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ABSTRACT:

A variety of applications exist for aerial 3D reconstruction, ranging from the production of digital surface models (DSMs) and digital
terrain models (DTMs) to the creation of true orthophoto and full 3D models of urban scenes that can be visualized through the web. In
this paper we present an automated end-to-end workflow to create digital surface models from large scale and highly overlapping aerial
images. The core component of our approach is a multi-view dense matching algorithm that fully exploits the redundancy of the data.
This is in contrast to traditional two-view based stereo matching approaches in aerial photogrammetry. In particular, our solution to
dense depth estimation is based on a multi-view plane sweep approach with discontinuity preserving global optimization. We provide a
fully automatic framework for aerial triangulation, image overlap estimation and dense depth matching. Our algorithms are designed to
run on current graphics processing units (GPUs) which makes large scale processing feasible at low cost. We present dense matching
results from a large aerial survey comprising 3000 aerial images of Graz and give a detailed performance analysis in terms of accuracy
and processing time.

1 INTRODUCTION

Novel digital aerial cameras capture high resolution images that
are readily suitable for the creation of photogrammetric end prod-
ucts like digital surface models (DSMs), digital terrain models
(DTMs), orthophotos and full 3D models of urban scenes that
can be visualized trough the web (Zebedin, 2010). Fully auto-
mated image based creation of dense point clouds with an eleva-
tion measurement at each pixel is nowadays feasible at low cost
and makes the technology competitive with LiDAR-based sur-
face measurements (Leberl et al., 2010). It can be argued that
the image-based approach offers many advantages over LiDAR,
and that practically all aerial mapping scenarios will need digi-
tal images, even with LiDAR (Leberl and Gruber, 2003). In the
last two decades digital aerial cameras reached a mature techni-
cal state and hence provided the necessary geometric and radio-
metric stability and resolution to compete with analogue aerial
cameras. Furthermore, they feature the advantage that the ac-
quired digital images are readily suitable for automatic process-
ing. The high redundancy of multiple overlapping images holds
the promise of full automation of the matching process. There-
fore, many essential products obtained from aerial images can
be cost-efficiently derived by an automated processing pipeline.
Today, airborne photogrammetric surveys are flown with at least
80% forward overlap and 60% side-lap. The high resolution im-
agery opens the possibility to generate detailed maps of an en-
vironment. Figure 1 depicts a typical reconstruction result of a
building obtained from aerial images. A standard aerial mapping
project consists of 500 to 20,000 high resolution images, which
translates into 0.3-12 terabyte of raw data. Under the premise that
processing of such a massive amount of data can be done in rea-
sonable time, passive photogrammetry can directly outperform
current LiDAR systems (Baltsavias, 1999) by means of ground
sampling distance (GSD) and reduced flight costs (Leberl et al.,
2010). This directly leads to significant economic benefits. With
a further increase of ground sampling distance to the range of
about 1cm, aerial photogrammetry could even compete with tra-

ditional ground measurement devices such as surveys based on
total stations and GNSS/GPS systems.

Figure 1: Visualization of a textured 3D reconstruction/DSM de-
rived from our multi-view dense matching method.

1.1 Aerial Images

Aerial images produced by state of the art large format camera
systems such as the products from Vexcel Imaging1 currently
comprise up to 260 megapixels (UltraCam Eagle) at a high radio-
metric resolution (Figure 2). Aerial flight missions are normally
performed using GPS-Aided Inertial Navigation that allows Di-
rect Georeferencing (Hutton and Mostafa, 2005), hence Aerial
Triangulation (AT) and ground control points are not necessarily
required. However, GPS-Aided Inertial Navigation has several
requirements that makes such systems costly and hard to apply
in real world. First of all, the IMU must be rigidly attached to
the camera and any misalignment of IMU/camera needs to be
calibrated. Second, exact time of image exposure and GPS/INS
pose must be provided. Third, the camera interior geometry (fo-
cal length, principal point) must be well calibrated and stable.
Even if calibration is done accurately, total reliance on GPS/IMU

1http://www.microsoft.com/ultracam



does compromise the accuracy of resulting stereo matches and
point cloud patches (Leberl et al., 2010). In this paper we employ
a fully automated processing pipeline that computes the scene
structure and camera orientations from aerial input images. In
computer vision, this approach is known as Structure from Mo-
tion (SfM) and delivers subpixel accurate photo alignment from
image measurements, only. Hence this method is more flexible
than current photogrammetric systems that require GPS/IMU and
the semi-automatic selection of point measurements in overlap-
ping images.

Figure 2: High resolution aerial image comprising 7500×11500
pixels at a ground sampling distance (GSD) of 10cm/pixel.

1.2 Aerial Triangulation

We employ a fully automated processing pipeline that computes
the scene structure and camera orientations from aerial input im-
ages, only. First, several thousand Points of Interest (POIs) are
extracted from each image using the Scale Invariant Feature Trans-
form (SIFT) (Lowe, 2004). Next, features between pairs of adja-
cent images along the flight path are matched. Given the image
sequence I with n images, I = {It|t = 1, . . . , n} the features
of each view It are matched with a number of adjacent views
It+i with i = {−r, . . . ,+r} and i 6= 0 where r determines the
matching interval. We use r = 5 to match aerial images with
a forward overlap of 80%. This method achieves tracks along
the flight paths but might miss correspondences between flight
lines. To establish correspondences between flight lines, an im-
age retrieval approach based on a vocabulary tree search (Nistér
and Stewenius, 2006) is performed. Such an approach assumes
that each image is represented as a bag of words (Sivic and Zis-
serman, 2003) and the employed method efficiently determines a
similarity score of all image pairs. In general, overlapping im-
ages achieve a higher score than unrelated images, hence this ap-
proach is able to detected potential matching candidates across
flight lines. We use exhaustive SIFT descriptor matching between
pairs of frames and use the Lowe distance ratio criterion (Lowe,
2004) to achieve matching uniqueness. Next, the Five Point rel-
ative pose algorithm (Nistér, 2004) inside a RANSAC loop (Fis-
chler and Bolles, 1981) is used to robustly compute pairwise cam-
era orientations. The output of the automatic matching procedure
is a graph structure denoted as epipolar graph EG, that consists
of the set of vertices V = {V1 . . . VN} corresponding to the im-
ages and a set of edges E = {eij |i, j ∈ V} that are pairwise
reconstructions, i.e. relative orientations between view i and j,
eij =< Pi, Pj >,

Pi = Ki[I, 0] and Pj = Kj [R, t], (1)

where Pi, Pj are respective projection matrices. The epipolar
graph EG encodes relative orientations and pairwise reconstruc-
tions. Chaining all relative orientations together should result

in a global consistent 3D structure. We follow a greedy, incre-
mental reconstruction approach (Snavely et al., 2008) to itera-
tively reconstruct the scene from an initial image pair. Structure
and camera pose refinement is done using robust bundle adjust-
ment (Triggs et al., 2000). Figure 3 illustrates an orientation re-
sult of 3000 aerial images reconstructed with our fully automated
aerial triangulation framework.

Figure 3: Aerial Triangulation (AT) result from 3000 aerial im-
ages covering an area of approximately 150km2 of Graz and sur-
rounding.

1.3 Multi-View Reconstruction

While traditional dense matching approaches for aerial images
are based on stereo pairs (Hirschmüller, 2006), we employ a multi-
view method for dense depth map extraction. The high redun-
dancy of image overlap assists in the correspondence problem
and allows to overcome some of the shortcomings of traditional
stereo. In contrast to stereo, multi-view scene reconstruction pro-
vides additional information by capturing a scene from different
viewpoints. From a geometric point of view, a triangulation angle
of 90◦ delivers the highest accuracy, hence wide baseline settings
are preferred. The depth uncertainty for a canonical stereo pair
can be directly derived from the disparity error,

εz =
bf

d
− bf

d+ εd
≈ z2

bf
εd, (2)

where z is the point depth, f the focal length and b the image
baseline. This means that depth precision is mainly a function of
the ray intersection angle (Gallup et al., 2008) α, having a mini-
mum at α = 90◦. On the other hand, a large parallax introduces
occlusion and perspective distortions which makes matching a
challenging problem.

Given a photogrammetric network of cameras and correspondences
with known error distribution, the precision of triangulated points
can be determined from the 3D confidence ellipsoid (i.e. covari-
ance matrix), as shown in (Beder and Steffen, 2006). Figure 4
shows an evaluation of the uncertainty ellipsoid of triangulated
points for the UltraCamD at flying height 900m with 80% for-
ward overlap and 60% sidelap. A multi-view triangulation from
20 image measurements achieves an accuracy of about σz = 5cm
in depth and about σx,y = 1.8cm for in-plane measurements. As
shown in (Rumpler et al., 2011) true multi-view matching outper-
forms two view stereo approaches by about one order of magni-
tude in terms of achievable geometric accuracy. Overall, multiple
views for 3D reconstruction contribute to the scene completeness
and increase scene coverage by capturing areas that might be oc-
cluded in traditional stereo.
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Figure 4: Covariance ellipsoid for one 3D point depending on
the number of image measurements used for multi-view triangu-
lation.

2 DENSE MATCHING

Structure from motion yields camera orientations and a sparse set
of triangulated points, but for photogrammetric end-products like
ortho-image creation or Digital Surface Model (DSM) extraction,
dense 3D geometry is required. Our solution to dense depth esti-
mation is based on a multi-view plane sweep approach (Collins,
1996) with global optimization on a 3D voxel space.

2.1 Multi-View Plane Sweep

Plane sweep techniques in computer vision are simple and elegant
approaches for image based reconstruction with multiple views,
since image rectification is not required. The 3D space is itera-
tively traversed by parallel planes which are usually aligned with
a particular key view (Figure 5).

Figure 5: The scene is traversed by planes parallel to the key
view. For each discrete depth, sensor images are projected onto
the plane and similarity is compared between pixels of key and
sensor views by calculating cost values Ci(x, y, d). A cost vol-
ume is filled with the accumulated matching scores.

The plane at a certain depth d from the key view induces homo-
graphies for all other views, thus the sensor images are warped
to the current plane π = (n>, d). Here, n is the plane normal
and d the current depth hypothesis. The key view is assumed in
canonical coordinates P = K[I | 0] according to the appropriate
homography,

H = K′
(
R− tn>

d

)
K−1, (3)

that transfers coordinates x from the sensor view to image posi-
tions x′ of the key view with x′ = Hx. Here, K is the intrinsic
matrix of the key view and R, t is the relative pose of the sensor

view P ′ = K′[R | t] with respect to the key view. Given two
projection matrices P1 = K1[R1 | t1] and P2 = K2[R2 | t2] the
relative pose between P1 and P2 is computed from,

R = R2R
>
1 , (4)

t = t2 −R2R
>
1 t1 (5)

and the normal vector of the plane n = [0, 0,−1]. If the plane at
a certain depth passes exactly through the surface of the object,
the color values from the key view and from the mapped sensor
views should coincide at appropriate positions. By sweeping the
plane through the 3D space, a cost volume is filled with image
correlation values that corresponds to the disparity space image
(DSI) in traditional stereo (Seitz et al., 2006).

2.2 Initialization

Image-space algorithms usually constrain the maximum disparity
range or interval, in which depth values can occur. Respectively,
the extent of scene geometry is determined to lie between a near
and far plane from the camera center of a key view (Figure 6).
Minimal and maximal depth range [znear, zfar] can either be es-

Figure 6: Volumentric multi-view dense matching. A near and far
plane parallel to the image plane of the reference camera define
the bounding volume.

timated from the sparse scene reconstruction from SfM or explic-
itly set to a global value if prior knowledge about the minimum
and maximum scene depth is available, e.g. from a coarse digital
surface model. Such a model may be already available through
previous aerial mapping surveys, or alternatively, can be gener-
ated by combining multiple public domain geographic informa-
tion sources.

Initial DSM from Public GIS Data We use publicly available
elevation data provided by the Shuttle Radar Topography Mission
(SRTM) (Farr et al., 2007) to create a coarse approximation of the
Earth’s surface. This data serves as a polygonal 3D surface model
and is used to limit the potential depth range for plane sweep.
SRTM provides a digital elevation model (DEM) of the Earth at
near-global scale, covering about 80% of the Earth’s total land-
mass. The dataset is available to the public in 2.5D raster format
at 1 arc-sec resolution (SRTM-1, approximately 30 meters) over
the United States and its territories and at 3 arc-seconds resolu-
tion (SRTM-3, approximately 90 meters) for the rest of the world.
We combine the DEM with information for buildings from freely
available 2D vector map data from the OpenStreetMap2 (OSM)
project. Besides street networks and manifold points of interest
(POIs), the OSM project provides outlines of buildings for many
cities around the world.

Geometry of the initial DSM is represented as a triangulated ir-
regular network (TIN) (Peucker et al., 1978) of 3D points. Build-

2http://www.openstreetmap.org
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Figure 7: Tiling and depth range estimation for one specific key
view of the Graz dataset from sparse points (a),(b) and by DSM
approximation from public domain geographic data sources (c).

ings are modeled as polyhedral objects by extruding building foot-
prints to predefined height values for the maximum expected build-
ing height (Figure 7). This may also allow dense reconstruction
algorithms to take advantage of already known scene geometry
for applications such as visibility checks and occlusion handling.

In addition to the scene volume extent, a depth sampling ∆d and
the number of depth steps in the volume is chosen such that sub-
pixel accurate matching is achieved. The depth step ∆d is adap-
tively computed such that the Nyquist criterion (Shannon, 1949)
fs > 2 pixel is satisfied for at least half of all sensor views. This
means that for 50% of potential sensor views i, the following
condition must be satisfied,

median (||p(Pi, X(d))−p(Pi, X(d+∆d))||) < 0.5 pixel, (6)

where X(d) is the point passing trough the center of every tile at
depth d, Pi is the projection matrix of view i and p the projection
operator. This ensures that sampling artifacts are avoided for at
least 50% of all sensor views.

Image Correlation We use normalized cross correlation (NCC)
as photo consistency measure for plane sweep cost computation.

The correlation between two signals (cross-correlation) is a ro-
bust approach for dense matching. One advantage of normalized
cross correlation (NCC) compared to simpler methods like SAD
and SSD is the invariance to linear intensity changes which often
occur in aerial images. Given two intensity vectors I1 ∈ Rn and
I2 ∈ Rn, the normalized cross-correlation is computed by,

ρ =

∑n
k=1(I1(k)− Ī1)(I2(k)− Ī2)√∑n

k=1(I1(k)− Ī1)2
∑n

k=1(I2(k)− Ī2)2

(7)

where Ī1, Ī2 are the mean intensities and n is the length of the
intensity vector. Note that if two image patches match perfectly,
the normalized cross-correlation value is 1.

2.3 Cost Aggregation and Implicit Occlusion Handling

In order to handle occlusion that often occur in a multi-view
setup, we use truncated correlation measures between the key
view and the N sensor views,

C(x, d) =
1

N

N∑
i=1

min(dW (I(x), Ii(x, d)), t) (8)

where x is the pixel position in the key view I , d the current depth
and Ii the respective sensor view. The image similarity function
dW is evaluated in a k × k neighborhood and t is a constant
threshold that accounts for occlusions and outliers.

Since NCC delivers correlation values ρ between [−1 . . . 1], the
image similarity score (i.e. matching costs) is computed using,

dW (I(x), Ii(x, d)) =
1− ρ

2
, (9)

where a perfect correlation value implies zero costs.

2.4 Depth Map Extraction

From the 3D cost volume, dense depth maps can be extracted
using global optimization methods. Given a graph with node set
V , edges E and a label set L ⊂ Z , an optimal labeling l ∈ LV
for the energy of the form,

min
l

∑
(u,v)∈E

P (l(u)− l(v)) +
∑
v∈V

D(l(v)) (10)

where P (l(u)− l(v)) are pairwise potentials and D(l(v)) is the
unary term, respectively. Solving this problem corresponds to a
minimal cut (Kolmogorov and Zabih, 2002) on a graph in higher
dimensions where labels are ordered. In (Ishikawa, 2003) a min-
imum cut algorithm is presented that exactly solves this class of
Markov Random Field (MRF) problem. This problem perfectly
fits to dense depth estimation, where l(v) ∈ L are depth labels,
v ∈ V pixels and E describes the connection of pixels. Such a
labeling combines a certain pairwise regularity term P (·) with an
arbitrary data term D(·). In (Pock et al., 2008) a continuous for-
mulation to the discrete multi-label problem of Ishikawa is given.
The corresponding variational problem to Equation (10) is,

min
u
{
∫

Ω

|∇u|+
∫

Ω

C(x, u(x))dx}, (11)



where u : Ω → Γ is the unknown function and Ω ⊆ R2 is the
image domain. Γ = [γmin, γmax] is the range of u. The left term
|∇u| is the total variation (TV) term that allows for sharp discon-
tinuities in the solution while still being a convex function. This is
a desired property for dense matching where edges should be pre-
served in the solution. The right term of Equation (11) is the data
term measuring the matching quality for a given u between the
key view and sensor views. The spatial continuous formulation
comes along with several advantages over the discrete approach.
On the one hand continuous optimization can be implemented
using simple and efficient primal-dual optimization techniques
which can be easily accelerated on parallel architectures such as
graphics processing units (GPUs). On the other hand these meth-
ods require considerably less memory which makes the method
applicable for quite large practical problems (Pock et al., 2010).

3 RESULTS AND DISCUSSION

We perform dense matching for a sub-block of the aerial dataset
Graz as shown in Figure 3. For each key view the set of over-
lapping sensor views is determined. The overlap is computed
from sparse correspondences obtained by the aerial triangulation.
Only images with an overlap of more than 10% are considered,
which means that each key view has about ten overlapping sen-
sor views. Our dense matching algorithm requires a cost volume
of size W ×H ×D which depends on the image width W and
height H of each image and the number of depth labels D. Since
a global cost volume would be too large to fit into GPU memory,
the area of interest has to be divided into tiles (e.g. 512 × 512).
Each tile is processed independently, but with a sufficient overlap
in order to suppress boundary effects. Figure 7 shows a 512×512
tiling of one specific key view.

For our experiments we set the NCC matching window radius to
r = 1 pixel and t = 0.5 for the outlier and occlusion threshold in
the cost accumulation step. A regularization parameter of λ = 20
is used in the continuous optimization. This parameter balances
between data and regularity term and determines the degree of
smoothness of the extracted depth maps. Processing of a cost
volume of size 512× 512× 128 requires about 1.5 minutes on a
Nvidia GeForce GTX280. Performance metrics and detailed pro-
cessing timings for dense matching are summarized in Table 1.

Figure 8 shows depth maps computed by a local winner takes all
(WTA) approach and the global multi-label optimization as de-
scribed in Section 2. While the WTA approach leads to noisy
depth maps due to matching ambiguities, the global method pro-
duces clean results while still preserving sharp edges at discon-
tinuities. This can be seen from Figure 9 that depicts an oblique
view of the textured depth map.

image resolution [pixel] 7500× 11500
tile size [pixel] 512× 512
number of tiles 384
max number of depths [s] 160
matching time per slice [s] 0.076
global optimization time [s] 74
total time per tile [s] 90

Table 1: Performance metrics and timings for processing
one high resolution image on a singe GPU (Nvidia GeForce
GTX280).

4 CONCLUSION

In this paper we presented an approach for fully automated aerial
triangulation and dense matching from large aerial images. The

(a)

(b)

(c)

Figure 8: (a) Key image and depth maps produced by multi-view
dense matching using winner takes all (b) and continuous multi-
label optimization (c).

method relies on image data only and does not require any ex-
ternal orientation sensor such as GPS/INS. Hence, the proposed
method is very flexible to apply. We present an algorithm for ef-
ficient and fully automated aerial dense matching using a multi-
view approach based on plane-sweep. A global optimization al-
gorithm based on a continuous energy minimization framework
delivers globally optimal solutions with respect to our discontinu-
ity preserving multi-view cost function. We successfully demon-
strated that our multi-view matching technique achieves highly
accurate dense reconstruction results from large aerial images.
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Figure 9: Oblique point of view of texturized depth maps from Graz with a GSD of 10cm.
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