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Abstract
This work investigates the influence of using multiple views for 3D reconstruction with respect to
depth accuracy and robustness. In particular we show that multiview matching not only contributes
to scene completeness, but also improves depth accuracy by improved triangulation angles. We first
start by synthetic experiments on a typical aerial photogrammetric camera network and investigate
how baseline (i.e. triangulation angle) and redundancy affect the depth error. Our evaluation also
includes a comparison between combined pairwise triangulated and fused stereo pairs in contrast
to true multiview triangulation. By analyzing the 3D uncertainty ellipsoid of triangulated points we
demonstrate the clear advantage of a multiview approach over fused two view stereo algorithms. We
propose an efficient dense matching algorithm that utilizes pairwise optical flow followed by a robust
correspondence chaining approach. We provide evaluation results of the proposed method on ground
truth data and compare its performance in contrast to a multiview plane sweep method.

1. Introduction

Image-based 3D reconstruction is an active field of research in Photogrammetry and Computer Vi-
sion. The need for detailed 3D models for mapping and navigation, inspection, cultural heritage
conservation or photorealistic image-based rendering for the entertainment industry lead to the devel-
opment of several techniques to recover the shape of objects. To achieve precise and high detailed
reconstructions Lidar is often employed providing 2.5D range images and the respective 3D point
cloud in a metric scale. On the other hand, laser-based methods are complex to handle for large scale
outdoor scenes, especially for aerial data acquisition. In contrast to that, passive image-based methods
that utilize multiple overlapping views are easily deployable and are low cost compared to Lidar [7],
but require some post-processing effort to derive depth information. In this work we investigate how
redundancy and baseline influence the depth accuracy of multiple view matching methods. In par-
ticular we perform synthetic experiments on a typical aerial camera network that corresponds to a
2D flight pattern with 80% forward-overlap and 60% side-lap (see Figure 1). By covariance analysis
of triangulated scene points [1, 2], the theoretical bound of depth accuracy is determined according
to the triangulation angle and the number of measurements (i.e. the redundancy). One of our main
findings is that true multiview matching/triangulation outperforms two-view fused stereo results by at
least one order of magnitude in terms of depth accuracy. Furthermore, we present a fast, accurate and
robust multiview matching and reconstruction technique suitable for high resolution images of large
scale scenes that is able to compete with Lidar through leveraging the redundancy of many views.
Our proposed solution to multiview reconstruction is based on pair-wise stereo, employing efficient
and robust TV-L1 [14] optical flow that is restricted to the epipolar geometry. Unlike standard aerial
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Figure 1. Multi-view 3D reconstruction from aerial images. (a) The view network, a sparse reconstruction and
uncertainties (magnified by 1000 for better visibility) for selected 3D points on a regularly sampled grid on the
ground plane. (b) Reconstructed dense point cloud from our multiview method of an urban scene.

matching approaches that rely on 2.5D data fusion [16] of pairwise stereo depth maps, we propose a
correspondence chaining (i.e. measurement linking) and triangulation approach that takes full advan-
tage of the achievable baseline (i.e triangulation angles). In contrast to voxel-based approaches [13],
polygonal meshes [6] and local patches [3], we focus on algorithms representing geometry as a set
of depth maps [15]. It eliminates the need for resampling the geometry in the three-dimensional do-
main and can be easily parallelized. We evaluate our approach on the multiview benchmark dataset
of Strecha et al. [12] that provides accurate ground truth and on large scale aerial images.

2. Uncertainty of Scene Points

As shown in [4] the depth uncertainty of a rectified stereo pair can be directly determined from the
disparity error,

εz =
bf

d
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d+ εd
≈ z2
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where z is the point depth, f the focal length and b the image baseline. Hence, the depth precision is
mainly a function of the ray intersection angle. In contrast, for multiview image matching and triangu-
lation, the redundancy not only implies more measurements but additionally constrains the 3D point
location through multiple ray intersections. These entities are not independent but are coupled, since
they rely on the network geometric configuration that determines image overlap (i.e. redundancy) and
baseline, simultaneously. Given a photogrammetric network of cameras and correspondences with
known error distribution, the precision of triangulated points can be determined from the 3D confi-
dence ellipsoid (i.e. covariance matrix CX) as shown in [1]. An empirical estimate of the covariance
ellipsoid corresponding to multiview triangulation can be computed by statistical simulation. For the
moment we assume that camera orientations and 3D structure are fixed and known. The cameras are
distributed along a 2D grid (corresponding to flight paths) in order to achieve a 80% forward overlap
and 60% side-lap (see Figure 1). According to a large format digital aerial camera (e.g. UltraCamD
from Microsoft) the image resolution is set to 7500× 11500 pixel with a field of view α = 54◦. Fur-
thermore, 3D points are evenly distributed on a 2D plane that corresponds to the bold earth surface,
observed from a flying height of 900m. Therefore, an average Ground Sampling Distance (GSD) of
8cm/pixel is achieved.

Given the cameras Pi=1:N ∈ P (i.e. calibration and poses) and 3D points Xj=1:M ∈ X , respective
ground truth projections are produced xij = PX. Therefore, for every 3D point a set of point-tracks



(i.e. 2D measurements) is generated m = (< x1, y1 >,< x2, y2 > . . . , < xk, yk >). Next, 2D
projections are perturbed by zero mean Gaussian isotropic noise x̂ = x+N (0,Σ),

Σ =

(
σ2
x 0

0 σ2
y

)
(2)

with standard deviation σx = σy = 1 pixel (i.e. ∼ 8cm GSD). Given the set of perturbed point tracks
m̂ = (< x̂1, ŷ1 >,< x̂2, ŷ2 > . . . , < x̂k, ŷk >) and ground truth projection matrices Pi=1:N , the 3D
position of the respective point in space is determined. This process requires the intersection of at least
two known rays in space. Hence, we use a linear triangulation method [5] to determine the 3D position
of point tracks. This method generalizes easily to the intersection of multiple rays providing a least-
squares solution. Optionally, a non-linear optimizer based on the Levenberg-Marquardt algorithm is
used to refine the 3D point by minimizing the reprojection error. Through Monte Carlo Simulation
on the perturbed measurement vectors m̂ we obtain a distribution of 3D points Xi around a mean
position X̂. From the Law of Large Numbers it follows that for a large number N of simulations, one
can approximate the mean 3D position by,

EN [Xi] =
1

N

N∑
i=1

Xi (3)

and its respective covariance matrix by,

CX = EN [(Xi − EN [Xi])(Xi − EN [Xi])
>] (4)

Using the singular value decomposition the covariance matrix can then be diagonalized,
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where U represents the main diagonals of the covariance ellipsoid and σi are the respective standard
deviations. The decomposition of the covariance matrix (equation 5) into its main diagonals directly
relates to the uncertainty in x − y and z direction. Under the assumption of fronto-parallel image
acquisition the largest singular value σ1 corresponds to the uncertainty in depth and σ2 and σ3 to the
uncertainty in x− y direction, respectively.

3. Synthetic Simulation

For the aerial network described in Section 2. we perform synthetic experiments where we inves-
tigate the influence of baseline (i.e. triangulation angle) and the number of views used for match-
ing/triangulation (i.e. redundancy).

Triangulation angle. In our first experiment we consider the depth error (i.e. the uncertainty along
the z direction) as a function of triangulation angle. To this end we randomly choose homologous
points from camera pairs < Pi, Pj >, i 6= j and compute the depth error by decomposing the covari-
ance matrix according equation 5. Figure 2a depicts the depth error σz (i.e. uncertainty along the z
axis) with respect to the achieved triangulation angle,
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Figure 2. (a) Depth uncertainty decreases with larger triangulation angles. (b) Comparison of depth uncertainty
for fused 3D points from pairwise triangulation in contrast to true multiview triangulation with respect to the
number of measurements.

(a) (b)

Figure 3. (a) True multiview triangulation. (b) Pairwise triangulation and pairwise 2.5D stereo fusion.

α = arccos
CiX ·CjX

||CiX||||CjX||
(6)

where X is the triangulated 3D point and Ci, Cj are the camera centers of the first and second
camera, respectively. A narrow triangulation angle of 10◦ translates into an absolute depth uncertainty
σz ≈ 70cm, whereas angles of > 50◦ produce a depth error of less than 15cm.

Multi-view triangulation. In our second experiment we investigate the influence of redundancy with
respect to the depth error. The geometric configuration of a camera network implies that redundancy
and triangulation angle cannot be decoupled since adding more views will result in a set of different
triangulation angles. To compensate for this effect, we first determine the image pair that minimizes
the depth error (i.e. the pair with maximum triangulation angle). Next, additional measurements from
neighboring views are added randomly one by one and the depth error is computed. Figure 4a depicts
the covariance along the (x, z)-plane for one 3D point with respect to the number of measurements
used for triangulation. Note, while the shape of the uncertainty ellipsoid varies with increasing num-
ber of measurements, the overall accuracy along each axis decreases. This is in contrast to the methods

proposed by Beder et al. [1] that considers the roundness of the uncertainty ellipsoid R =
√

σ2
3

σ2
1

as
uncertainty measure.
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Figure 4. Covariance ellipsoids for one exemplary 3D point. (a) Starting from the image pair that minimizes the
depth error (i.e. the pair with maximum angle), additional measurements are added one by one for multiview
triangulation. (b) Covariance ellipsoid for a varying number of fused stereo pairs of adjacent views (cf. Fig. 3b).

Stereo triangulation fusion. We compare the multiview triangulation result with those of fused
pairwise triangulated stereo pairs (see Figure 3). Stereo pairs (< P1, P2 >,< P2, P3 > . . . , <
Pk−1, Pk >) are selected from consecutive views < Pi, Pi+1 > for i = 1 . . . k − 1 along the flight
path. Each pair is used for triangulation of k − 1 3D points X<i,i+1> that belong to one and the
same point-track m. The mean and median value of this set is determined representing the fused
depth estimate. The covariance ellipsoids corresponding to the uncertainty of one exemplary 3D
point fused from a varying number of stereo pairs is depicted in Figure 4b. Note, by using more
stereo pairs, the uncertainty in depth decreases but overall the fused stereo result cannot compete
with multiview triangulation/matching (Figure 4a). For instance, while the uncertainty of 16 fused
stereo pairs gives a depth error σz ≈ 25cm, the multiview-triangulation leads to a σz ≈ 6cm. A
comparison of multiview vs. fused stereo triangulation uncertainty with respect to the number of used
measurements/views is depicted in Figure 2b.

4. Multi-View Depth Maps

Based on the synthetic experiments of the previous section we conclude that true multiview image
matching and triangulation offers clear advantages in terms of depth accuracy over fusion of multiple
stereo pairs. We propose a dense matching approach that considers only pairs of images, thus being
fast and efficient, but leverages multiple views by linking measurements between view pairs (i.e.
correspondence chaining), thus increasing the baseline/triangulation angle.

4.1. Stereo Matching

Our stereo dense matching approach is based on TV-L1 optical flow [14] computation. Optical flow
seeks to determine a displacement field u between two images I0 and I1 estimating the motion of
pixels, i.e. the mapping of image points from the first image to their new location in the second
one. Hence, optical flow is equivalent to the search for correspondences in stereo vision. Dispar-
ities between pixels are estimated within a global optimization framework that seeks a solution by
minimizing an appropriate energy function. The approach is based on total variation (TV) [10] regu-



larization and uses a robust L1 data fidelity term. This allows for smoothness while preserving depth
discontinuities to obtain high quality depth maps. The known camera parameters imply that the corre-
spondence search can be restricted to one dimension along the epipolar line [11]. The computational
effort is then similar to a standard stereo case with a rectified image pair. The epipolar line in the sen-
sor view for a key view pixel x is given with x 7→ l′ : l′ = Fx. The direction of the epipolar line given
by the unit vector l′n together with a point on the line (i.e. an initial reference point obtained from
SfM) with a given disparity u0 yields to the location of the point correspondence x’: x′ = xref +u0l

′
n.

Hence, we linearize image I1 near x’. With Ie1 denoting the derivative with respect to the epipolar
direction, the energy functional writes,

E =

∫
Ω

{λ|uIe1 + I1(x′)− u0I
e
1 − I0|+ |∇u|} dx. (7)

This energy can be efficiently minimized by a primal dual algorithm [14].

4.2. Correspondence Chaining

Dense correspondence computation is performed between pairs of images as described in the previ-
ous section, but is not restricted to that specific method. A pair always consists of the key view and
one of its neighboring sensor views. We seek for a set of correspondences (i.e. measurements) for
each pixel of the key view, one from every neighboring view in which the pixel is visible. Reliable
correspondence estimates from optical flow can be expected only for adjacent neighbors since wide
baseline settings normally result in larger distortions and occlusions, thus degrading matching con-
fidence and accuracy [8]. On the other hand, small baselines introduce inaccuracies due to narrow
triangulation angles (see Section 3). To overcome these problems, we follow a multi-baseline ap-
proach [4] and propose correspondence chaining to enhance baseline (i.e. triangulation angle) and
redundancy at the same time. Starting from the adjacent neighbors Pk±1 of each key view Pk, we
chain flow vectors from one view to the next. If a disparity estimate ul,c between the linking view l
and the next sensor view c is available, we update the coordinates of the measurement according to
x′c = xk + uk,l(xk) + ul,c(xk + uk,l(xk)) = x′l + ul,c(x

′
l). This approach can fail, if a wrong corre-

spondence (i.e. an outlier) is used for linking. The error propagates over all links and corrupts the
correct depth estimation at that pixel. Therefore, we employ an outlier rejection strategy based on
the RANdom SAmple Consensus (RANSAC) [5] algorithm to provide robust depth estimates in the
reconstruction. From the set of at least three inliers, a least squares solution is computed.

4.3. Experimental Results

We evaluate our correspondence chaining approach on large scale aerial images (see Figure 1) and
on the multiview dataset from Strecha et al. [12] that provides ground truth data for a quantitative
evaluation (Figure 5). We compare our proposed approach to a multiview plane sweep method that
implicitly combines multiple measurements through a three dimensional voxel space of truncated
matching costs. Three different photoconsistency measures are used: sum of absolute differences
(SAD), zero mean normalized sum of absolute differences (ZNSAD) and zero mean normalized cross
correlation (ZNCC). Furthermore, a global optimization method [9] is used for robust and smooth dis-
parity assignment. We calculate the root mean square (RMS) error measured in depth units between
the ground truth dr and the depth map dc, RMS =

√
1
N

∑
(x,y) |dr(x, y)− dc(x, y)|2. In addition, we

compute the completeness of the scene, a measure that determines the percentage of estimated depth
values with respect to the total number of pixels available in the reference maps. Table 1 summarizes
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Figure 5. (a) Image from the fountain-P11 dataset [12]. (b) Reference depth map from ground truth. (c) Result
from our TV-L1 stereo based multiview method. (d) Confidence map depicting the number of used inliers for
triangulation from correspondence chaining. Low image overlap and occlusions are clearly visible (dark areas).
(e) Key image from an aerial dataset, (f) depth map and (g) inlier confidence map.

flow plane sweep
SAD ZNSAD ZNCC

fountain-P11 RMS error 0.257 0.71454 0.540 0.421878
completeness [%] 93.055 94.7247 94.658 94.6586

Table 1. Error statistics for image 5 of the fountain-P11 dataset [12]. 11 views (10 pairs) are used for correspon-
dence chaining. The flow reconstruction method was initialized with a depth estimate from the sparse points.
Parameters for TV-L1 matching: λ = 0.15, warps=5, iterations=100. Parameters for plane sweep and global
optimization: λ = 100, t = 0.17 (SAD, ZNSAD) and λ = 20, t = 0.5 (ZNCC).

our evaluation. From our experiments we conclude that our proposed approach compares well to the
multiview plane sweep method in terms of accuracy and completeness.

5. Conclusion

In this paper we analyzed and evaluated multiple view matching methods with respect to baseline and
redundancy. From our synthetic experiments we conclude that true multiview matching/triangulation
outperforms two-view stereo approaches by about one order of magnitude. Furthermore, we presented
a fast and accurate multiview matching method based on TV-L1 stereo and robust flow chaining that
leverages redundancy of multiple views and outperforms current multiview plane sweep approaches.
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