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Abstract

The quality and completeness of 3D models obtained by Structure-from-Motion (StM)
heavily depend on the image acquisition process. If the user gets feedback about the re-
construction quality already during the acquisition, he can optimize this process. We
propose an online SfM approach that allows the inspection of the current reconstruction
result on site. To guide the user throughout the acquisition, we visualize the current
Ground Sampling Distance (GSD) and image redundancy as quality indicators on the
surface model. The contributions of this paper are an online StM framework for high-
resolution still images that achieves an accuracy close to an off-line SfM method and
a visualization of quality measures that allow the user to optimize the image acquisi-
tion process. We compare the accuracy of the proposed online SfM to state-of-the-art
batch-based SfM methods and demonstrate how our algorithm improves the acquisition

process.

1 Introduction

Structure-from-Motion became very popular in the last years for the reconstruction of large-
scale environments. The increasing computational power and the increasing number of pub-
licly available SfM pipelines like Bundler [22] leverages SfM for a large number of appli-
cations. Application areas vary from documentation of time-changing environments such as
growing construction sites [6] to manned image collection projects like aerial surveys. Since
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Figure 1: (a) Sample image of the City-of-Sights dataset. (b) Final mesh overlaid by re-
dundancy information. (c) The resolution visualization, e.g. the GSD supports the user to
recognize which parts of the scene have been sampled at which resolution. Best viewed in
color.

most of them require very detailed 3D reconstructions, they are based on high-resolution still
images.

The quality and completeness of a reconstructed model largely depends on the image
quality and on its acquisition strategy. Hence, for a predictable application of SfM it is im-
portant to guarantee that the images taken on site are sufficient for the reconstruction. For
example when documenting a construction site it is not possible to repeat image acquisition
because the scene changes over time rapidly. In other scenarios a retake is possible but might
be very expensive, for example, when images are acquired from aerial viewpoints. Further-
more, in many applications the goal is to obtain a dense reconstruction which is computa-
tionally demanding [5, 9, 17]. Therefore, it is important to know that the acquired images
are suitable to achieve the expected quality before performing the dense reconstruction.

To recover a detailed and complete 3D model, the SfM process has several requirements
on the input images: The viewing angle between two images may not be too large to allow
feature matching, the view cones must overlap, the images have to be textured but the texture
may not be repetitive and lighting hasn’t changed too much between images. For a user it is
impossible to estimate if the acquired images fulfill all demands. Another difficult question
is the scene completeness, i.e. the coverage of the scene. Parts of the scene that are not
captured with sufficient image overlap cannot be reconstructed. Since completeness depends
on the required reconstruction resolution i.e. level-of-detail, and on the surface itself it is not
possible to quantify the degree of completeness without prior information. In contrast, for
a human it is relatively easy to answer this question by comparing a 3D model to the real
world.

The problem of calculating view points for scene exploration is also known as Next-
Best-View (NBV) problem in robotics. Here, mostly the scene is reconstructed online using
a video stream [24] or, if computational power is not available, prior information is em-
ployed [10]. Our goal is to support a human who manually acquires still images and who
has no prior information of the scene. Therefore, our method is designed as an interactive
human-in-the-loop system where the user locates the view points and judges if reconstruction
quality is sufficient.

The main question throughout this paper is: How can we make the SfM results pre-
dictable during image acquisition? Therefore we address the following problems:

e How to obtain accurate and fast SfM results during image acquisition.

e How to support the user to achieve complete reconstructions.
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Our proposed solution is an online SfM algorithm that delivers accurate 3D information
comparable to off-line state-of-the-art SfM approaches with a short response time. We obtain
a surface model from the sparse point cloud and visualize quality information that helps to
predict the final SfM result. Figure 2 illustrates the workflow of our method. Our approach
can be used in varying scenarios from images obtained by a human user to images obtained
by a mobile image acquisition platform like micro aerial vehicles (MAVs).

Bundle Adjustment

Image o| Online | updated Surface
Acquisition SfM | periodically | Extraction

'

new image Quality
available Visualization

Figure 2: Workflow. Each time a new image is acquired, it is integrated into the map and if
a mesh has already been created, the GSD and the degree of redundancy is updated immedi-
ately. In a parallel thread, the map is optimized by bundle adjustment. The mesh is created
periodically and also runs in a parallel thread.

2 Related Work

Our feedback system is based on an online SfM algorithm that produces very accurate cam-
era poses as well as a precise 3D structure. It is designed for users that manually take high-
resolution still images with a consumer camera with non-constant framerates. We cannot
employ Simultaneous Localization and Mapping (SLAM) algorithms as proposed for exam-
ple by Klein and Murray [13] to obtain camera poses online. Such systems require constant
and high framerates for camera tracking. Furthermore, they can select an arbitrary image of
the videostream to extend the map whereas we have to handle each image that is provided
by the user.

Hence, our framework is closer to off-line SfM methods [11, 22]. These approaches
assume that all images are available at the programs start. They exhaustively match all
images against each other and construct an epipolar graph to obtain spatial ordering. Using
this graph, they incrementally reconstruct camera positions and 3D structure. To obtain a
consistent map, bundle adjustment is performed after each expansion step. In contrast to
these approaches, we do not require an epipolar graph of all images and therefore we can
integrate images in an online fashion.

Recently, several approaches have been presented that derive the surface of an object in
real-time from a video stream [7, 18]. Given a set of images, they perform planesweep to
generate dense depth maps and fuse them using variational methods. Since this is typically
performed on the GPU, the voxel resolution is limited to the GPU memory. Furthermore,
the volume has to be initialized by setting the bounding box of the reconstruction and cannot
be changed afterwards. In contrast, Pan et al. proposed a system called ProFORMA [21]
to rapidly produce 3D models through a 3D Delaunay triangulation [2] of the sparse point
cloud, followed by a probabilistic carving step to remove those triangles on the outside of the
object, violating the visibility constraint. The robustness to outlier points is limited to small
Gaussian noise. Labatut ef al. [15] use a similar idea to extract a surface mesh. They also



4 HOPPE ET AL.: ONLINE FEEDBACK FOR SFM IMAGE ACQUISITION

perform a 3D Delaunay tetrahedralization and define an energy functional that is minimized
to label thetraheda as in- and outside. The optimization is performed by graph cuts [3]. The
result is a watertight surface mesh that is free of self intersections and insensitive to outliers.
An advantage over volumetric methods is that the level-of-detail problem is solved inher-
ently. Parts of the surface that are sampled more densely by 3D points are represented with
a higher resolution than weakly sampled parts, whereas the voxel representation has a uni-
form resolution. This property allows to extract the surface from a non-uniformly sampled
surface.

3 Online SfM for Wide-baseline Still-images

Classically, batch-based SfM approaches assume spatially unordered images as input and
therefore require several minutes or hours to determine the spatial ordering by constructing
an epipolar graph [22]. To provide direct feedback of the current reconstruction quality to
a user, we have to solve the SfM problem in an online fashion. SLAM systems like [13]
are able to recover camera positions and 3D structure in real-time, but they rely on high
framerates and strong motion assumptions and therefore they are not suitable for our purpose.

Since the construction of the epipolar graph comprises the calculation of relative orien-
tations between all image pairs, this is the most time-consuming task in batch SfM pipelines.
In our addressed problem, we can assume that a user does not acquire images in a totally
random order. If we assume that a new input image / has an overlap to an already recon-
structed scene part, we can skip the epipolar graph construction and the SfM problem can
be split into two tasks that are easier to solve: A localization and a structure expansion part.
More formally, given a freshly acquired input image / and a reconstructed scene M, we find
the position of / within M and finally, we expand the map M. For bootstrapping the scene
M, we rely on initialization schemes that are also used in batch-based SfM methods.

To calculate the pose of an image with respect to an SfM point cloud we follow the
approach of Irschara et al. [12]. Given a new image I, we compare its visual appearance
against all already reconstructed images. This can be efficiently computed by a vocabulary
tree as proposed by Nister and Stewenius [20] and results in a similarity score for each
image. Then we match / pairwise against the image features of the top n images with highest
similarity score to determine feature correspondences. Since some of the features are already
used for the triangulation of 3D points, we can establish 2D-3D image correspondences
between I and M. Given a set of 2D-3D correspondences and a calibrated camera, we solve
the absolute pose problem [14] robustly in a RANSAC [4] loop. If a valid position for
I is determined, this pose is refined by minimizing the reprojection error using non-linear
optimization [1]. Since we even have to cope with large baselines between images, we use
SIFT features [16] for feature matching.

If we cannot localize I within M, this is reported to the user instantly. Hence, he directly
knows that 7 could not be aligned within the map and he is asked to take a new picture.

Since the orientation of / is known and we have already image correspondences available
from the previous step, we can easily triangulate new 3D points. To reduce the number of
outlier matches, we perform epipolar filtering before triangulation.

For bootstrapping the initial map M, we require two images taken from different view-
points, and perform brute-force feature matching. The Five-Point pose estimation algorithm
of Nister [19] in a RANSAC loop is used to find the relative orientation between both cam-
eras. Using the inlier correspondences returned by RANSAC, we triangulate 3D points.
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To prevent the triangulation of degenerated 3D points lying at infinity, we require that the
triangulation angle exceeds a minimum threshold of 2 degrees. We also require that the
initial map consists of a minimum number of triangulated points, e.g. 100. If this cannot
be achieved, the user is asked to take new images until the system finds an image pair that
fulfills the requirements.

To prevent scene drift caused by incremental map building, we use a global optimization
scheme to obtain a consistent map. Hence, we perform iterative bundle adjustment [23]
in a parallel thread. For feature extraction and matching we employ the GPU to meet the
real-time requirements.

4 Scene Completeness and User Interaction

Without feedback it is even for a very experienced user difficult to determine if a large-scale
scene is sampled sufficiently, i.e. if all relevant parts have been captured. Although the
SfM point cloud already indicates the scene completeness, it is difficult for a user to derive
this information from the point cloud. Therefore, we extract a triangular surface mesh from
the SfM point cloud. Based on the mesh, we calculate two quality measures (GSD and
the degree of redundancy) that support the user in predicting the final dense reconstruction
result. The GSD measures the resolution of the mapping between the 3D physical surface
to 2D image space. Therefore, the GSD determines the (theoretical) maximum resolution
of a dense 3D model. The degree of redundancy describes how often a physical surface
area is captured by images. Redundancy is required to achieve accurate results but it also
increases the computational costs and lengthens the acquisition. Especially in large-scale
and geometrically complex scenes, the visualization of the redundancy supports the user to
obtain complete scene sampling.

4.1 Surface Extraction

We employ the approach of Labatut e al. [15] to extract a surface mesh given the SfM
point cloud. The idea is to generate a 3D triangulation of all sparse 3D points that embeds
the real surface. To extract the subset of triangles which are on the object’s surface, an
energy functional based on visibility information is defined, and minimized by graph cuts.
Compared to the original formulation, we neglect the photo consistency part of the energy
functional for computational reasons. The result of the algorithm is a watertight triangular
mesh. In contrast to a volumetric method, this approach is not limited to a bounding volume
and is able to extract a surface even from a very sparse point cloud.

4.2 Quality Measures

Based on the extracted surface model, we derive two measures to support the user’s acquisi-
tion process: The GSD and the degree of redundancy. To evaluate the GSD, we calculate the
maximum resolution a mesh triangle is mapped to in image space. We reproject each trian-
gle T; of the mesh § to each aligned camera C;. We then calculate the maximum resolution
which corresponds to the minimum value of the GSD

_ A
R(T) =min | 5y o
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where P(-,-) is the number of pixels that triangle 7; covers in camera C; and A(-) is the area
of the triangle in 3D space. To handle self-occlusions of the mesh correctly and for efficient
calculation we employ the GPU that is optimized for visibility estimation of meshes. For
calculating R(T;), we assign a unique color to each triangle. We then render S using OpenGL
from viewpoint C; and read out the image buffer. We calculate P(7;,C;) by counting the
pixels that have the color assigned to 7;.

The degree of redundancy can be computed at the same time by counting the number of
of cameras T; is visible in. We define that 7; is visible in C; if less than 50% of T;’s area is
occluded. This prevents triangles from being counted as visible that are largely occluded.
Since the mesh is rendered on graphics hardware and only counting is performed on the
CPU, the coverage computation takes around 50 ms for a single viewpoint.

To visualize both measures, we overlay the mesh by a color map according to the mea-
sure’s value. The user interactively selects which information he requires for the decision
on his next step. Since the scale of the SfM result is arbitrary, A(-) is typically not in metric
scale and we determine the range of the color map by a-trimming all values of R(7;) where
o = 10%. If the scale of the reconstruction can be determined, for example by aligning
the reconstruction to GPS data, we can choose the color map according to predefined reso-
lutions. Figure 1(c) demonstrates this visualization for the reconstructed City-of-Sights [8]
paper model.

4.3 User Interaction

Each time the user acquires a new image, we try to register it to the SfM point cloud, and
on success we triangulate new 3D points as described in Section 3. If the localization of an
image fails, this is reported to the user and he can adopt his acquisition strategy. After a few
images are integrated into the map, we extract a surface model and calculate the GSD and
the degree of redundancy. Each time a new image is inserted into the map both quality mea-
sures are updated for each triangle and provided to the user. Since surface extraction takes
some seconds to finish, the mesh structure is updated according to available computational
power. The workflow is illustrated in Figure 2 and a demonstration video can be found on
http://www.aerial.icg.tugraz.at/.

S Experiments

In our experiments, we show that the results of the online SfM are similar to the results ob-
tained by a batch-based state-of-the-art SfM regarding accuracy while being about 7 times
faster. We also show that our method helps even a very experienced user to increase the
number of images that are suited for a reconstruction. To demonstrate the versatile applica-
tion areas our approach can be used in, we show results based on outdoor images acquired
by a flying octo-rotor helicopter and the reconstruction of a small paper model indoors. All
images are acquired by a Panasonic DMC LX3 (10 Mpx) equipped with a Toshiba Flashair
WIFI card for live image transmission.

5.1 Online SfM vs. Batch-based SfM

To compare the accuracy of online SfM to a state-of-the-art batch-based SfM approach, we
acquired an image sequence of 74 outdoor images of a church entry (Figure 3) and recon-
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Figure 3: Comparison of dense results obtained by PMVS [5] when using the sparse result
calculate by our online SfM (a) and the result achieved by Bundler (b). Both are visually
similar and also the number of reconstructed 3D points is comparable. (c¢) Example of input
images.

SfM Runtime | # sparse | avg measurements # dense

points per 3D point points
Bundler 930s 28,215 3.33 2,416,144
our online SfM 129 23,218 3.85 2,399,999

Table 1: Comparison Bundler vs. our online SfM

structed them using both SfM methods. Because it is difficult to generate ground truth data
for a large-scale outdoor dataset, a good indicator is the result of the dense matching step.
Small errors in the camera alignment have large effects in the final dense reconstruction.
For both methods, we use 4000 SIFT features per image that have largest scale. The
features are extracted by the SIFTGPU [25] implementation. Table 1 shows the compari-
son between both methods. Our approach requires 129 seconds which is 7.2 times faster
than Bundler. Our approach generates less 3D points which is because we use only n = 6
images for the triangulation of new points. In contrast, we obtain an increased number of
measurements per 3D point compared to Bundler. This allows to conclude that our cameras
are connected more densely and therefore we can expect a similar accuracy. On average,
our approach requires 1.8 seconds to integrate a new image into the map and to extend the
map. Since we fix the number of images for matching, the insertion time is independent of
the map size (apart from bundle adjustment which runs in a parallel thread). The timings for

Time
Undistortion 280 ms
SIFT feature extraction (GPU) || 730 ms
Vocabulary tree scoring 40 ms
Feature Matching (GPU) 600 ms
Localization absolute pose 20 ms
Triangulation of new points 20 ms

Table 2: Timings for the integration of a 10 Mpx image into the reconstruction. Timings are
determined on a 3.2GHz Intel Core i7 processor and an NVIDIA GTX 580 graphics card.
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(b)

Figure 4: Sequence of acquired images. (a) If acquiring images without online feedback,
the user did not recognize that images cannot be aligned to the reconstruction (red). The
next 20 images could not be added incrementally. (b) With feedback, the user recognized the
problem and reacted on that. Therefore, the following images are inserted correctly.

each step are given in Table 2. The undistortion and feature extraction are dependent on the
image size whereas the subsequent feature matching and map extension steps only depend
on the number of features used for matching. Hence, these two parameters can be adjusted
if less computational power is available or if faster image integration is needed.

Figure 3 shows the densified SfM point cloud when using the sparse SfM result obtained
by our online approach and the result when using the off-line reconstruction of Bundler.
Both point clouds have nearly the same number of 3D points and their visual appearance is
also very similar. This demonstrates that the online SfM result is accurate and can be used
directly for subsequent processing steps like dense matching.

5.2 User Support

To demonstrate that our approach supports the user during image acquisition, we performed
an experiment with a user that has deep knowledge about SfM methods and is familiar with
image acquisition for 3D reconstruction. We asked the user to acquire images of a church
entrance that are processed by our online SfM algorithm. We advised him to take images
that have enough overlap to be integrated into the existing reconstruction. We were interested
on an outside reconstruction as well as on the reconstruction of the vaulted ceiling, which
made image acquisition more complicated because of the non-convex object’s shape (see
Figure 4). We performed the experiment twice: Without feedback and with online feedback.
During the first experiment without feedback he was advised to acquire 100 images, in the
second experiment with feedback he should stop image acquisition once 100 images were
integrated into the reconstruction by our system.

Without feedback, our method successfully integrated 74 of 100 images into a consistent
reconstruction. Most images that cannot be reconstructed were acquired when looking from
the inside of the entrance to the brighter background. The dynamic range of the camera is in-
sufficient and parts of the vaulted ceiling are underexposed. Since the user did not recognize
this, a sequence of 20 images are missing in the reconstruction. When incorporating feed-
back, the user recognized this problem after 3 images because our algorithm reports that the
underexposed images could not be integrated into the reconstruction and the user adjusted
the exposure settings. Figure 4 illustrates the difference between both experiments. He cap-
tured 118 images to achieve that 100 images are integrated into the reconstruction,which is
arate of 15% missed images compared to 26% in the experiment without feedback.

5.3 Application Areas

We performed an experiment on a large outdoor sceen as well as on a small paper model
to demonstrate the variety of scenes our approach can cope with. The images of an atrium
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Figure 5: Results of the Atrium scene. (a) Sample image from the scene acquired by an
MAV. (b) Redundancy map. (c) Visualization of the GSD. Best viewed in color.

are acquired by a manually controlled MAV at very different heights. The paper model is
captured manually by a user. Figure 5 shows a sample image of the atrium dataset and the
final mesh overlaid by the redundancy and resolution information. The overall surface is
extracted correctly even from a very low number of 3D points. The redundancy map shows
that the user mostly concentrated on the back part of the building. The resolution map shows
that the resolution is distributed equally within the atrium. The reconstruction of the paper
model is shown in Figure 1. Figure 6 demonstrates the evolution of the mesh over time. With
increasing number of 3D points, the mesh gets more detailed but already after 10 images,
the rough shape of the object is observable and the color coding helps the user to select new
camera positions. Table 3 summerizes significant results of the final reconstruction. The
table gives evidence that the time is constant for image integration and the meshing times are
sufficient to provide online feedback.

6 Conclusion and Future Work

We have presented an approach that supports users during image acquisition for complete
SfM results in three different ways: We calculate the SfM result online and provide feed-
back if the last acquired image can be aligned within the reconstruction. Furthermore, we
extract a triangular surface mesh which allows the user to judge if all parts of the scene are
reconstructed, and finally, we calculate the GSD and the degree of redundancy to guide the
next acquisition steps of the user.

We have shown that our online SfM integrates new high-resolution images in less than
2 seconds and achieves an accuracy that is very similar to off-line methods such as Bundler.
The result can be directly fed in a dense reconstruction pipeline like PMVS and makes a time
consuming post-processing SfM needless. The user experiment has shown that our method
reduces the number of acquired images that are not sufficient for SfM.

In the future, we will extend our method to provide suggestions for good view points.
Even without this feature, our method supports users to judge the quality and the complete-
ness during image acquisition on site and makes the SfM result predictable.

Images | 3D points | SfM time | Triangles | Meshing time
City-of-Sights 61 22,752 110s 18,810 21s
Atrium 127 28,374 238's 22,798 19s
Table 3: Reconstruction results for the two different scenes. The meshing time includes the
time needed for calculating the GSD and the redundancy information.
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Figure 6: (a) - (c) The resulting mesh of the City-of-Sights after 10 (3204 points), 20 (8370
points) and 50 (19873 points) reconstructed images. (d) Colormap. Blue indicates a low
number of cameras observing a triangle. Red indicates that a triangle is seen more than 30
times. Black triangles are captured less than 3 times. Best viewed in color.
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