSM grid cell, the final fused depth value is still deter-
mined in discrete depth steps. In the depth fusion method of Unger et al . [17],
a number of pair-wise disparity maps are projected into a reference view pair.
They fuse them by estimating a probability density function using the repro-
jection uncertainties and their photo-consistencies and select the most probable
one from the probability distribution.

We propose a probabilistically motivated 3D filtering scheme for range image
integration. Our approach works in object-space, thus, we do not need to select
a reference view. Furthermore, our method has the advantage that it avoids a
volumetric voxel representation and is able to select a final depth from contin-
uous values in object-space instead of a discrete voxel sampling. For each DSM
grid cell, we estimate a probability density function of the depth estimates and
select the most reliable one from the probability distribution. The method is
memory efficient and can easily be parallelized for each individual DSM grid
cell. Furthermore, it is able to integrate point clouds from arbitrary sources into
one consistent DSM. An additional photometric refinement of the DSMs based
on a multi-image correlation score exploits neighborhood information from a
Delaunay triangluation of the DSM grid points.

2 Range Images from Dense Image Matching

We employ a fully automatic processing pipeline that takes high resolution im-
ages as input for aerial triangulation (AT), also known as Structure from Motion
(SfM), estimating the unknown camera orientations and a sparse reconstruction
of the scene. For photogrammetric end-products like digital surface models or
true-orthophotos, dense 3D geometry is required. In contrast to traditional ap-
proaches for dense 3D reconstructions that are based on stereo pairs [7], we
employ a multi image matching method based on a plane sweep approach [1] for
depth estimation.

The plane sweep approach enables an elegant way for image based multi-view
reconstruction since image rectification is not required. The method allows the
reconstruction of depth maps from arbitrary collections of images and implicit
aggregation of multiple view’s matching costs. Furthermore, the method is well
suited to run on current graphics processing units (GPUs) which makes process-
ing of large datasets consisting of many high resolution aerial images feasible in
reasonable time [8]. To achieve high performance and low memory requirements,
final depth values are extracted from the volume by a simple winner-takes-all
(WTA) [14] strategy. For considering neighborhood information for depth ex-
traction, fast cost volume filtering [13] or global optimization methods [8] can
be applied. Figure 2(a) shows resulting range images computed by winner-takes-
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Fig. 2. Depth maps, fusion results and true-orthophoto from the same region. (a) Part
of a range image computed with our multi-view plane sweep approach using winner-
takes-all (WTA) with many outliers. (b) The same image region with a local edge
preserving filter applied on the costs before WTA depth extraction. (c) Fused depth
estimates with high confidence in regions where the aerial images show sufficient texture
and intensity gradients, e.g . at corners, edges, depth discontinuities and contours. (d) A
dense DSM is obtained by Delaunay triangulation in 2D, where missing parts are filled
by the implicit regularization characteristic of the triangles. (e) DSM after photometric
refinement; depth edges appear sharper. (f) True-orthophoto.

all and range images obtained with cost volume filtering (Figure 2(b)), which
applies a local edge preserving filter on the costs before WTA depth extraction.

In this paper, we focus on fast processing of the range images and therefore
use the local cost volume filtering approach. This local approach for depth extrac-
tion is, concerning runtime, 25 times faster compared to the global method [8].
Besides the longer runtime, the regularization of the global method leads to early
smoothing in the beginning of the pipeline, and details, once smoothed, cannot
be recovered later on. Although the depth maps from local cost volume filtering
contain outliers, more details are preserved in the final DSMs. We demonstrate
this effect in our experiments in Figure 7.

3 Probabilistic Range Image Integration

For every image, we compute a range image encoding depth information for every
pixel. The depth information from all images needs to be integrated robustly into
a single, consistent DSM with reliable height values by subsequent fusion of the
available depth hypotheses.

The quality of the individual range images depends on the input data and
the method used for image matching and depth extraction. Hence, the resulting
depth maps may contain noise and gross outliers due to erroneous depth values.
These outliers can originate from image noise, illumination changes and shadows,
as well as from occlusions, repetitive structures or uniform image regions with
insufficient texture, which usually lead to a poor integration and consequently,
need to be handled robustly. We assume that a height value in the final DSM
is reliable when most of the individual depth estimates vote for the same depth
and are valid in most range images.

3.1 Orthographic Projection and Sampling

First, we define grid dimensions and sampling for the final DSM. For georef-
erenced datasets, we select the ground plane as the projection plane. For re-
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constructions in arbitrary local coordinate frames, we estimate an appropriate
rotation to transform the coordinate frame into an east-north-up (ENU) coordi-
nate system with the z-axis pointing upwards and align the reconstruction with
the xy-plane. The grid dimensions (xmin, xmax, ymin, ymax) are retrieved from
the sparse scene reconstruction of the SfM result. The DSM grid sampling ∆x

and ∆y in the horizontal xy-plane is chosen according to the ground sampling
distance (GSD) of the input images or manually defined to meet a desired spatial
resolution of the output DSM. In addition, we define a tiling of the complete
DSM grid into smaller subregions (we choose tiles of size 2048 × 2048 pixels),
which can be processed independently to cope with large scale reconstructions.
All range images that overlap with a DSM tile, i.e. from cameras of which their
viewing frustum intersect with the bounding volume of the sparse reconstruction
within the tile, are used in the subsequent steps.

We unproject the range images to 3D point clouds and ortho-project the
points such that the highest points from each individual range image falling
into the same xy grid cell are inserted into bins. This orthographic projection
geometrically undistorts the perspective range images, such that overly filled
bins due to e.g . facades are avoided.

3.2 Robust Depth Fusion based on Point Density

We consider depth hypotheses from the range images to be samples from an
underlying probability density function (Figure 3). Based on that, local maxima
of the density function correspond to dense regions in feature space. We process
each cell of the DSM tile independently, but use a 3 × 3 neighborhood of the
individual cell as input to define the density function. This acts as a probabilis-
tically motivated filter scheme in 3D. The modes of the density function then
indicate more reliable depth hypotheses, and the approach is not affected by
quantization artifacts. By finding these modes, we can estimate a robust depth
supported by many individual range images.

Clustering of Depth Hypotheses. The probability density of the depth hypotheses
for one bin is estimated by the local density of the sample points. For each data
point, a local window (i.e. Parzen window, kernel) is defined and the data point
is associated with the nearby local maximum of the probability density function
within the window. For the kernel density estimation function, we use a Gaussian
kernel of the form

φ(x− xi) = e−
‖x−xi‖

2

2h2 , (1)

where h is the bandwidth parameter, i.e. the radius of the Parzen window. We
set h = 10 ·∆x in our implementation.

Dense regions in feature space correspond to local maxima of the density
function. To find the maxima of the locally estimated density, we perform gradi-
ent ascent for each data point. At each iteration, the window shifts to a denser
region and converges to the modes of the density function. This is exactly the
mean shift [4] procedure. For all data points, the mean shift vector is computed
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Fig. 3. Probabilistic range image fusion: Depth hypotheses are considered as samples
from an underlying probability density function, where local maxima of the density
function correspond to dense regions in feature space. The local maxima correspond
to point clusters with higher density for which we build a histogram. Median fusion
of all depth hypotheses would lead to a wrong height value whereas the probabilistic
approach is able to select a height value correctly.

in every iteration and the density estimation window moved until convergence.
The mean shift vector for a data point x is computed as

m(x) =

∑
n

i=1
xiφ(x− xi)∑

n

i=1
φ(x− xi)

. (2)

All data points that converge to the same mode are associated to belong to the
same cluster. The mode corresponding to a cluster defines the ’center of mass’
for the data points.

Mode Selection. We build the histogram of sample points per cluster (i.e. depth
hypotheses) and sort the modes by their height value in ascending z-direction
(see Figure 3). We accept only clusters with a minimal support of two points. The
fused height value for a cell is then selected based on the maximum peak in the
points histogram. If more than one identical peaks are present in the histogram,
we select the spatially highest mode such that the empty space criterion is not
violated.

3.3 Mesh Generation

Cells for which we cannot find at least one sufficiently dense cluster with mini-
mum support are discarded. We consider them as unreliable and keep the cor-
responding DSM cell empty. This results in a semi-dense DSM height map as
depicted in Figure 2(c), where only sample points of high confidence and support
from many range images are kept. Those fused DSM points are then triangulated
in 2D by a Delaunay triangulation, extruded to their estimated height and con-
verted into a polygonal mesh. The mesh representation offers several favorable
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properties including data reduction and automatic elimination of holes caused by
the discarded depth estimates with low support. The missing parts in the DSM
are filled by the implicit regularization characteristic of the triangle between the
high-confidence fused sample points through linear interpolation.

Such an interpolation is possible because high confidence points are present
in regions where the aerial images show sufficient texture and intensity gradients,
which is especially the case at corners and edges, caused by depth discontinuities
and object contours; i.e. where the NCC matching finds distinctive matches. In
contrast, points in homogenous, typically planar regions are suppressed. This ef-
fect has the additional advantage of simplifying the 3D models such that planar
regions are not necessarily densely sampled but simplified, and thus achieving a
data reduction. The polygonal mesh representation is ideally suited as it allows
a compact, memory efficient representation of irregular structure and varying
complexity. It can be easily distributed and directly visualized in 3D (see Fig-
ure 4(a)).

4 DSM Refinement and True-Orthophoto Generation

Finally, we describe how neighborhood information given by the Delaunay Tri-
angluation can be exploited for photometric refinement of the fused DSMs, and
how to render true-orthophotos from the obtained meshes.

4.1 Photometrically Constrained Refinement

For each DSM grid cell where no reliable depth estimate was found, mesh tri-
angles may span over large gaps of uncertain regions (Figure 2(d)). We employ
ray casting for each DSM grid cell and intersect the ray in z-direction with the
intermediate triangular mesh. If the intersected triangle spans over large depth
discontinuities (i.e. if the triangle vertices have significantly varying heights and
the deviation between triangle normal and ray is larger than 30◦), we allow the
height of the triangle intersection point to jump to one of its neighbor’s height
values. To decide which height value is best, we estimate a multi-image correla-
tion score [11] for the backprojected intersection point at all three depths of its
neighboring triangle vertices and allow the interpolated depth of the intersec-
tion point to either jump to the height of the most reliable neighbor or stay at
the same height, depending on where the best photo-consistency score is found.
Hence, we let neighboring height values (defined by the triangulation) propagate
into areas with large uncertainty. After photometric refinement, the depth edge
appears sharper (Figure 2(e)).

4.2 Rendering True-Orthophotos

True-orthophotos are a common end-product obtained from digital surface mod-
els where the aerial images are rectified from a perspective to an orthographic
projection using an underlying DSM (Figure 4).
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(a) (b)

(c) (d)

Fig. 4. (a) 3D visualization of the resulting DSM as a triangular mesh and textured
with the true-orthophoto. (b) DSM represented as a height map. (c) Perspective views
of the building from the original aerial images. Note that building facades are visible.
(d) True-orthophoto where no facades are visible, generated from the aerial images and
the underlying DSM heights.

Again, orthographic ray casting is used to sample the mesh. For each DSM
grid cell, the intersection point gets back-projected into all images where it is
visible. For each DSM point we obtain a set of color values projecting to that
point. In many cases, the color values are in RGB space and simple averaging
would lead to inappropriate color shifts in the resulting true-orthophoto. Fur-
thermore, illumination changes in images from different flight stripes, taken at
different times of the day may also introduce undesired color artifacts. We solve
this issue by transforming the color values to HSI color space, which splits the
color components into hue, saturation and intensity such that the color value is
independent from saturation and brightness. We finally assign the color triplet
where the intensity corresponds to the median intensity of all color samples.

5 Results and Discussion

We compare our range image fusion and true-orthophoto generation approach
qualitatively with results from a state-of-the-art commercial aerial image pro-
cessing software (Pix4D [12]) on image test sets taken from different unmanned
aerial vehicles (UAVs), and on a large scale dataset with 21 RGB images captured
with an UltraCam X with a resolution of 14,430 x 9,420 pixels. We also perform a
quantitative evaluation on the ISPRS Vaihingen test dataset [2] with 20 infrared-
red-green (IR-R-G) DMC images comprising a resolution of 7,680 x 13,824 pixels
for which a DSM with 25 cm resolution from airborne laser scanning (ALS) data
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(a) (b)

Fig. 5. Qualitative comparison between results from the commercial software Pix4D
and our approach. Datasets were taken from [12]. (a) 3D view and true-orthophoto of
a part of the ’gravel pit’ dataset, which shows disturbing spikes and significant noise
on the band conveyor. Thus, erroneous distortions in the orthophoto (highlighted in
the image) occur. (b) In contrast, our results are well fused and show sharp object
contours.

is provided. Both high resolution datasets provide an image overlap of 60 - 80%
and a ground sampling distance (GSD) of 8 cm/pixel.

Figure 4 shows results obtained with our probabilistic range image integration
approach from winner-takes-all depth maps. The raw WTA range maps contain
lots of outliers, but our robust fusion result visualized as a 3D mesh shows virtu-
ally no severe outliers. The final DSM generated from the UltraCam X dataset
shows an area of approximately 3.46 km2 and has a resolution of 20,699 x 26,096
pixels with 8 cm GSD. The GPU-based calculation of all 21 depth maps with the
local method required 9 hours, the fusion took 15 hours using four CPU cores.
In comparison, the global method requires more than 12 days.

A qualitative comparison between DSMs and true-orthophotos generated
with the commercial software Pix4D [12] and our approach is given in Figures 5
and 6. The quality of the true-orthophotos directly depends on the correctness of
the underlying DSM. Wrong depths cause distortions in the generated orthoim-
ages as can be seen in the examples. Our method for true-orthophoto rendering
has the advantage that it operates fully automated and avoids (often manual)
seamline selection and ghosting artifacts in contrast to orthophotos generated
from image mosaics as applied in many software tools.

For a quantitative evaluation, we compared the results of our probability
based clustering fusion approach to a median fusion of the range image depth
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(a)

(b)

(c)

Fig. 6. (a) True-Orthophoto showing the complete area of the ’Near Infrared Agri-
culture’ dataset from [12] calculated with our approach. (b) Crop from the Pix4D or-
thophoto shows erroneous distortions due to errors in the underlying DSM (highlighted
in the image). In contrast, our result (c) shows no distortions.

hypotheses. The range images were computed using cost volume filtering [13]
before performing winner-takes-all. The chosen evaluation strategy is similar
to [15]. Although, we achieve only 5% better results than median fusion, a direct
visual comparison between median fusion and our proposed method clearly shows
a significant difference. A small fraction of outliers which do not have a big
impact in the quantitative analysis can have a drastic impact on the qualitative
appearance, as shown in Figure 1.

There is a trade-off between putting large effort in generating clean, outlier-
free range maps using global optimization methods and fast depth estimation
using local methods which permit a certain amount of outliers in the data but
preserve detail. Once the input data is smoothed it may be fused using a simple
method like median fusion, but with the drawback of not being able to recover
fine detail (see Figure 7). In contrast, our method can deal with a substantial
amount of outliers in the range data as long as one distinct dense point cluster
can be estimated, and it is considerably faster.

6 Conclusion

We proposed a probabilistic method for range image integration and true-
orthophoto generation that considers depth hypotheses as samples from an un-
derlying probability density function. The modes of the density function in-
dicate more reliable, robust depth hypotheses supported by many individual
range images. Neighborhood information given by a Delaunay triangulation can
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Fig. 7. Comparison between different methods for depth estimation and fusion on the
’Showcase 1’ datasets from [12]. (a) Depth map calculated using the method of [8]
with global optimization, which produces nearly outlier free but over-smoothed depth
maps. Details like the trees and street lights are lost in the fused DSM using simple
and fast median fusion, visualized in (e). The depth map in (c) has been estimated
using fast cost volume filtering [13]. It contains a few outliers, but preserves details.
Our probabilistic range image fusion method is able to handle large amounts of outliers
and still produces visually competitive DSM quality (f). True-orthophotos generated
from globally optimized depth maps (b) and cost volume filtering (d) look very similar,
but again the details are better preserved by our method (e.g. the roof of the house).

be exploited for photometric refinement of the fused DSMs before rendering
true-orthophotos from the obtained meshes.

Our approach has the advantage that it avoids a volumetric voxel represen-
tation and is able to select a final depth from continuous values instead of a
discrete voxel sampling. The method is memory efficient and can easily be par-
allelized for each individual DSM grid cell. Furthermore, our approach enables
to integrate arbitrary point sets into one single 2.5D representation. It considers
the unprojected 3D points only, hence, it is not restricted to range image inte-
gration but is able to fuse e.g . point clouds provided by LiDAR into a consistent
DSM. Even though the simplicity of our method, we showed that our approach
is very robust with respect to outliers in the depth estimates and is able to deal
with a substantial amount of outliers in the range data to produce good results.
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