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Abstract

This work is concerned with the implementation and evaluation of a surface
reconstruction approach, which is highly robust against outliers. The cho-
sen approach has a range of appealing properties. First of all, it manages to
incorporate a keypoint-based visibility constraint, which leads to a very high
resilience to outliers. Secondly, it is based on a Delaunay triangulation, which
makes the approach independent of the scene scale. Thirdly, the task is reduced
to a binary labeling problem, which enables the efficient global optimization
via graph cuts. The combination of these properties leads to a watertight and
intersection-free surface mesh as output.
The main contribution of this work, aside from the highly adaptive implementa-
tion for scientific purposes, is an intensive evaluation of the chosen approach.
A range of different combinations of visibility constraints and regularization
terms is evaluated. Furthermore, the approach is compared to the very pop-
ular and robust Poisson reconstruction in the presence of outliers as well as
Gaussian noise. The experiments are not limited to a visual comparison, but
also evaluate the output accuracy on an outdoor dataset with a high-resolution
ground truth mesh.
Furthermore, this work presents a novel way to estimate the 3D Gaussian scene
noise from the median reprojection error. It is shown how this knowledge can
be used to improve the result in a posterior smoothing step, when a high level
of Gaussian scene noise is present.
Finally, this work proposes a simple regularization term, which is based on the
minimum description length. The evaluation shows that this term, albeit its
inexpensiveness, outperforms other popular regularization terms.

Keywords: Surface reconstruction, 3D Delaunay triangulation, graph cuts,
3D scene noise estimation, pc2mesh
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1 Introduction

The field of computer vision can be split into two schools as proposed by
David Marr 1982 [29]; the reconstruction and the recognition school. Image-
based rendering and modeling are placed in the center of the first school. The
idea is to gain understanding of the world which was projected on the image
plane, as well as the relation between the images, through reconstruction.

The most common approach is to use a pipeline of feature detection/matching,
sparse reconstruction and bundle adjustment to robustly find the relation be-
tween the cameras and the scene. This approach also yields a sparse recon-
struction via a point cloud. Depending on the structure and the texture of
the scene the density of the points varies gravely. This makes it, even for hu-
mans, difficult to interpret the scene which is presented. Thus, a lot of recent
research is concerned with the densification of such a sparse reconstruction.

On the one hand, this dense point cloud might be enough for some appli-
cations, such as photo tourism [35], where it is only important that humans
are able to interpret the scene. On the other hand, a simple point cloud (even
dense) is not well-suited for automated tasks such as reverse engineering, pro-
totyping or autonomous 3D path planning for MAVs (micro aerial vehicles).
Consequently, there is a great need for the recovery of object surfaces from
calibrated multi-view stereo.

This work fills the gap between a point cloud and a watertight represen-
tation via a surface mesh. This is achieved with energy minimization via
graph cuts based on a Delaunay triangulation of the point cloud.

Figure 1: Transformation of a noisy point cloud with 100k inliers and 400k
outliers to a watertight surface mesh.

The chosen approach is strongly based on the work of Labatut et al. [26,
27] for several reasons. Firstly, this approach is highly robust against outliers
(see Figure 1) due to the strong feature of visibility which is incorporated in
the energy formulation. Secondly, the memory usage of this approach does

2



not depend on the scale, but in practice, it is linear to the number of points in
the point cloud. Thirdly, the approach achieves state-of-the-art performance
on the dense multi-view stereo benchmark by Strecha et al. [37].

These nice properties, especially the outlier resilience, let aside the state-
of-the-art performance, motivated us to implement and investigate the ap-
proaches of Labtut et al. [26, 27] on the way to a multi-view-stereo pipeline
with a high accuracy mesh as output.

The following section provides an overview of the related work and ex-
plains the advantages of the chosen approach in detail. Section 3 gives details
about the chosen approach as well as the contribution of this work. The ex-
perimental section (4) is split into three main parts. Firstly, it demonstrates
the adaptability to scenes of various scale and point density. Secondly, the
quality of different regularization terms with respect to accuracy is investi-
gated on the ”fountain” dataset of Strecha et al. [37]. Thirdly, the robustness
against outliers, as well as Gaussian noise, is analyzed on the same dataset
and directly compared to the very popular Poisson reconstruction [25].

2 Related Work

This section is split into three main parts. First of all, it outlines different
concepts of 3D surface extraction. Secondly, possible data structures related
to the surface extraction are discussed and, finally, the most relevant 3D
Delaunay methods for the implemented graph cut approach are reviewed.

2.1 Concepts

For the following comparison, one has to keep in mind that some SfM (struc-
ture from motion) step has already been completed and found the camera
positions and parameters robustly. Thus, the next step is to create a 3D
model only based on images.

A lot of approaches are based on the concept of the visual hull [28] to
extract an initial object surface for further optimization [22, 17, 24, 36, 38].
This concept uses the silhouette of objects to carve them into 3D space.
Therefore, those methods cannot be applied to scenes where the silhouette
cannot be extracted, e.g. building facades. Note that, for this initialization
a good foreground/background segmentation is crucial and, consequently,
those methods are not well-suited for natural scenes.

Another approach is to compute depth maps based on the images [21,
23, 9, 15]. Those approaches come with several problems. If only one view
is used, the model is very likely to be incomplete. If all views are used
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this approach very easily reaches its limits in matter of computing time and
memory usage. Furthermore, a robust merging step is needed to obtain
a unique result, where most approaches have problems with accuracy or
completeness.

Other approaches try to obtain a semi-dense representation to overcome
those limits. One of the most popular approaches on this matter is the PMVS
(patch-based multi-view stereo) approach of Furukawa and Ponce [18]. It
tries to densify the point cloud directly in the 3D space and has no need to
calculate the depth of every pixel value, which even might not be possible
due to missing texture. Firstly, it estimates small rectangular patches on
the object surface based on feature matches. Secondly, it tries to iteratively
construct patches in the neighborhood of the already constructed patches in
an expansion procedure. Refinement and outlier removal are contained in all
steps. Consequently, the approach is very robust, but the computing time is
also considerable.

A point cloud, even a dense one, is still an incomplete representation
without any real notion of objectness. The next challenge is to estimate a
surface from the given points.

A very popular approach is the Poisson surface reconstruction [25], whose
popularity is also due to the availability in many tools such as MeshLab
[42]. It tries to fit a surface based on the gradient field imposed by samples
and their normals. Opposed to most other approaches, the surface is not
restricted to samples/measurements only, but can and will create new vertices
for the mesh. As this approach originates more from the computer graphics
domain, there is no room to incorporate visibility terms. This property
together with the fact, that this reconstruction always yields closed surfaces,
leads to the problem of unwanted bubbling effects. Thus, this approach
needs a post processing, such as, either manually cropping of the scene, or
heuristics as proposed in [19]. This approach suggests to remove all triangles
that contain edges which have a length greater than 6 times the average edge
length. Note that, such heuristics can easily lead to a very fragmented surface
depending on the scene. Another drawback of this reconstruction is that it
is not edge preserving as it is biased towards smooth solutions. Furthermore,
the detail of the reconstruction is not inferred from the sample points, but
has to be predefined by the user.

A carving based on keypoints seems to be more promising. The idea
is to carve the object based on measurements on the surface of the object.
This approach does not punish thin structures and preserves discontinuities.
The ProForma approach of Pan et al. [31] solely relies on this information.
It focuses on on-line model acquisition and has already been ported to mo-
bile phones [32]. It initializes the model with a Delaunay triangulation and
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subsequently removes triangles that are disproved by the rays from measure-
ments to the camera centers. The disadvantage of this approach is that the
outcome is not a surface mesh, but more a triangle soup. This means that
the objects are also filled with triangles. As no global optimization is used,
this approach is not very robust against outliers and the solution very often
contains artifacts of thin triangles that were not intersected by any ray.

The work of Labatut et al. [26], on the other hand, seems to overcome all
the problems mentioned above. It incorporates the visibility information of
measurements, does not rely on the often not available visual hull information
and preserves edges and fine structures. Moreover, it is very robust against
outliers as the model is globally optimized via graph cuts. This results in a
watertight surface mesh based on the existing measurements.

Very high accuracy can be achieved with variational optimization, as in
[1, 22, 33, 20, 39]. This kind of approaches suffers either from a high and
scale-dependent memory usage and/or a lack of robustness against outliers.
As it is an iterative optimization scheme, it can easily get stuck on a bad
local minimum, if the convexity of the optimization cannot be guaranteed. A
reliable initial guess, which is very close to the optimum solution, is needed
to overcome this problem.

In the very recent work of Vu et al. [39] it was shown, that state-of-the-art
reconstruction accuracy as well as resilience to outliers can be achieved, in
combining the keypoint based approach of Labatut et al. [26] with a posterior
variational refinement step. This can be realized, as the approach of Labatut
et al. [26] robustly computes a mesh which is very close to the optimum
solution. Consequently, the chance of getting stuck on a bad local minimum
with the variational refinement is very slim. Note that, as the resulting mesh
of Labatut et al. [26] is already a good solution, for many applications this
result might already be accurate enough. For these and other reasons we
decided to strongly base this work on the approach of Labatut et al. [26, 27]
on the way to a robust high accuracy 3D surface reconstruction.

2.2 Representations

Another important issue is the matter of how to represent the found object.
Several approaches use a volumetric approach [24, 36, 38], where each voxel
is assigned to be object or empty. This can be seen as the 3D analogue to
the occupancy grid or bit map in 2D. This representation has the advantage
that every point in space is either empty or belongs to an object. Hence, 2D
algorithms such as the Monte Carlo localization for robots [11] can be easily
adapted to 3D space. However, the biggest drawback of this representation is
the mere memory consumption, which makes it impracticable for large scenes,
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such as most outdoor scenes. Hornung and Kobbelt [24] try to overcome this
problem by using a hierarchical voxel representation. At first, they use a
coarse grid and then iteratively refine the grid around the estimated surface.
Similarly, Sinha et al. [34] propose an adaptive tetrahedral mesh. This
reduces the overall memory consumption while keeping the accuracy high.
Nevertheless, it does not change the fact that the memory consumption is
cubic to the scene size. Especially in the presence of many outliers, nearly all
base-voxels have to be refined as the outliers are scattered across the scene
and each base-voxel has a high probability to contain at least one outlier.
The memory cost directly maps down to the computational cost of the graph
cuts, which is used to extract the surface in most approaches.

With the Poisson reconstruction of Kazhdan et al. [25] the output is sim-
ply a surface mesh, which can be stored very efficiently. But unfortunately,
the approach uses internally a voxel-like octree representation. Thus, the
maximum resolution (in this case the octree depth) has to be predefined and
drastically influences the run time. There is a quadratic relation between
resolution and run time (as well as memory usage). Additionally, other post-
processing steps are needed, because no visibility terms can be integrated in
the reconstruction procedure.

A very efficient, representation is based on the sample points itself; namely
the Delaunay triangulation. A Delaunay triangulation only consists of tri-
angles between sample points. It can be shown [6] that the memory usage
of such a triangulation for generic surfaces is linear to the number of points.
A generic surface does not contain any spherical or cylindrical pieces. The
computational complexity, in general, is Θ(n2), but if the points are well
distributed on the surface it can be shown [10] that it drops to O(n log n).

The output of the Delaunay triangulation is a fully triangulated point set,
which means that only the convex hull is visible from the outside. As it was
shown in [2] the Delaunay triangulation contains a good approximation of the
real surface, if it is sampled dense enough. Note that, this proof assumes ideal
sampling, thus, a noise free environment. Opposed to the approaches that
try to fit a surface in a continuous space, such as the Poisson reconstruction
[25], the task can now be reduced to the search of the surface in a discrete
set of triangles. Another very nice property is that a surface can also be
extracted from a sparse representation, which is very hard to achieve for
volumetric approaches.
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2.3 Delaunay Methods

Since nearly three decades [7], researchers around the world have put a lot of
afford in the task of finding the object surface in a Delaunay triangulation.
As this triangulation originates from the computer graphics domain, the early
research focused on finding the surface merely based on geometric properties
of surfaces. E.g. Amenta and Bern [2] tried to use Voronoi filtering to extract
the surface in the Crust algorithm. They build a Delaunay triangulation
of sample points and a subset of the related Voronoi vertices, which they
call poles. They extract the surface as triangles that are not connected to
Voronoi vertices. The problem of this approach is the missing resilience to
noise, because it assumes a noise free environment as well as sufficiently dense
sampling.

This approach has been further improved and simplified with the Cocone
algorithm [4]. Further affords have been made to improve the runtime with
an approximate medial axis transform as well as to be more robust on realistic
data with a weighted Voronoi diagram in the Power Crust approach [5].

With modifications the Power Crust [30], as well as the Cocone [13], can
be made robust against noise. Nevertheless, those modifications focus solely
on Gaussian noise and a recent evaluation in [27] shows that both approaches
are very sensitive to outliers.

The methods above are very general approaches, that can be applied to a
point cloud without any knowledge about the acquisition of the points. But
as recent work [26, 27, 39, 31, 32] shows, the visibility of landmarks/keypoints
is a very strong feature. The mentioned approaches use this feature to prove
that some triangles cannot be part of the surface, otherwise the measure-
ments/keypoints could not be visible from a specific camera. The approaches
of Pan et al. [31, 32] solely rely on this feature without further optimization.
Instead of an object surface this approach yields a set of triangles where most
of the triangles lie inside the object. This is inefficient in terms of storage and
makes further processing harder, because no real surface mesh was generated.
The approaches in [26, 27, 39], on the other hand, use a global optimization
via graph cuts to obtain a watertight mesh as output. This also gets rid of
small artifacts which trouble the approach of Pan et al. [31]. Furthermore,
the integration of the global optimization leads to a very high resilience to
outliers.
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3 Implemented Approach

The aim of this work was to implement the chosen approach, such that it
provides a range of access possibilities in regard to visibility constraints as
well as regularization terms and thusly allows for a thorough evaluation.

Input Output

Cameras & 
Sparse Point 

Cloud

SfM Output

PMVS2 Output

Dense Point 
Cloud

pc2mesh

Full Model

Points & 
Triangles

Object Surface

Points, 
Triangles & 
Relations

Estimating Gaussian Scene Noise

Removing Gaussian Scene Noise

Delaunay Triangulation

Building Dual-MaxFlow/MinCut-
Structure

Penalizing Triangles with Ray 
Conflict

Setting Regularization Terms

Finding MaxFlow/MinCut

Finding Connected Sets of
Triangles

Smoothing Object Surfaces Core Elements

Optional Elements

Recommended 
Elements

Figure 2: Reconstruction chain of the implemented approach. Elements
with a solid border are the core elements of the approach. Elements with a
dashed line with large spacing, on the other hand, stand for steps that might
be skipped for the sake of performance. The one element with the dashed
line with small spacing is recommended by the authors of this work to be
added in a future version.

In Figure 2 one can see the main steps involved in the reconstruction
process.

The input of the work is at least a sparse point cloud with the visibility
information of each point and the intrinsic and extrinsic camera parameters.
In this case, this input data is provided by an SfM tool chain. Additionally,
one can provide a densified version of the point cloud from the PMVS2
software [18].
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The output is a set of watertight 3D meshes which are spanned between
the existing input points. Optionally, one can also split the 3D model into
connected sets of facets to remove small artifacts.

Further implemented features are scene noise estimation, noise generation
(Gaussian and outliers), sub-sampling of the point cloud, posterior smoothing
and accuracy analysis.

3.1 Delaunay Triangulation

The Delaunay triangulation is a very well researched triangulation of a point
set. It is strongly related with the convex hull, the nearest-neighbor graph
and the Voronoi diagram. The convex hull, as well as the nearest-neighbor
graph, are subsets of the Delaunay triangulation. The Voronoi diagram, in
fact, is the dual graph of the Delaunay triangulation if the point set P is in
general position. In general position means that in the case of three dimension
there are no five points that are co-spherical, i.e. that in the degenerated
case, the triangulation is not uniquely defined. Especially, this means that
the Delaunay triangulation is not well suited to model objects that contain
ideal spherical or cylindrical sections. Anyway, algorithms [12] exists to find
a unique solution even in such a degenerated case.

One of the most appealing properties for this kind of application is that
the resulting triangulation is intersection free. Other nice properties are that
it contains a good approximation of the real surface if the sampling is dense
and accurate enough [2] and that for generic surfaces the number of simplices
in the graph is linear to the number of points [6]. Our experiments show that
in architectural scenes the number of tetrahedra is roughly 6 times and the
number of facets roughly 12 times the number of points.

In this work we used the very robust and efficient implementation of the
CGAL library [41]. It finds a unique solution for the Delaunay triangulation
[12] and also caters for infinite cells and an infinite vertex. This is important
for the construction of a complete dual graph for the energy minimization.

3.2 Energy Formulation

This section is very strongly based on the work of Labatut et al. [26, 27].
The fundamental idea of this approach is to use the measurements to

disprove triangles in the Delaunay triangulation and induce a binary in-
side/outside labeling.

To achieve this, a pseudo-dual graph of the Delaunay triangulation is
devised. In this dual graph the tetrahedra (or cells) become vertices and
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the triangles (or facets) that separate the cells become oriented edges. This
means for each facet two edges with opposite directions are inserted.

The resulting graph can be used for the binary labeling task. A cell is
either labeled as inside or outside, and the surface is resulting implicitly as
the set of facets that lie between cells with different labeling.

The overall energy of the surface S, which is to be minimized, can be
written as:

E(S) = Evis(S) + αreg · Ereg(S) (1)

where Evis(S) represents the data term and is the sum of the penalties
from the ray conflicts across the surface. Ereg(S) can be seen as a smoothness
term and is the sum of all regularization penalties across the surface. αreg is
a constant parameter, which weights the relation between the two terms and
determines the degree of smoothness. Note that, the regularization terms
can be of any kind and also a combination of several such terms is possible
and sometimes even reasonable for certain applications. See Section 4.1 for
an extensive evaluation of these regularization terms.

Theoretically, it would also be possible to add other terms, such as pho-
tometric consistency, into the energy formulation. These terms could further
improve the optimization, but also would add additional degrees of freedom,
and thereby parameters which need to be tuned. But more importantly, these
terms would add an additional computational cost to the approach, which
can easily become very expensive in the case of the photometric consistency.

Figure 3 shows the most important concepts of this work and how the
visibility constraint as well as the regularization can be integrated in the
graph cut optimization. Note that, the graph cut representation is closely
related to the Voronoi diagram, which is the dual graph of the Delaunay
triangulation. The only difference is that in the graph cut representation
the Voronoi diagram is augmented with two terminal vertices (source and
sink). These vertices as well as the edges from and to them do not have
a correspondence in the Delaunay triangulation, but are only used for the
labeling task.

The remaining part of this subsection describes possible ways to incorpo-
rate the visibility constraint into the labeling task and explains the need for
regularization as well as several ways to achieve it.

3.2.1 Data Term - The Visibility Constraint

The basic idea is to use the information of which point is visible in which
camera to induce an inside/outside labeling. The task can be split into three,
more or less, separate parts. First of all, one has to set connections (edges)
from the source to the dual graph of the Delaunay triangulation. This will
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Figure 3: Graph cuts problem formulation: (a) Delaunay triangulation of the
point cloud, with a camera center c and a point p which was visible from this
camera. (b) Hard visibility weighting scheme as proposed in [26]. The large
black dots are the graph cuts analogue to the tetrahedra in the triangulation
and the red arrows specify the added weights. (c) Soft visibility weighting
scheme as proposed in [27]. (d) The assigned facet weights of the soft version
(c). The weights are dependent on the distance to the measurement as well
as the width of estimated Gaussian scene noise σ. (e) Fully regularized flow
graph of the hard version (b). All edges are part of the optimization. The
thick red line is a minimum cut of the graph. The large not filled black dots
correspond to the infinite cells in the Delaunay triangulation.
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define parts certain parts of the graph as outside. Secondly, connections from
the dual graph to the sink have to be created. These links can be seen as
votes for the inside of the object. Finally, one wants to enforce the empty
space constraint in penalizing ray conflicts. This is the most important part
of the data term. The following paragraphs discuss these three tasks in detail.

Outside Labeling The first task is to create terminal links from the source
to cells of the Delaunay triangulation. This means that we have to define
certain cells which are to be labeled as outside.

For this task Labatut et al. [26, 27] simply suggest to define the cells
the camera centers are in as outside. In our experiments we have discovered
that under certain conditions this kind of outside definition may cause the
scene to become unstable. It might happen that half of an object simply
disappears, because there might only be one cell that is defined as outside.
Thus, to stabilize the approach we propose to also define all infinite cells as
outside. An infinite cell is not a physical cell, but a cell which is connected
to the infinite vertex, which does not have a real location. Note that, an
infinite cell always lies outside the convex hull of the point set. CGAL [41]
defines multiple such infinite cells, one per facet on the convex hull. In our
approach it would also be sufficient to simply define one such infinite cell,
which then of course could have more than 4 neighbors.

Defining everything outside the convex hull as outside, does not harm the
reconstruction as the surface of the object which is to be reconstructed has
to be on or inside its convex hull. The only property that changes is, that
the approach will now always return closed object surfaces. In practice, this
turns out to be no problem at all, as it will only influence parts of the scene,
which we have simply no information about, e.g., what is behind the wall?

This can even be an advantage for certain systems. Firstly, inside and
outside are implicitly and unambiguously defined for further processing steps.
Secondly, if one thinks of interactive or autonomous systems, facets which
cannot be seen from any camera, can be cues that those regions have to be
investigated further.

The definition of a cell as outside is done by setting weights from the
source to this cell.

In a hard constraint as proposed in [26], an infinite weight is set. This
means, that there is no way that this cell is to be labeled as inside. In a
soft constraint as proposed in [27], a finite weight is added to the connection
source to cell. This procures the question, what is gained by this definition?
The answer is that cells, like the ones where the the images were taken in,
can be labeled as inside. As this seems rather unintuitive, we decided against
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it and further on only considered the hard constraint.

Inside Labeling The inside labeling, opposed to the outside labeling,
should, in general, not be done with infinite weights. Such a labeling would
weaken the graph cut energy minimization. The measurements are prone
to contain outliers as well as Gaussian noise. If one would assign infinite
weights, this noise would severely influence the outcome.

Thus, Labatut et al. [26, 27] propose finite weights. A simple constant
value [26] can already get rid of outliers, but is not able to cope with Gaussian
noise. Consequently, a soft visibility constraint was proposed in the more re-
cent work of the same group [27]. In Figure 3 one can find a comparison of
the two approaches. In the very recent work [39] of the same group, how-
ever, which mostly talks about a possible variational post-processing step,
they seem to discard the soft visibility constraint and return to the constant
version. This motivated us to investigate this topic further. In the exper-
imental section one can find proof that the soft visibility, in fact, does not
pay off in matters of accuracy.

The basic idea is that a pair of a 3D point and a camera, in which the point
is visible in, can vote for the inside of the object. The simplest and, as it turns
out, better way is to simply add a finite constant weight to the connection
from the cell behind the measurement p to the sink as in Figure 3b. In [27]
it was proposed to add the weight to the connection from the cell behind
the first facet after the measurement to the sink instead. This was probably
done to add some power to the soft visibility constraint. Anyway, it does not
have a concrete theoretical basis and was probably devised empirically.

To investigate if the result can be improved with a better theoretical basis,
we decided to try another approach. Instead of increasing only one sink-link
per point-camera-pair, we allow the increase of the weights of all cells that
are in the range of great confidence behind the measurement. Empirically,
we decided this confidence range to be σest/2, where σest is the estimated
width of the Gaussian scene noise. The calculation of σest described in detail
in Subsection 3.4. The sink-links are also weighted with the confidence in
the measurements. They are weighted in relation to the confidence in the
facets behind the measurement. The added sink weights are then defined as
wsink = 1− wfacet. wfacet corresponds to wvis in the chart in Figure 3d.

Penalizing Ray conflicts The idea is to enforce the empty space criterion.
This is achieved in penalizing facets that cannot exist because otherwise the
measurement p could not have been obtained from camera c. Thus, one adds
weights in the direction of the ray as it can be seen in Figure 3. Note that, it
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is very important that the facets are updated in the right direction, as this
direction defines the allowed flow from the source to the sink in the graph.

This feature is very powerful, but also comes at a significant computa-
tional cost. If implemented efficiently, the complexity of penalizing the ray
conflicts is O(n·log(f)), where n is the number of points and f the number of
facets. Under the assumption of a generic surface it is simply O(n · log(n)).
An efficient implementation of the underlying structures and methods, such
as the Delaunay triangulation or ray tracing, for the calculation of the energy
terms is provided by the CGAL library [41].

Labatut et al. [26] first proposed to use a fixed penalty for each ray con-
flict. In order to be able to cope with Gaussian noise, they later decided
[27] to introduce a soft version, which has a confidence parameter σ. The
assigned weight in this version is dependent on the confidence in the mea-
surement (estimated noise) as well as the distance d to the measurement:

wvis = αvis(1− e−d
2/2σ2

) (2)

In the hard version only facets in front of the measurement are penalized,
whereas, in the soft version also the first facet behind the measurement is
penalized.

As for the sink-links we decided that, instead of simply updating strictly
one facet behind the measurement, it should be done for all facets in the
range of great confidence.

3.2.2 Smoothness Term - Regularization

The need for regularization is combined with usage of the graph cut-based
energy minimization. If only the penalties from the visibility constraint are
used, the optimization can become unstable, and, in practice, always yields
a surface with unpleasant hole-like spikes as can be seen in Figure 4.

This is due to the fact that facets only become available in the optimiza-
tion if they have been assigned a penalty (capacity), otherwise they cannot
be part of the solution. In the unregularized version all regularization pa-
rameters are set to zero and only the visibility constraint (the data term)
remains for the optimization. This means, that a facet can only be part of
the solution if there is measurement behind it that disproves it. Thus, one
has to think of reasonable ways to regularize the optimization. The remain-
ing part of this subsection will talk about possible ways to regularize the
minimization.
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Figure 4: Comparison between regularized (top) and unregularized (bottom)
energy minimization . ”Unregularized” means that only the visibility con-
straint (the data term) was used for the optimization. The viewed object is
the ”fountain” of the dataset of Strecha et al. [37]. Left: Frontal view (from
this viewpoint the original images were taken). Right: A view from behind
the surface.

Area A very simple way of regularization is to penalize the area of the
triangles. Thus, small triangles get a smaller penalty than large ones. This
regularization can become very handy to remove large facets connected to
a far-away outlier. But it turns out that the parameter of this term has to
be set with care, as it tends to prefer large triangles close to surface. This
means that if there exists a hypothesis of the surface that is made up of a
lot of small triangles, it is very likely to be rough. Thus, a hypothesis with
less triangles in the Delaunay triangulation is smoother and, consequently,
minimizes the overall area of the surface mesh.

Beta Skeleton The beta skeleton is a more sophisticated regularization
term, which is based on an idea of Amenta et al. [3]. The original concept
was designed for two dimensions. The beta-skeleton is the set of edges, which
have no other points in the ”forbidden” region. The forbidden region is the
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union of the two disks which have a radius of βd(p1, p2)/2, where p1 and p2
are the points at the end of the edge, d(p1, p2) is the length of the edge and β
is a constant. If the sampling is dense enough in relation to β, this approach
is guaranteed to output the right reconstruction.

Labatut et al. [27] generalized this concept to the third dimension and
incorporated it into the optimization. Instead of using such a hard constraint,
they devised a soft approximation. They analyze the angle at which the
circumscribing spheres of the two adjacent tetrahedra intersect with the plane
of the facet. This angle is really better defined as the angle between the
tangent plane at a point on the intersection circle and the plane of the surface,
as depicted in Figure 5b.

(a)

ψ

ψ

θ

p

m

F

n
rmp

(b)

Figure 5: Beta skeleton generalization. (a) Intersection angles of the cir-
cumscribing sphere of two adjacent tetrahedra with the facet plane. The
spheres intersect the facet plane with angles φ and ψ. (b) Cut through a
circumscribing sphere at the plane that is normal to the facet plane, and
goes through the sample point p and the sphere center m. The intersection
angle of a sphere with a plane can be calculated from the normal ~n of the
facet plane F and the normal of the tangent plane through sample point p,
which corresponds to the radial vector ~rmp from m to p.

The soft generalization of the beta skeleton is then defined as:

wβ = 1−min{cos(φ), cos(ψ)} (3)

where φ and ψ are the intersection angles of the two adjacent tetrahedra with
a facet plane as depicted in Figure 5a and wβ is the applied penalty.
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For the calculation one can fit a tangent plane at any point on the in-
tersection. The most convenient way is to simply choose one of the sample
points that define the facet. Such a point p is per definition on the facet
plane, as well as on the circumscribing sphere of the adjacent tetrahedra.
Then one can use the radial vector ~rmp from the sphere center m to p, which
directly corresponds to the normal vector of the plane (see Figure 5b). Using
the symmetry property of the cosine one can reduce the calculation of the
term cos(ψ) to the normed dot product of the two normals:

cos(ψ) =

∣∣∣∣ ~rmp · ~n
|~rmp| · |~n|

∣∣∣∣ (4)

where ~n is the normal of the facet plane.

Constant The regularization with the beta skeleton, although theoretically
well-founded, turns out to be inferior, in terms of accuracy, to the simplest
of all regularization terms, a constant penalty. This might sound surprising,
but also this has a solid theoretical basis, although not from the side of
surface theory. It is based on one of basic concepts of information theory:
The minimum description length (MDL) principle.

In a set of possible surface hypotheses the most simple one is to be pre-
ferred. In this case a surface is defined through its facets, therefore a simplest
solution is the hypothesis that minimizes the overall number of facets.

As it is shown in the experimental section, of all tested regularization
terms the MDL approach is the only approach that can increase the accuracy
of the surface reconstruction compared to the unregularized optimization.

3.3 Global Optimization via Graph Cuts

Graph cuts are based on the theory of flow networks. A flow network is
a graph of vertices and directed edges. There are two special vertices; the
source and the sink. The source is the only vertex that can produce ”flow”
and the sink is the only one which can absorb it. This means for all other
vertices that the amount flowing into a vertex equals the amount flowing out
(cf. Kirchoff’s current law). The flow of an edge is limited by its capacity.

The optimization tries to find the maximum flow from the source to the
sink in the network. When the maximum flow is found, one is interested in
the bottleneck of the graph, which is limiting the flow. This bottleneck is
called minimum cut. Note that, there might be several possible minimum
cuts in a graph. A cut partitions the graph into two disjoint sets of vertices.
One is connected to the source and the other to the sink.
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Many computer vision tasks can be formulated as energy optimization
problems, e.g. labeling tasks, which can be efficiently solved with graph
cuts.

In this case here, the capacity of an edge (facet) is the weighted sum of
penalties from the visibility constraint and the regularization (cf. Equation
1). In increasing the weight/capacity of an edge, it gets more expensive to
cut it, therefore the probability of being part of a minimum cut decreases.
After finding the minimum cut all tetrahedra are either labeled as outside
or inside. The found minimum cut is interpreted as the output surface, as it
minimizes the energy in Equation 1. Figure 3e provides a graphical example.

Following in the footsteps of Labatut et al. [26, 27], this work uses the
library of Boykov and Kolmogorov [8]. The theoretical complexity of this
implementation is O(v · e2 · c), where v is the number of vertices (cells), e the
number of edges (facets) and c the capacity of the minimum cut. This imple-
mentation is tuned for regular grid graphs, such as digital images, and has a
worse theoretical complexity then most standard algorithms. Nevertheless,
it turns out to be very fast in practice, also on this task.

3.4 Scene Noise Estimation

In the attempt to raise the soft visibility constraint to its full potential, it
was necessary to estimate the scene noise to allow for the σ parameter to be
tuned automatically.

There exists a lot of literature on the topic of denoising, but far less work
on noise estimation. A widely used approach for image noise estimation is the
mean absolute deviation (MAD) [14]. More recent work is concerned with the
noise estimation from a single image with measured CCD camera response
functions [16]. The scene noise, however, depends only to a fraction on the
image noise. Scene noise can be induced nearly in every step of the whole
reconstruction chain. The feature detector can have responses at slightly
wrong positions, the feature matcher can match wrong features, the SfM
algorithm can be off in matters of point locations and camera parameters.
Thus, the image noise alone is hardly enough to estimate the scene noise.

Consequently, we thought of possible ways to estimate this parameter.
The first approach was to analyze the mean and median reprojection

error, and then use this uncertainty as input for a computation of the median
principle singular value of the intersection covariance matrix. The estimation
was, unfortunately, rather poorly.

It was discovered that the second step did not have an effect on the
relation between the real noise level and the estimated one. It simply relied
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on the reprojection error and scaled it with a constant factor depending on
the scene, but was still far from the real noise level.

In the analysis of the relation between artificially induced Gaussian noise
and the mean/median reprojection error, it was discovered that this relation
stayed constant, unless the noise was getting too large (meters in an outdoor
scene).

If outliers were present, the relation could not be properly captured by
the mean reprojection error, thus, we switched to the more reliable median
reprojection error. The median happens to capture the right relation without
outliers and is only slightly off in their presence.

This property is exploited in our approach to estimate the scene noise.
Firstly, a relatively small noise in comparison to the scene size is arti-

ficially induced. Secondly, the distance between the reprojected point (ar-
tificially perturbed by Gaussian noise) and the ideal reprojected point is
interpreted as reprojection error. In this case, ideal reprojected point does
not refer to the original 2D feature key point location, but to the reprojection
of the original unperturbed 3D point. Finally, a constant factor k between
the median reprojection error and the scene noise level can be extracted, as
the noise was artificially induced with a known level. We assume, that k can
be reliably estimated from a large enough random subset of points.

The estimated width of the Gaussian kernel σ which represents the scene
noise level, can now be simply computed from the measured median repro-
jection error er as:

σ = k · er (5)

This approach is very good at estimating artificially induced noise (see
experimental section 4). Unfortunately, it was not possible to evaluate the
quality of the estimation in a real world example due to the unavailability of
a dataset with known levels of noise.

This estimation cannot only be used to tune the σ parameter, but can
also be used for better prior or posterior smoothing.

This approach, of course, needs knowledge about point correspondences
in the images and the corresponding 3D points. As the PMVS2 does not
output such information, we simply assume that the noise level on the sparse
reconstruction is equal to the noise level of the densified PMVS2 point cloud.
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3.5 Surface Object Extraction

The surface, in this case the minimum cut, can be found by searching for
facets which separate cells with different labeling. This can easily be done in
linear time.

We decided to experiment with a simple post processing step of the sur-
face. Hence, it became necessary to extract what we call surface objects. A
surface object is a set of facets that are connected via edges.

To achieve this a simple brute-force approach with a complexity O(f 2)
was taken, where f is the number of facets. The algorithm works as follows:
It iterates over all facets, and looks if there exist connected sets of facets
which this facet is connected to. If so, the sets are merged as they now are
connected and the facet is added to the merged set. If no such set exists a
new set is created.

This can clearly be improved in using the knowledge about neighbors from
the Delaunay triangulation. A possible algorithm using this information to
speedup the extraction process can be found in Algorithm 1.

Algorithm 1 Surface object extraction algorithm using neighborhood infor-
mation

• allsets = empty
while not all facets have been marked as assigned to a set do
• currentfacet = a facet from all facets that have not been marked as
assigned
• neighborstack = empty
• push all neighbors of currentfacet into neighborstack
• currentset = empty
• add currentfacet to currentset
while neighborstack not empty do
• currentfacet = top facet of neighborstack
• pop neighborstack
• push all neighbors of currentfacet which are not marked as assigned
into neighborstack and mark them as assigned
• add currentfacet to currentset

end while
• push currentset into allsets

end while

A short runtime analysis of this algorithm: The outer WHILE-loop is
called o times, where o is the total number of surface objects. The first facet
can be selected in O(f), where f is the number of facets. The inner WHILE-
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loop is called at a maximum of f times. All other steps can be computed in
constant time. Hence, this algorithm has complexity of O(f ·o). Note that, o
is, in general, very low compared to the number of facets, consequently, this
would bring a significant speedup to the object extraction.

3.5.1 Simple Surface Smoothing

To evaluate the power of the soft visibility constraint opposed to smoothing,
a posterior surface smoothing was applied. This surface smoothing takes the
estimated noise σ into account. In the smoothing process a mean over a set
of vertices is computed. The set consists of all vertices which are within a
distance of 2σ from the vertex of interest and are connected to this vertex
directly or across vertices within the specified distance. Note that, if the
distance would be chosen too large, this would yield a skeleton of the real
object.

3.5.2 Thoughts on Clean Surfaces

One of the ideas behind the surface object extraction was to be able to create
a valid mesh in a half-edge structure to ease further processing. To this aim,
an edge is only to be shared by two facets. As it turns out, the surface object
is not yet suited for such a structure. As it happens, there is nothing in the
graph cut approach that prohibits different surface objects to share a point or,
more gravely, to share an edge. It is quite easy to detect such an ambiguous
edge, as one just has to look for edges that are shared by more than two
facets. The problem, that is to be faced afterwards, is more complex than it
might seem at first. The easiest case would be that the ambiguous edge is
shared across two surface objects. Then one could think of duplicating the
edge and handing one of them to each surface object. Unfortunately, these
ambiguous edges can also occur inside a single surface object. To make the
problem even more complex, it can happen, that a single facet is made up
of two or three such ambiguous edges. Furthermore, there is no restriction
that only four facets share an ambiguous edge (which is mostly the case),
but, in theory, it can be any multiply of 2. Uneven numbers are not possible
because of the cell structure.

This makes a duplication of such edges very difficult, because it gets very
hard to detect which facets should share an edge. To achieve this, one would
have to have a strict inside/outside labeling, which is possible as only closed
surfaces are returned by the implemented graph cut approach. Furthermore,
it would be necessary to project the facets on the plane which has a normal
parallel to the edge. On this plane together with the labeling it can be
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determined which facets should share an edge.
After the removal of ambiguous edges, ambiguous points (connected peaks)

can be cleaned using the neighborhood relation of facets that share this point.
If now everything is cleaned up, one has to recheck the connectedness of the
set. This cleansing of the surface can be very costly, and it is to be questioned
if such an afford is needed for further processing/visualization steps.

4 Evaluation

The approach was tested on a range of datasets. Figures 6 and 7 display the
results on different datasets. For each dataset the mesh was computed on
the sparse point cloud of the SfM output as well as on the densified output
of the PMVS2 approach [18]. Note that, the models are not textured, but
the color of the triangles is an interpolation of the color of the input points.
This leads to a shaggy appearance at regions with a low point density.

As a comparison the Poisson reconstruction [25] was chosen. This choice
was made for several reason. First of all, the Poisson reconstruction yields
very good results and it has been shown that it is a reasonable initialization
for further refinements [18, 19]. Secondly, it is a very popular approach and
is available in several tools such as MeshLab [42]. In this evaluation we used
fixed parameters for the Poisson reconstruction. The parameters were chosen
such that a good accuracy is achieved while the computing time is kept low.
The parameters were chosen as follows: octree depth = 12, solver divide =
6, samples per node = 1, surface offsetting = 1.

Furthermore, an analysis of the effect of promising regularization terms
and added noise was conducted. The effects are analyzed with respect to the
ground truth of the ”fountain” scene of the dataset of Strecha et al. [37].
This dataset appears to be the only available outdoor dataset with a ground
truth mesh. The ”fountain” scene was chosen specifically because it has a
very complete ground truth, which is not the case for e.g. the ”Herz-Jesu”
scene, where important parts, such as hand rails, are missing.

Evaluation Strategy The chosen evaluation strategy is very similar to
the one proposed by Strecha et al. [37]. It computes the depth maps at the
ground truth camera positions and compares them to the depth maps that
were generated from the ground truth mesh. The evaluation analyzes the
depth error of the different reconstructions. As parts of the scene might be
missing, a simple mean error would not yield objective results.

Thus, we analyze the spectrum of the error similar to Strecha et al. [37].
They use a fixed value t, and analyze the spectrum of the error in ten linear
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Figure 6: Results of the ”fountain-P11” scene and ”Herz-Jesu-P8” scene of
the dataset of Strecha et al. [37]. From left to right: Point cloud, uncolored
mesh, colored mesh.
Top: Reconstruction of the ”fountain-P11” scene (11 images) from the SfM
output (7123 points) and the PMVS2 [18] output (375 409 points).
Bottom: Reconstruction of the ”Herz-Jesu-P8” scene (8 images) from the
SfM output (4880 points) and the PMVS2 [18] output (298 993 points).

steps of t. This analysis is not very general, e.g., if a t of 1mm is chosen,
then only the spectrum between 1 mm and 1 cm is analyzed.

As an improvement and to be able to capture the error in fine detail as
well as large deviations, we propose a non-linear scaling of the spectrum. We
propose a spacing to the power of 2, i.e. 2i · t, with i = 0, 1, ...9. We chose
the minimum spacing t = 0.001 m for the experiments. This way we can
capture the quality of small details in mm as well as large deviations in the
range of 0.5 m.
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Figure 7: Results on two datasets of the Aerial Vision Group of the ICG
institute. From left to right: Point cloud, uncolored mesh, colored mesh.
Top: Concave scene of a courtyard the Inffeldgasse 10 building in Graz (104
images). SfM output (36 948 points), PMVS2 [18] output (318 540 points).
Bottom: Large scale scene of the clock tower in Graz (421 images). SfM
output (60 822 points), PMVS2 [18] output (277 429 points).

The color scheme for the visual comparison was also adapted in a similar
manner to reflect this non-linear spacing. In contrast to Strecha et al. [37],
we used the jet color map for the depth error, because humans can better
distinguish colors then gray value differences. The colors range from dark
blue (no error) to dark red (error larger than 0.5 m). The color black, means
that there is no ground truth available for this part, whereas, white symbol-
izes that the query mesh does not model this part of the image, although it
is modeled in the ground truth.

As it was not the aim to evaluate the SfM approach further up the recon-
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struction chain, we used the ground truth positions of the cameras for the
sparse reconstruction and the densification with the PMVS2 approach [18].

The remaining section is structured as follows: The evaluation of the
effects of the regularization parameters in the case of soft and hard visibility
constraints is described in Subsection 4.1. Subsection 4.2 covers the analysis
of the robustness against noise. Not only the influence of outliers is evaluated,
but also the effects of Gaussian noise. This section ends with an evaluation
of the consumption of time and memory in Subsection 4.3.

4.1 Regularization Parameter Effects

This section will evaluate, which regularization term is better suited for con-
straining the smoothness of the final surface. It does not only evaluate it on
a subjective basis as in [27], but compares the result mesh directly to the
ground truth of the ”fountain” dataset of Strecha et al. [37]. As it turns
out, this is very important in regard to accuracy. Some meshes may look
”better”, as they are smooth approximations, but, in truth, are farther away
from the real object surface. It was also discovered, that the regularization
terms, show a very different behavior when hard or soft visibility constraints
are used. Consequently, those two cases will be discussed separately, and
then a comparison will draw conclusions from this evaluation.

4.1.1 Hard Visibility Constraint

In the case of the hard visibility constraint each ray conflict is penalized
with a constant weight. The sink link weight is increased at the cell directly
behind the measurement. In order to analyze the effect and quality of the
different regularization terms, the error percentage above different thresholds
is evaluated. The error percentage is the percentage of pixel in the depth map
images which have a depth value difference above a specified threshold. We
wish to see the effects of varying the parameters from very low values until
the point of failure in non-linear steps. To get the effects into a comparable
parameter range, the area parameter was additionally multiplied with a value
of 0.0346918, such that the average area is 1.

In Figure 8 we show the changes of the percentage of pixels which are
below a certain threshold. On the left the threshold is 0.016 m and on the
right it is 0.512 m. The first threshold should capture the accuracy in a rea-
sonable range and the second one large deviations. As one can see, no matter
which term is concerned, the best accuracy is reached if the regularization
parameters are kept small. It just has to be small enough not to take too
much influence on the optimization process. The errors of the constant and
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Figure 8: Hard-Visibility Experiment 4.1.1: Error percentage over varying
parameters using a hard visibility constraint. When a line stops it means,
that the reconstruction failed for the next parameter value.

the beta skeleton term stay on a constant level until a parameter value of
1. The area term takes effect earlier, but also shows a significantly more
graceful ascent than the other two terms. In the diagram a disappearing
line means, that the optimization process fails at the next value. Failing in
this case means that it is cheaper to cut all sink links than to find a cut
through the triangulation. This results in zero facets in the output mesh,
which happens if the system is over-regularized.

Anyway, it seems to be the best idea in terms of accuracy to just add
an ”epsilon” of regularization to the system, and let the optimization be
dominated by the visibility constraint. If the terms get too large and take
a serious effect, it always diminishes the accuracy, and can even lead to a
failure of the system.

Note that, a simple constant is the only of all tested terms, that improves
the accuracy compared to the unregularized version. In the unregularized
version all regularization parameters were set to zero and only the visibility
constraint (the data term) remains for the optimization. This case is denoted
in the charts as a parameter value of 0e+0. The complex term of Labatut et
al. [27], the beta skeleton, turns out to perform worst of all on fine details.

In Figure 9 the whole error histogram of all regularization terms is dis-
played. Note that, on the first bins, the constant term has a higher percent-
age than the others, and on the later bins it has a lower percentage. This
can be interpreted that it has a higher accuracy and a lower overall error.

It is also apparent, that there is a great peak at about 1 cm for all
regularization terms, although the higher bins have a far bigger range. This
peak can be interpreted as the mean reconstruction accuracy.
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Figure 9: Hard-Visibility Experiment 4.1.1: Non-linear error histogram for a
parameter value of 10−20 using a hard visibility constraint.

4.1.2 Soft-Visibility

The soft visibility constraint brings an additional degree of freedom. Its in-
tended purpose is the integration of a term, which represents the Gaussian
scene noise. The effect of the different regularization terms now also depen-
dents on the chosen σ value, which is related to the width of the virtual
kernel which caused the scene noise. Is the σ very small compared to the
scene size, it has nearly no effect at all and behaves just equal to the hard
visibility constraint. Thus, to analyze the effect of σ one has to set it to a
range where it effects the optimization.

Sigma Variation The first conducted experiment varies the parameter of
the constant term as it had the best accuracy in the case of the hard visibility
constraint, while changing the σ parameter in decades. Figure 10 displays
the cumulative error distribution for different parameter and σ values as
well as the percentage of pixels with an error above a threshold of 0.016 m.
With an increasing σ value the regularization term takes more effect on the
optimization. Unfortunately, this effect turns out to decrease the accuracy
of the surface mesh.

Another effect is visible in Figure 11. If the σ parameter is increased at
a low constant regularization parameter, the number of artifact triangles at
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Figure 10: Soft-Visibility Experiment 4.1.2: Non-linear cumulative error dis-
tribution for varying parameter and σ values. Bottom right: Percentage of
pixels with an error above the threshold = 0.016 m for different σ values.

non-convex parts of the surface rises.
On the other hand, if the regularization parameters are set higher and,

thus, can take more influence, the surface mesh gets increasingly more coarse,
as it is visible in Figure 12.

Parameter Variation The aim of this experiment is to analyze the be-
havior of the different regularization terms at a constant σ. σ was set to 0.1
(10 cm) to see a clear effect of the parameter changes.

Figure 13 displays the changes of the surface from a central view-point,
Figure 14 the depth error from a similar view-point and Figure 15 provides
a closer look on the same changes from a different angle.

The visual inspection of the surface changes leads to the following two
observations.

Firstly, the area term has a totally different behavior from the other two
terms. It does not change the topology overly much, but instead crops the
scene. It starts with the large triangles that have a low support, and then
continuously shrinks the scene. If it gets too large, parts of the objects are
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(a) σ = 0.01 (b) σ = 1

Figure 11: Soft-Visibility Experiment 4.1.2: With increasing σ the number
of artifacts on the surface is rising if a small regularization parameter is used
(here: 10−20).

(a) σ = 0.01 (b) σ = 0.1 (c) σ = 1

Figure 12: Soft-Visibility Experiment 4.1.2: The effect of increasing the σ
value at a fixed parameter of 1 for the constant regularization term.

missing and this leads to a fragmented reconstruction.
Secondly, the constant and the beta skeleton term make the model sub-

sequently more coarse and simple. They reduce the overall number of facets.
It might not be obvious from the mesh images, but the difference images in
Figure 14 show that both approaches move the mesh further away from the
real location of the surface. A large triangle, on e.g. the wall sections, lies in
front of the small triangles. You could describe the process, as subsequently
putting increasingly thicker cloth around the object. The gravity pulls it
towards the object surface. Thus, a small parameter corresponds to a thin
piece of cloth, which does not change the reconstruction very much. On the
other hand, a large parameter corresponds to a thick cloth, which covers the
details of the scene.

This behavior is only natural, as large triangles in the Delaunay triangu-
lation are, in general, not located on the surface. The surface is more likely
to be made of very small triangles, as the point cloud should have a higher
density on the object surface. Thus, the only large triangles available for the

29



Figure 13: Soft-Visibility Experiment 4.1.2: Surface topology changes with
increasing parameters from top to bottom. From left to right: constant, beta
skeleton and area regularization terms.

optimization are the ones that connect to points farther away.
Figure 16 shows the effect of varying the parameters in terms of accuracy.

It is apparent that higher parameter values cause the accuracy to decrease.
Once again, the constant term turns out to be the only term that can increase
the accuracy compared to the unregularized version. The constant and beta
skeleton show a very similar decrease in accuracy, whereas the area term
shows a totally different behavior.
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Figure 14: Soft-Visibility Experiment 4.1.2: Depth differences of camera 5
with increasing parameters from top to bottom. From left to right: constant,
beta skeleton and area regularization terms. Blue means low error, red high
error, black not covered by the ground truth and white not modeled by the
query mesh.

Sink Link Variants In [26] Labatut et al. proposed to create a sink link
directly from the cell behind the measurement and, thusly, vote for this cell
to be inside. In [27], on the other hand, they proposed to create the link
one cell later. Both approaches are depicted in Figure 3. Especially, the
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Figure 15: Soft-Visibility Experiment 4.1.2: Surface topology changes with
increasing a parameter from top to bottom. From left to right: constant,
beta skeleton and area regularization terms.

soft approach, which does not seems to be very intuitive, motivated us to
investigate these strategies in terms of accuracy. Furthermore, we also tried
to add multiple links which were weighted with one minus the facet weight
in a region of great confidence. The region of great confidence was set to be
within σest/2, where σest is the estimated width of the Gaussian blur kernel
that represents the scene noise (See Section 3.4).
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Figure 16: Soft-Visibility Experiment 4.1.2: Percentage of pixels with an
error greater than a threshold of 0.016 m at increasing parameter values.

As an experiment, the behavior of all approaches to an increasing pa-
rameter of the constant regularization term were analyzed. The experiment
showed, that the link creation process only influences the optimization mildly.
From Figure 17 it is apparent, that the simplest approach with a link directly
behind the measurement (single direct link) is the most accurate one. The
approach, that created the link one cell later (single late link) is slightly less
accurate and the approach with multiple links turned out to be the worst of
the three. In fact, it turned out that the larger the region of great confidence
was set, the worse the approach performed.

4.1.3 Comparison and Conclusion

In a direct comparison of the both approaches (see Figure 18), the hard
visibility performs slightly better than the soft version. This is because the
σ parameter was set too high and some artifacts in non-convex regions of
the surface appear. If the σ parameter is set to the estimated noise level
(σ = 0.000828666), there is no difference between the two approaches. In
fact, the hard version is the limiting case of the soft version with the σ
parameter equal to zero. In such a scene with a very low noise level, the soft
version cannot improve the accuracy, but easily worsen it.

Both approaches, the one with a hard visibility constraint and the soft
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Figure 17: Soft-Visibility Experiment 4.1.2: Percentage of pixels with an
error greater than threshold = 0.016 m at increasing parameters.
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Figure 18: Error distribution histogram of the hard and soft version. For
both versions, a parameter value of 10−20 for the constant regularization
term was used and a single sink link was created behind the measurement.
The σ parameter of the soft version was set to 0.1 to see a difference.
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one, show that the best accuracy is reached, if the regularization parameters
are kept small. Basically, they can be epsilon and are only needed to activate
all edges in the graph.

On both approaches, the constant regularization term outperforms the
other two terms. It behaves very similar to the beta skeleton term, but
has a higher accuracy and no computational cost. It turns out, that the
constant term is the only one to increase the accuracy in comparison to the
unregularized version.

The area term has the property of not influencing the surface topology
overly much, but instead crops the scene to the parts with the most support.
If the corresponding parameter is set with care, it can get rid of large triangles
that are connected to far-away outliers. If it is set too large, it can lead to a
fragmented output mesh.

For all parameters it is true, that if they are set too high the optimization
fails as it is then cheaper to label all cells as outside than to cut through the
triangulation.

4.2 Noise Robustness

Nearly all fields of computer vision have a great need for robustness against
noise. This is due to the imperfection of data, e.g. digital images have
a limited degree of detail they can capture. Furthermore, all steps in the
reconstruction chain can induce a certain amount of noise. One can, in
general, split the noise which is present in this kind of point clouds into two
types.

The first type is the Gaussian noise. In this case, it means that the
position of samples in the point cloud is slightly wrong, compared to the
real world location. Gaussian noise can originate from the imperfection of
the original image or simply that the feature detector or the densification
procedure can produce points that are slightly off the real position.

The second type are outliers. Opposed to the Gaussian noise, these sam-
ples do not have correspondences in the real world. They originate mostly
from wrong feature matches between images. Although, one tries to get rid
of outliers in nearly every step along the reconstruction chain, in practice, a
small amount of outliers is always present.

To analyze the robustness of the approach against these two types of noise,
we artificially added noise to the model. The remaining part of this subsec-
tion will give details about the strategy of adding noise and the measured
performance of the implemented graph cut approach as well as a comparison
to the Poisson reconstruction implemented in MeshLab [42], which had to be
manually cropped to make a fair evaluation possible.
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4.2.1 Outliers

It was observed that outliers mostly have a small number of 2D image cor-
respondences. In practice, it turns out that most outliers have only two
correspondences, far less have three, and there are nearly no outliers that
have four or more correspondences.

Each added wrong correspondence is a wrong measurement, a wrong vote,
thus, it is harmful for the reconstruction. Consequently, to make it harder
rather than easier, we decided to assign three cameras on average to each
outlier. In fact, the number of added cameras is equally distributed between
2, 3 and 4. The cameras themselves are chosen randomly as well.

The outliers are added corresponding to the scene bounding box in pseudo
uniform manner. Would the outliers be distributed uniformly within the
bounding box, this would cause two problems. First of all, the outliers could
not lie outside the bounding box, which is rather unrealistic. Secondly, the
outliers would form a cube around the object. This cube would have very dis-
tinct faces, which could ”rightfully” be detected as planes by the algorithm.
To overcome both problems at once we propose to additionally induce a noise
with a normal distribution to the outliers.

In this evaluation we distributed the outliers uniformly inside the scene
bounding box and added a Gaussian noise with a kernel width of a fourth
of the bounding box size. Like this, the outliers form some kind ellipsoid
around the object which has a high density close to the object and fades out
the farther away the points are from the bounding box.

Experiment For the evaluation of outlier robustness, only the hard ver-
sion of the implemented graph cut approach is compared to the Poisson
reconstruction. In this experiment we subsequently add more outliers to the
original model of 100k points. Figure 19 depicts snapshots of the point cloud
at 10% and 400% outliers. Note that, at 400% outliers only approximately
10k outliers are in the tight bounding box around the dense parts of the
fountain model as the scene is very large.

The Poisson reconstruction was generated with MeshLab [42]. As the
Poisson reconstruction needs the normals of the surface, those were calculated
with MeshLab as well and flipped towards a frontal viewing direction.

In Figure 20 one can see the surface topology evolution in the presence of
an increasing number of outliers. The Poisson reconstruction always yields
closed bubble-like surfaces, thus, it is necessary to crop the scene to allow for
a fair comparison. On the right side the cropped meshes are presented. We
tried to keep the dense parts of the mesh intact, and remove only the parts
which would lead to occlusions in the evaluation process.
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(a) 10% outliers. (b) 400 % outliers.

Figure 19: Outlier Experiment 4.2.1: Snapshots of the scene at different
levels of outliers.

The experiment shows that the implemented graph cut approach is highly
robust against outliers. As it is visible on the left column of Figure 20,
the surface of interest remains untouched in the presence of the increasing
number of outliers. Solely, the surrounding areas, which only have a few
inliers (if any), are influenced by the outliers. On the other hand, the Poisson
reconstruction is severely effected by the outliers. With an increasing number
of outliers the scene degenerates more and more.

Figure 21 covers the surface evolution in terms of accuracy. In the top
row one can see the full cumulative error distribution. The Poisson recon-
struction strongly loses accuracy with the increasing number of outliers at
all thresholds, whereas, the implemented graph cut approach only suffers a
slight loss at the higher thresholds. This is mainly due to the effects of the
outliers in the regions of low support at the edges of the model.

Note that, the general gap of accuracy between the approaches is not im-
portant in this evaluation as the accuracy of the Poisson reconstruction could
be improved with a larger tree depth. This evaluation is more concerned with
the behavior of the approaches in the presence of outliers.

In the bottom row, one can see the percentage of pixels above the thresh-
olds of 0.016 m and 0.512 m. Note that, the scale of the x-axis from 0.25
to 4 is an exponential one. Both approaches, show a linear ascent on the
exponential scale at threshold of 0.016 m. This means, that they show a
logarithmic behavior of the error to the number of outliers. Note that, the
ascent of the error of the Poisson reconstruction is a decade higher than the
ascent of the implemented graph cut approach (approximately 0.05 to 0.005).
At a threshold of 0.512 m the Poisson reconstruction even has an exponen-
tial error curve, this means that the severe errors show a linear ascent to
the number of outliers. The implemented graph cut approach, on the other
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Figure 20: Outlier Experiment 4.2.1: Surface changes at an increasing num-
ber of outliers (from top to bottom). On the left: The implemented graph
cut approach with a hard visibility term and a parameter of 10−20 for the
constant regularization term. In the middle: Uncropped wire frame of the
Poisson reconstruction. Note that, the bubbling effects would occlude the
scene in the top most image. On the right: Manually cropped Poisson re-
construction, which was used for the accuracy evaluation.
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Figure 21: Outlier Experiment 4.2.1: Top: Cumulative error distribution of
the Poisson reconstruction (left) and the implemented graph cut approach
with a hard visibility term and a parameter of 10−20 for the constant reg-
ularization term (right). Bottom: Percentage of pixels of both approaches
above a threshold of 0.016 m (left) and 0.512 m (right).

hand, is only vaguely influenced by the outliers.

4.2.2 Gaussian Noise

Adding Gaussian noise to the point cloud is far easier than adding outliers
as no new points nor camera links have to be created. The Gaussian noise is
generated in simply moving the 3D point in a random direction for a random
distance. This is achieved in adding a sample of a normal distribution to
each coordinate of the 3D point. The camera links and image measurements
remain untouched.

Automated Sigma Estimation It is hard to evaluate the quality of the
automated scene noise estimation, due to the unavailability of a dataset with
known noise levels. The implemented graph cut approach assumes that the
distance from the cameras to the 3D points is nearly in the same range for
all points and cameras.

In Figure 22 one can see the relation between the induced noise and the
median reprojection error. This median reprojection error was normed to
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Figure 22: Gaussian Noise Experiment 4.2.2: Relation between median re-
projection error and the induced noise level for different scenes. For a better
comparison the median reprojection error has been normed to reach 1 for
the highest considered noise level. The induced noise scaling factor sσ de-
fines the width of the Gaussian blur kernel σ in terms of the scene diameter:
σ = sσ· scene diameter.

reach 1 at the highest noise level. At a low level of induced noise the real
scene noise is much larger than the induced noise and dominates the curves.
At a certain point the induced noise starts taking over and from there on,
the median reprojection shows a linear behavior over a long period. The
”uhrturm” dataset has a huge scene around the object of interest. Thus,
the induced noise is very large even at the smallest scaling factor. One can
observe, that if the induced scene noise gets too large the linear behavior
ceases. In this case, the noise gets so large that the 3D points even move
behind the cameras, which causes the estimation to fail.

This work exploits the linear behavior between median reprojection error
and artificially induced noise to estimate the real noise level. To this end, the
ratio between median reprojection error and the induced noise is measured
at a level of σ = 0.001· scene size. Note that, opposed to the Figure 22,
the reprojection error is measured between the ideal 2D reprojection point
before applying noise and after applying noise. Consequently, the estimation
of the ratio is independent of the real scene noise and only depends on the
scene geometry.
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It is assumed that the real noise influences the median reprojection error
in the same way the artificial noise does. Under this assumption the median
reprojection error can be directly used to estimate the real scene noise.

Soft Visibility Regularization Term Evaluation As the soft visibility
constraint was supposed to be an improvement for Gaussian noise and the
output of the PMVS2 approach [18] only contains a very low noise level, we
also evaluated the quality of the terms at a higher artificially induced noise
level of a few centimeters (σ = 0.001· scene diameter = 0.0368651 m)
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Figure 23: Gaussian Noise Experiment 4.2.2: Percentage of pixels with an er-
ror above the threshold of 0.032 m at an artificial noise level of σ = 0.0368651.

In Figure 23 one can see the error curve of the varying parameters below
a threshold of 0.032 m. The experiments show that the terms show the same
behavior in regard to quality as in the case of nearly no noise. The simple
constant term outperforms the other two and the beta skeleton term turns
out, once again, to have the least accuracy.

In this experiment, unlike the case of low noise, there appears to be a dip
in the error curves around the parameter value of 0.1. It seems like, if the
regularization terms influence the optimization slightly in the case of high
Gaussian noise, they can improve the result. But it is also apparent, that
the benefit of the terms is very unstable and if chosen a decade higher, can
drastically worsen the accuracy. Furthermore, the experiment shows that in
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the presence of higher Gaussian noise all terms can improve the accuracy
compared to the unregularized version.

Performance Evaluation Four different approaches were chosen for com-
parison to evaluate the performance in the presence of noise.

First of all, we chose the soft visibility version with the regularization term
and parameter that reached the highest score in the previous paragraph; a
parameter of 0.1 for the constant regularization term. The σ parameter is
automatically tuned to the estimated noise level.

Secondly, the hard visibility version is represented with a parameter of
10−20 for the constant regularization term.

Thirdly, we decided to apply simple posterior smoothing to the hard
visibility version as described in 3.5.1. The aim was to evaluate the power
of the soft visibility version, which should improve the performance in the
presence of Gaussian noise, in comparison to a simple averaging smoothing
step.

Finally, we compare our approaches to the Poisson reconstruction that
is implemented in MeshLab [42]. To reach the full potential of the Poisson
reconstruction we used the normals of the PMVS2 output as input for the
Poisson reconstruction. Let it be noted at this point, that if the estimation
of the normals of the Poisson reconstruction is bad in parts of the scene, this
nearly always causes it to fail. Failing in this case means, that the bubbling
effects, to which this approach tends, are not only restricted to the outside
of the object, but basically split the object in several parts. In copying the
normals from the PMVS2 output, the Poisson reconstruction has nearly ideal
estimations of normals at all levels of noise (even at a sigma of 36 cm). As
such good normals can hardly be realized in practice at higher levels of noise,
this approach is denoted as ”oracle poisson” in the diagrams.
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Figure 24: Gaussian Noise Experiment 4.2.2: Percentage of pixels that have
a depth error above a threshold of 0.032 m (left) and 0.256 m (right) at an
increasing width of the Gaussian noise kernel.
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In Figure 24 one can see the error percentage of the different approaches
at an exponentially increasing noise level. A pixel is treated as wrong if the
difference to the ground truth is larger than 0.032 m or 0.256 m.

From this comparison, we reason several things. First of all, there is no
significant performance difference between soft and hard visibility constraint.
This is, of course, subject to setting the parameters in the soft version with
utmost care.

Secondly, the initial gap in the accuracy between the implemented graph
cut approach and the Poisson reconstruction is eliminated at higher levels of
Gaussian noise (from a few centimeters onwards). This was to be expected,
as it can interpolate between the sample points and the tendency of the
Poisson reconstruction towards smooth surfaces pays off.

Thirdly, the chart shows that a posterior smoothing step can significantly
improve the performance of the implemented graph cut approach at higher
levels of noise. At a threshold of a few centimeters (0.0369 m and 0.1166 m)
the error percentage can be reduced by approximately 14%.
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Figure 25: Gaussian Noise Experiment 4.2.2: Left: Error distribution his-
togram at a constant σ = 0.0369. Right: Cumulative error distribution
curves at a constant σ = 0.0369.

Figure 25 shows the full error histogram and the corresponding cumulative
curve at a constant noise level of σ = 0.0369. This noise level was chosen,
because it is still possible to make out most of the details, but the effects of
the noise are clearly visible.

Firstly, it is apparent that the hard version shows clearly a higher accu-
racy in fine details compared to the soft version. Secondly, the chart shows
that the posterior smoothing step can drastically improve the performance.
Thirdly, the histogram shows that also the Poisson reconstruction performs
very well, and can equally well capture smaller details. On the other hand,
the Poisson reconstruction suffers from a large infinite error, which is due to
the bubbling effect of the approach. This behavior causes large errors at the
edges of the model.
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Figure 26: Gaussian Noise Experiment 4.2.2: 4 different approaches at an increasing Gaussian noise level (from left
to right). From top to bottom: soft visibility, hard visibility, smoothed hard visibility, oracle poisson.
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A visual comparison can be found in Figure 26. It is apparent, that there
is no real difference between soft and hard version of the implemented graph
cut approach at the chosen parameters. Visually, the Poisson reconstruction
yields the best results, due to its interpolation and smoothing properties.
But as discussed above, in matters of accuracy the Poisson reconstruction
is inferior to the posterior smoothed version of the implemented graph cut
approach. As one can see, the Poisson reconstruction is very good in the
center of the model, but has severe problems at the margins where it already
starts closing the bubble too early. Additionally, the Poisson reconstruction
has problems in parts, where only a few feature points are present, such
as the floor. These parts are not reconstructed properly, which leads to a
decrease of the overall performance.

Conclusion We have shown that the accuracy of the implemented graph
cut approach in the presence of Gaussian noise cannot be improved with a
soft visibility constraint as proposed in [27]. The soft visibility constraint can
be used to simplify the surface, but only at the cost of moving the surface
further away from its true location. Instead of interpolation, the approach
creates some kind of buffer around the true surface. A graphical explanation
of this effect can be found in Figure 27.

Consequently, if for some reason the point cloud contains a high level
of Gaussian noise, another step in the reconstruction chain is needed to get
rid of it. We showed that a simple posterior smoothing step can significantly
improve the accuracy in the case of a high level of Gaussian noise. But it may
be possible to get similar improvements with a noise reduction step prior to
the graph construction. The Poisson reconstruction, albeit other limitations,
is better suited to compensate Gaussian noise, because it is not restricted
to the given samples, but can interpolate between them. Nevertheless, we
have shown that a simple additional smoothing step can overcome the lack
of interpolation properties of the implemented graph cut approach.

4.3 Resource Consumption

The evaluation of the resource consumption is split into two parts. Firstly,
the runtime is analyzed in relation to the number of points. Secondly, the
memory usage of the most important data structures was captured at a fixed
number of points.

It should be noted at this stage, that the main aim of this work was to pro-
vide an implementation, which is highly adaptive in regard to regularization
terms and parameters. To cater for the adaptability, sufficient information
for all possible regularization terms needs to be stored.
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Figure 27: Graphical explanation for the fact that Delaunay triangulation
based approaches have problems with Gaussian noise. As one can see on the
left side, the Delaunay triangulation contains a good approximation of the
surface if the noise is low compared to the sampling density. The right side
displays the case of a high level of Gaussian noise. The output surface has
to be a subset of the Delaunay triangles in 3D, in this two-dimensional case
a subset of Delaunay edges. If the noise level is too high compared to the
sampling density, the Delaunay triangulation does very likely not contain
a good approximation of the surface. Instead of a smooth interpolation,
which would maximize the probability of finding a good approximation, the
Delaunay based approaches try to find a surface in the discrete set of facets
in the triangulation. This leads to either a wavy/spiky surface, if a low
regularization is used, or a simpler/smoother surface which, unfortunately,
is far away from the real surface.

To facilitate experiments with the parameters, the whole state of the
graph structure is serialized to the file system with the aid of the boost
libraries [40]. To achieve such a serialization the data structure has to be
kept simple and pointers should only be used with utmost care.
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4.3.1 Runtime Analysis

The runtime was analyzed on the ”fountain” scene of Strecha et al. [37].
The experiments were conducted on a notebook of the type Acer TravelMate
8572G. Its CPU is a Intel Core i5, dual core processor @ 2.4 GHz, it has
4GB of RAM and a GeForce GT330M for graphics. Note that, the current
implementation operates on a single core only. The used operating system is
the 64-bit version of Ubuntu 11.10.

On the specified machine a surface reconstruction of the ”fountain” scene
(with 100k points and 11 cameras) takes 386.131 seconds.

In Figure 28 on can see the runtime evolution with an increasing number
of points and a pie chart showing the percental consumption of the total
runtime.

For the analysis the program was split into four parts. The first one is
the cell graph construction, which consists of the construction of Delaunay
triangulation and the corresponding pseudo-dual graph for the energy min-
imization. The second one, called visibility terms, is the ray tracing task,
which updates all facets with a ray conflict and the sink links. The third one
(max flow min cut) is the energy minimization task via graph cuts and the
minimum cut extraction. The last one, I/O and data conversion, is the rest
of the application. This part is mainly dominated by I/O bound tasks, such
as input file reading and de/serialization of the internal structures.

It is apparent that nearly all parts of the implementation show a close-
to-linear behavior to the number of points. Solely, the steepness of the I/O
and data conversion part, which is dominated by I/O tasks, seems to rise
slightly with the increasing number of points.

It is apparent, that the most expensive part is the ray tracing task. It
consumes more than 90% of the overall runtime. The energy minimization
itself is very cheap compared to all other parts with less than 1%. Note that,
the ray tracing was also computed on the CPU.

Optimization Suggestions The most expensive task is clearly the ray
tracing. One could drastically improve the overall performance of the ap-
proach in porting the ray tracing task to the GPU. This task can be highly
paralyzed as thousands of rays have to be traced independently. On the
other hand, care has to be taken in regard to race conditions on the weight
data. Independent rays may want to update the weight of the same facet.
Thus, it might be hard to reach linear speedup without linearly increasing
the memory of the facet weights.
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Figure 28: Resource Consumption Experiment 4.3: Left: Normed runtime of
the different parts of the implementation. The runtime was normed to reach
1 at the highest value. Right: Percental consumption of the total runtime.

4.3.2 Memory Usage

The memory usage was analyzed on the ”Herz-Jesu-P8” dataset of Strecha et
al. [37]. The dataset contains 8 images of a building facade. The combination
of SfM output and PMVS2 output yields 299 900 points. The Delaunay
triangulation contains 3 628 962 facets and 1 814 463 cells. The memory usage
was measured with the System Monitor of the Ubuntu operating system.
To determine the usage of certain parts of the program, the program was
sent into an infinite loop at different program states, before and after the
construction of certain data structures. Table 1 contains the results of this
experiment.

Data Structure memory usage (in GB)

Points & Cameras 0.6
Delaunay Triangulation 0.1
Graph Vertices 0.1
Graph Facets 0.4
Graph Cells 0.2
Ray Casting Triangles 0.3
Overall Peak 1.8

Table 1: Resource Consumption Experiment 4.3: Approximate memory us-
age of different data structures of this implementation at 300k input points.

The peak memory is approximately 6 times higher than in the imple-
mentation of Labatut et al. [27], which report a usage of only 309MB for a
model with 360k points. It is apparent that one of the largest data structures
are the Points & Cameras, which is already provided by the I3D library. It
contains the SfM points, links and cameras as well as the PMVS2 points and
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links. This data structure alone is 2 times bigger than the overall memory
usage of Labatut et al. [27].

Optimization Suggestions This implementation carries a lot of overhead
in the shape of data, which is need for regularization terms. As it turns out,
all those different regularization terms are inferior to a simple constant regu-
larization. Thus, the memory usage of the graph structure can be reduced by
approximately 20% in removing the unnecessary overhead. But this would
only mean a reduction of approximately 150MB in the case above. In the
current implementation, data had to be duplicated to make use of different
frameworks, e.g. the facets had to be transformed to triangles to be used
for the ray tracing task. In removing this redundancy one can easily gain
another 15% in total.

5 Conclusion and Future Work

In this work we implemented and evaluated a keypoint-based approach for
robust surface reconstruction from 3D point clouds using Delaunay triangu-
lation, visibility information and a global optimization via graph cuts.

The implementation provides a wide range of modes in regard to possible
regularization terms, experimental features (e.g. noise generation), evalua-
tion and output generation.

We evaluated the robustness against Gaussian noise as well as outliers.
In the quest for a better noise reduction, we presented a way to estimate the
Gaussian noise in a 3D scene. We demonstrated that the knowledge about
the scene noise can be used to improve the surface reconstruction in a simple
posterior smoothing step. This smoothing does only take effect if the ratio
between scene noise and sampling density is large enough.

We have compared the most promising regularization terms; visually and
analytically. Furthermore, the effect of these terms was analyzed in the com-
bination with a hard and a soft visibility constraint. The soft constraint puts
a lower penalty on ray conflicts closer to the corresponding measurement, in
order to express the expected uncertainty of the measurement’s location. The
hard constraint, on the other hand, penalizes all ray conflicts equally.

The first evaluated regularization term penalizes the area of triangles.
This term can be used to crop the scene and reduce it to the parts with the
most support. If it is set too high, this will lead to a fragmented reconstruc-
tion.

The second evaluated term is the beta skeleton term proposed by Labatut
et al. [27]. It wants to enforce large circumscribing spheres around the
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tetrahedra adjacent to a facet.
Finally, we propose a simple constant regularization term, which is well-

founded on the theory of the minimum description length.
The beta skeleton and the constant term can simplify/smooth the model

if a soft visibility constraint is used. This simplification comes at the cost
of moving the approximation further away from the real surface towards the
cameras. This results in a thickened version of the original object.

In the case of a hard visibility constraint, only the area term shows the
same behavior as in the case of the soft constraint, whereas varying the
parameters of the other two terms has nearly no effect.

It was discovered that the complex beta skeleton term is inferior to the
simple constant term. In fact, it was shown that the constant term is the
only term, out of all tested ones, that has the power to increase the accuracy
compared to the unregularized version (only visibility constraint without
regularization).

Our experiments showed that the highest accuracy can be achieved with
the hard visibility constraint and the constant regularization term with a
very low parameter value (epsilon). It activates all edges in the graph without
influencing the visibility constraint overly much.

It was discovered that the implemented graph cut approach can only
compensate for Gaussian noise with an additional smoothing step. On the
other hand, we came to the conclusion that it has a very high resilience to
outliers, far higher than the compared Poisson reconstruction [25].

In future work, we hope to improve the resource efficiency in removing
unnecessary overhead and porting the ray tracing task to the GPU. Addi-
tionally, the overall computing time of the reconstruction chain could be
improved if a different densification step was implemented. The PMVS2 ap-
proach [18] does a lot of outlier removal, which is very expensive. As the
implemented graph cut approach can easily handle a high degree of outliers,
a cheaper and less robust densification step, might yield the same quality at
a far lower cost. Furthermore, it is our aim to develop a post-processing step
which directly uses the input images to photometrically refine the extracted
surface meshes to achieve more detail and even higher accuracy.
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