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Abstract

Statistical shape models have gained an increasing interest in the Computer Vision com-

munity over the past few decades. Awareness of an objects feasible shape variations

provides insight to structural features and has shown to improve image segmentation sig-

nificantly. Further applications that benefit from shape knowledge include image based

analysis, classification and tracking. An essential element of shape analysis is the choice

of a proper shape representation. Implicit representations such as the signed distance

function (SDF) advantageously provide independence of correspondence, parametrisation

and topology. Another crucial aspect concerns the selection of a shape space. Several

approaches proposed in the literature revert to the simplified assumption of a linear shape

space. However, in general this assumption is invalid, resulting in poor modelling of

complex variations such as bending. In order to tackle complex shape deformations, a

recent trend is to consider shapes populating a non-linear space. The work at hand de-

tails a recently proposed manifold approach for non-linear shape modelling on SDFs. We

provide in-depth comparison to linear models and show how the manifold model can be

incorporated to image segmentation.

Keywords: Statistical Shape Models, Level Set Representation, Manifold Learning,

Image Segmentation

iii





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modelling Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Shape Model based Image Segmentation . . . . . . . . . . . . . . . . . . . . 4

1.4 Purpose of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Shape 9

2.1 Explicit Shape Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Control points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Fourier Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Implicit Shape Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Signed Distance Functions . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Alternative Implicit Shape Representations . . . . . . . . . . . . . . 14

2.3 Shape Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Hausdorff Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Area of Symmetric Difference . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Distances on SDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Shape Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Procrustes Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Implicit Shape Registration . . . . . . . . . . . . . . . . . . . . . . . 17

v



vi CONTENTS

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Dimensionality Reduction 21

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Linear Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . 23

3.3.2 Multidimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Nonlinear Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Isometric Feature Mapping (Isomap) . . . . . . . . . . . . . . . . . . 25

3.4.2 Local Linear Embedding (LLE) . . . . . . . . . . . . . . . . . . . . . 26

3.4.3 Laplacian Eigenmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.4 Kernel Principal Component Analysis (KPCA) . . . . . . . . . . . . 27

3.4.5 Diffusion Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Statistical Shape Models 31

4.1 Active Shape Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Liner Model On Distance Maps . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Linear Model on Probability Maps . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Chord Length based Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Local Statistics on SDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Statistics on Deformation Fields . . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Density equipped Feature Space . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Shape Manifolds 41

5.1 Discovery of the Shape Manifold . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Shape Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2.1 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.2 Variational Shape Warping . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.3 Distance Map Creation and Reinitialisation . . . . . . . . . . . . . . 46

5.2.4 Warp by Velocity Projection . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS vii

5.3 The Out-Of-Sample Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 The Nyström Extension . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.2 Embeddings outside the Manifold . . . . . . . . . . . . . . . . . . . . 50

5.4 Pre-Image Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Pre-Image by Minimum Embedding Distance . . . . . . . . . . . . . 51

5.4.2 Manifold Projection in Shape Space . . . . . . . . . . . . . . . . . . 52

6 Evaluation and Application to Image Segmentation 55

6.1 Manifold Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Manifold Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Manifold Projection and Tangent Space Policy . . . . . . . . . . . . 57

6.2.2 On the number of Training Samples . . . . . . . . . . . . . . . . . . 58

6.2.3 Model Interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.4 Manifold Warp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Comparison To Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Modes of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.2 Sample Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.3 Coping with Shape Distortions . . . . . . . . . . . . . . . . . . . . . 63

6.3.4 Projection Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4.1 Geodesic Active Contours . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.2 Adding the Shape Model . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Conclusion and Outlook 71

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Where to go from here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 73





List of Figures

1.1 Humanoid Skull Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Principles of Model Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Principles of Model Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Improvement of Shape Prior Segmentation by Shape Models . . . . . . . . . 4

1.5 Instances of used Data-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Elliptical Fourier Shape Descriptor . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Currents - Integrating Vector Fields . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Signed Distance Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Comparison of SDF, Integral Kernel and Logodds . . . . . . . . . . . . . . . 14

2.5 Shape Dissimilarity Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Implicit Registration Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Implicit Registration Examples . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 The Swissroll Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Non-linearity of Data-sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Modes of Variation for Linear Models . . . . . . . . . . . . . . . . . . . . . 32

4.2 Chord Length Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Pixel-wise SDF Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Charpiat’s Deformation Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Pricasariu’s Shape Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Mapping between Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Embeddings of IMM and cause07 Data-sets . . . . . . . . . . . . . . . . . . 43

ix



x LIST OF FIGURES

5.3 Sobolev Shape Warping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 SDF Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Warp by Velocity Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Nyström Eigenvector Extension . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.7 The Snail Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Manifold Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Manifold Projection FGNet-Test . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Model Evaluation on Data-sets . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 FGNet 3D Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Sample Density Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Occlusion and Noise Handling . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.7 Reconstruction Error for Occluded Shapes . . . . . . . . . . . . . . . . . . . 65

6.8 GAC Prior Segmentation: Walker . . . . . . . . . . . . . . . . . . . . . . . . 67

6.9 GAC Prior Segmentation: Cup . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.10 Chan-Vese Prior Segmentation: Cup . . . . . . . . . . . . . . . . . . . . . . 68

6.11 GAC Prior Segmentation: Liver . . . . . . . . . . . . . . . . . . . . . . . . . 69



Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modelling Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Shape Model based Image Segmentation . . . . . . . . . . . . . 4

1.4 Purpose of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

Shape is a trivial visual property, mostly perceived subliminal in our everydays life. But

let’s take a closer look. As Light reaches our eye it was modulated differently by the objects

in a certain scene. This physical process equips the scene’s image with texture, motion,

edges and shape, thereby allowing us to distinguish objects. However, these features are

not sufficient for a human to identify an object. During our developmental phase we learn

to associate observed feature combinations to an object. Hence we have the remarkable

ability to classify e.g. a never seen dog breed as a dog or a letter in an unknown font as

such. The latter example illustrates vividly that shape provides a powerful visual clue.

Inspired by our capability of object recognition, shape analysis, i.e. the study of a group of

shapes was developed. Originating from biological considerations, an early record of shape

analysis dates back to Galileo Galilei (1638) who studied bone shapes of various animals.

Shape analysis tries to find relations between shape and some physical property. For

1



2 Chapter 1. Introduction

example: how is the femoral bone shape related to an animals weight? Likewise analysis

allows to understand how shape is affected by pathology or evolution. Considering several

humanoid skull shapes (Figure 1.1), properties such as brain size or historical period can

be inferred.

Figure 1.1: A set of humanoid skull shapes relevant in anthropological stud-
ies. From left to right: chimpanzee, Homo habilis, Homo erectus, Homo sapi-
ens. Adapted from [48].

Once knowledge of discriminative correlations is established, we can make shape based

predictions [27]. Shape analysis is of interest to many applications covering medicine,

bionics, industrial quality assurance and augmented reality to name a few. This work

explores statistical approaches to extract information from a set of shapes, so to learn a

statistical shape model (SSM).

1.2 Modelling Shape

We now give a brief glance at SSM creation and utilisation, see Fig. 1.3 for reference. SSMs

rely on a collection of training samples that provide the shape variations to be captured.

Variations may be caused by several sources. For example, when moving the viewpoint,

a non-symmetrical 3D object produces various contour projections to the image plane.

Nonrigid objects introduce additional modes of variability, being of interest in medical

and biometric applications. One might also be interested in a model that covers shapes

produced by different objects, e.g. for anatomical inter-subject analysis. In practice the

mentioned variations often occur combined. In order to extract variations from the training

set, alignment to a common reference is required such that corresponding parts overlap.

After alignment, shape variations emerge by the distribution of corresponding salient

contour points. For instance, when modelling hand shapes, the positions of thumb-tips

will occupy a characteristic region. On a larger scale, all contour points of the thumb and

eventually the whole hand contour will show specific distributions restricted to act-able
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hand gestures. The intention of a SSM is to capture these distributions. Moreover, the

model should be able to simplify the shape variations. Consider bare thumb tilt motion.

Modelling this variation by the definition of a displacement field for each contour point

would be a rather cumbersome approach. Instead we would like to project each individual

deformation to a feature parameter. Another desired SSM quality is separation of features,

i.e. there should be one parameter solely responsible for thumb tilt while another one

controls index finger length. Both, simplification and separation can be achieved by means

of feature extraction techniques, being the core component of SSMs. In essence, a SSM

is composed of the set of features extracted from the training data as well as a rule to

synthesise a shape from a combination of feature values.

f ( x)

Data Set        Registration     Aligned shapes              Feature Extraction                       SSM

[uv ] [uv ][
a
b
c ]

Figure 1.2: Principle of SSM creation.

We now turn to the utilisation of the model. When fed a new shape, the SSM should be

able to reproduce that shape by variation of its internal feature vector. The output is the

models interpretation of the new shape, relevant for shape restoration and robust image

segmentation. Furthermore, the SSM outputs the tuned feature vector which can be used

for classification, recognition and comparison.

f ( x)

New Sample           SSM                SSM Response              Applications  

Classification
Recognition
Comparison

Restoration
Robust segmentation
...

[uv ]
[uv ]

Figure 1.3: Principle of SSM utilisation.
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1.3 Shape Model based Image Segmentation

Image segmentation - the task of finding a partition of an image into meaningful regions -

is of vital interest in many applications. Advances in medical imaging confront radiologists

with a vast amount of data. Segmentation combined with shape analysis can aid radi-

ologists in pathology detection, measuring tissue volumes and treatment planning. Also,

reliable segmentation is a big step towards image understanding, allowing machines to

derive semantic interpretations from visual information. Depending on the image features

used, segmentation techniques may be split roughly in edge and region based approaches.

However, in complex images these features may be corrupted by noise, cluttered back-

ground and partial occlusion thus rendering segmentation an ill-posed problem.

A well known practice to alleviate this inconsistency is to apply regularisation methods,

thereby imposing a restriction to the space of feasible solutions. In order to do so, some

kind of a priori knowledge about the object in question has to be incorporated to the

segmentation process. This can be achieved by augmenting the segmentation with an

SSM. Considering Fig. 1.4, the objective is to separate the partially occluded bunny from

its cluttered background. Observing the segmentation result relying solely on low level

information (Fig. 1.4a), the contour includes unrelated regions. In contrast, providing

shape information to the task yields a sound segmentation result (Fig. 1.4b).

Figure 1.4: The low-level based segmentation result (l) is improved signifi-
cantly by using a shape prior (r). Reproduced from [20].
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1.4 Purpose of this Thesis

The work at hand explores tools to build and apply SSMs for the application of image

segmentation. Emphasis is put on implicit shape representation and the requirement to

capture non-linear shape variations. We review shape models proposed in the literature

and provide detailed insight to a recently introduced manifold framework. Moreover we

present extensive evaluation as well as comparison to a linear approache on various data-

sets.

1.5 Data Sets

There are several demands for a representative training-set. Depending on the shape

variability to be captured by the model, the set should consist of an adequate amount

of samples. Furthermore, “extreme” shape instances are desired to cover a wide range

of variability. Ideally, the samples are distributed uniformly, i.e. the extent of variation

between similar samples should not differ too much. Throughout this work several training

sets are used for illustration and evaluation. Figure 1.5 depicts representative examples

and Table 1.1 summarises their properties.

Subject #samples Description

Cup single rigid 132 Pure pose variation (tilting and

rotation) of a coffee cup

Eclipse single nonrigid 26 Synthetic set: solid disk carved

out by a smaller disk

Walker single nonrigid 30 Cycle of a walking person

FGnet Face [32] single nonrigid 5000 Video frames of a talking per-

sons face

IMM Faces [51] multiple nonrigid 240 Pose and articulation variance

of 40 individuals

Cause07 [75] multiple nonrigid 33 3D cerebral structure of left

caudate nuclei

SLiver07 [34] multiple nonrigid 20 3D human liver

Table 1.1: Summary of data-sets used.
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(a) (b) (c) (d) (e) (f)

Figure 1.5: Instances of the data-sets used. (a) Cup, (b) Eclipse, (c) Walker,
(d) FGnet talking face, (e) IMM faces, (f) caudate nuclei

1.6 Outline

This thesis is organised as follows. Chapter 2 provides an overview of shape representations

and introduces essential tools for shape modelling. We first review explicit representations

in Section 2.1 followed by implicit ones with a focus on SDFs in Section 2.2.

Section 2.3 is dedicated to dissimilarity metrics for shape comparison. Approaches to rigid

shape registration are discussed in Section 2.4.

Feature extraction is the subject of Chapter 3 where key methods for dimensionality re-

duction are reviewed so to map shape to a lower dimensional representation. We first in-

vestigate the linear methods Principle Component Analysis and Multidimensional Scaling

in Section 3.3. Non-linear methods including Isomap, Local Linear Embedding, Lapla-

cian Eigenmaps, Kernel-PCA and Diffusion Maps are discussed under consideration of

applicability to shape models in Section 3.4.

Chapter 4 summarises approaches for SSMs proposed in the literature. We review several

combinations of local, global, linear and non-linear efforts to learn a set of shapes. Active
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Shape Models [17] and a similar level set based approach [46] are presented in Section 4.1

and Section 4.2. We investigate in Chord Length Models [5, 15, 44] in Section 4.4 and

in density equipped reduced spaces [20, 56] in Section 4.7. Local statistics on implicit

representations [58, 59] are reviewed in Section 4.5. Section 4.6 introduces the idea of

statistics on deformation fields [11, 12].

In Chapter 5 we present an approach to non-linear shape modelling as proposed by Etyn-

gier and Thorstensen et al. [30, 31, 69, 70] in detail. Training samples are assumed to

be sampled from a manifold which is learned by means of non-linear feature extraction.

We discuss approaches to warp one shape towards another in Section 5.2 and address the

maps between shape space and feature space in Section 5.3 and Section 5.4.

Chapter 6 presents results of the manifold approach while an comprehensive comparison

to linear methods is made. We also show how the SSM can be integrated in the task of

image segmentation and present promising results.

Finally, Chapter 7 concludes with a review of the insights gained and gives prospects for

possible enhancements and future work.





Chapter 2

Shape

Contents

2.1 Explicit Shape Representation . . . . . . . . . . . . . . . . . . . 10

2.2 Implicit Shape Representation . . . . . . . . . . . . . . . . . . . 11

2.3 Shape Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Shape Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Psychological considerations of shape were established by Wertheimer, Koffka and Köhler

in 1928. They founded the theory of Gestalt Psychology, which explores the impact of

shape on a human observer. In this work we consider a pure geometrical definition,

specifically the one given by Kendall [38]:

“Shape is all the geometrical information that remains when location, scale and

rotational effects are filtered out from an object.”

Indeed, when gathering multiple instances of an objects shape, one has to deal with

varying capture conditions. In Section 2.4 we will analyse methods for eliminating those

disturbances. For the moment being, let S be a set of shapes generated by one or several

similar objects with above mentioned effects removed. Then the set of all possible shapes

spans the shape space S. In practice, S is a finite set of q instances {Si} sampled from

shape space. We will refer to S as training set. The remaining geometrical information,

the shape itself, may be expressed as a subset C of the image domain Ω. We consider

C a set of closed contours in 2D and a set of closed surfaces in 3D. Representations for

9



10 Chapter 2. Shape

such outlines are discussed in the sequel. Although the following excursion focuses on 2D

shapes, all described techniques apply to 3D shapes as well.

2.1 Explicit Shape Representation

To start with, we investigate selected explicit shape representations, which use some kind

of parametric description.

2.1.1 Control points

Perhaps the most intuitive way to describe a shape is to sub-sample its contour. Then the

coordinates of these points s ..= (x1, y1, x2, y2, ...xl, yl)
T define the shape. A closed contour

is realised by interconnecting control points by piecewise polynomial or linear functions.

When building a statistical model, points require correspondence throughout the training

set. However, correspondence can not always be established for shapes revealing strong

variation. For example, consider the pot handle in Fig. 1.5 which is occluded in certain

poses. Additionally, it often requires an expert to label the training set by hand which is, in

particular for 3D shapes, a tedious task. Missing feature correspondences may be recovered

by the Iterative Closest Point algorithm or the Shape Context descriptor [3]. Noteworthy,

these methods do not guarantee to find correct correspondences and are applicable only for

well-articulated shapes. Another drawback of the control point representation concerns its

lack of handling topological changes such as splitting and merging. Although extensions

have been proposed that allow for such operations (Delingette and Montagnat [26]), the

notion of correspondence then becomes somewhat diffuse. Also, contour intersection and

high shape curvature introduce problems. On the other hand, control points are favoured

for their low dimensional description and the resulting low computational needs. Seminal

works on control point based shape analysis include the Active Contour formulation by

Kass et al. [37] and Active Shape Models by Cootes et al. [17].

2.1.2 Fourier Descriptors

In [64], Staib and Duncan employ elliptical harmonics to represent shape. Considering a

point moving along the contour, its projection to the Cartesian axes can be written as a

Fourier series expansion. For example, the contour x-component can be decomposed by

x(t) = a0 +

∞∑
n=1

ancos
2nπt

|C|
+ bnsin

2nπt

|C|
, (2.1)
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and alike for further dimensions. Here |C| is the contour perimeter and t specifies the

evolution along the contour. Taking into account the leading N harmonics, any shape

can be approximated up to arbitrary precision. Hence increasing N allows for more detail

and curvature. The principle of a three harmonics descriptor is illustrated in Fig. 2.1.

Each ellipse point is parametrised by (N + 1) coefficients {ai} for each dimension. These

coefficients define axis lengths, orientation and phase angles. For any n > 1, an ellipse

point defines either the center of its prior ellipse or an approximated shape point for

n = N . Fourier descriptors were used in [57] and more recently in [56].

Figure 2.1: Elliptical Fourier shape descriptor: (l) Shape approximation
using N = 1, 4, 8 and 12 harmonics, (r) Geometric interpretation. Figures are
reproduced from [41].

2.2 Implicit Shape Representation

Another prominent regime of shape representations is constituted by implicit approaches.

These allow a parameter free description without the requirement for correspondence

among a set of shapes.

2.2.1 Currents

Vaillant and Glaunés [73] represent shape by a mathematical construct termed currents.

The idea is to compute the flux produced by a set of probing vector fields through the

contour as in Equation (2.2) for the 2D case.

S(ω) =

∫
C
ω(x)tτ(x)dC (2.2)

Here ω denotes the probing vector field and τ is the tangent at contour point x, see Fig. 2.2

for illustrations. For the probing vector fields the authors propose a square integrable
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function convolved several times by a smoothing kernel. In essence, this operation embeds

a shape into a linear vector space, where the mean and covariance of a population of

currents can be computed. However, deforming a shape in the framework of currents

comes at high computational cost. Durleman [29] alleviate this problem by using matching

pursuit to find a sparse representation for currents.

Figure 2.2: Currents integrate vector fields. 2D shape (l), a bundle of lines.
3D shape (r). The probing vector fields are indicated by arrows. Figures are
reproduced from [28]

2.2.2 Characteristic Function

One natural way to describe shape implicitly is to define it as the subset of Ω that is

enclosed by the contour according to

χ(x) =

{
1, x ∈ Ωin

0, x ∈ Ωout

(2.3)

The characteristic function (also Heaviside step-function) was used for example in [21, 72].

Suppose we introduce a plane z = 1
2 to the characteristic function. Then the intersection

of both functions results in the shape contour C. This concept is developed further in the

next section.

2.2.3 Signed Distance Functions

In [52] Osher and Sethian popularised the Level Set Framework for physical processes

involving propagating fronts. The front or interface is embedded by a higher dimensional

function as the set of iso-values of some magnitude (isophote). Caselles [8] carried this idea

to applications in Computer Vision by the Geodesic Active Contour formulation. Ever
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since, the Level Set method has become a popular approach in Vision applications, as it

represents shape in a nonparametric manner and handles topological changes naturally.

One heavily considered embedding function is the Signed Distance Function (SDF) defined

by

φ(x) =


0, x ∈ C

−dΩ(x, C), x ∈ Ωin

+dΩ(x, C), x ∈ Ωout

(2.4)

To every point x in Ω, the shortest distance dΩ(x, C) to the contour is assigned. Function

values are negative inside the shape Ωin and positive in the outside region Ωout. The

contour is then defined implicitly as the zero level set of its SDF C : {φ(x) = 0}. This

distance map has some particularly advantageous properties. The contour unit normal

and the curvature are given by

n = ∇φ and κ = div

(
∇φ
|∇φ|

)
= ∆φ (2.5)

respectively. Figure 2.3 illustrates a SDF embedding a face contour. Change of shape is

Figure 2.3: Illustration of the signed distance function embedding a face
contour.

achieved by deforming the associated SDF. A contour C moving in the normal direction

is coupled to its distance map by the level set equation

∂φ

∂t
+∇φ · ∂C

∂t
= 0. (2.6)

Note that this formulation alleviates the problem of point correspondences, which can be

casted as finding similar SDF values in the normal direction.
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2.2.4 Alternative Implicit Shape Representations

Hong et al. [35] depart from the SDF idea and define shape on the image domain by so

called Integral Kernels. Their concept resembles shape context in a continuous formu-

lation. Briefly, the characteristic shape function χ is convolved by a kernel Kσ, e.g. a

Gaussian. A distinction is made for locations being inside respectively outside the shape,

see Equation (2.7). Thereby a value of closeness to the contour in a local neighbourhood

is assigned to each spatial location x ∈ Ω.

φIK(χ) = χ(Kσ ∗ (1− χ)) + (1− χ)(Kσ ∗ χ) (2.7)

The authors show the robustness of Integral Kernels to noise and apply it to the correspon-

dence problem. Figure 2.4(m) shows the integral representation of a face shape resulting

from a Gaussian with σ = 16.

Another ansatz is to encode a set of aligned shapes by the probability of being inside the

shape, that is p : Ω 7→ [0, 1]. Cremers et al. exploit this approach in [23]. Pohl and

coworkers [55] pursue probability maps by introducing the Log Odds defined by log(p) −
log(1−p) to shape analysis. See Fig. 2.4(r) for illustration. In contrast to SDFs, probability

maps form a vector space that allows for linear feature extraction.

Figure 2.4: Heat map illustration of implicit representations defined on Ω:
SDF (l), Integral Kernels (m) and Logodds (r).

2.3 Shape Similarity

To quantify similarity between shapes, an appropriate metric is required. Mathematically

speaking, we want to define a mapping d : S×S 7→ R. One such measure is the Procrustes

distance, given by the sum of squared differences (SSD) of corresponding point distances,
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see also Section 2.4.1. In this section we outline further measures proposed in the literature.

Expressing the difference between complex signals such as shape by a single scalar is

ambiguous. Nevertheless, it provides a coarse comparative indicator.

2.3.1 Hausdorff Distance

Given two shapes S1 and S2, the Hausdorff distance can be expressed in terms of their

SDFs by

dH(S1, S2) = sup (|φ1| − |φ2|) (2.8)

That is the farthest distance found from either contour to the closest point of the other

contour. Since the Hausdorff metric is not differentiable, Charpiat et al. propose a smooth

approximation in [10], allowing to introduce dH into gradient based optimisation.

2.3.2 Area of Symmetric Difference

This distance measures the non-overlapping areas of two shapes represented as character-

istic functions according to

dSD(S1, S2)2 =

∫
Ω

(χ1(x)− χ2(x))2 dΩ. (2.9)

It was advocated by Cremers et al. [21], where an extension for translation invariance is

proposed. The metric is symmetric i.e. dSD(S1, S2) = dSD(S2, S1) and does not depend

on the domain size. To obtain an intuitive measure of dissimilarity required later on, we

introduce normalisation on two levels of coarseness:

d Ωin
SD (SF , SM ) =

dSD(SF , SM )

Ωin
with Ωin =

∫
Ω
χF dΩ (2.10)

d CSD(SF , SM ) =
dSD(SF , SM )

|CF |
(2.11)

Either measure returns 0 for identical shapes. While d Ωin
SD (·, ·) = 1 indicates a non-

overlapping area equal to the area inside of SF , on the finer scale d CSD(·, ·) = 1 is reached

for a non-overlapping area equal to the fixed shape’s contour length. For an impression of

different values of d CSD(·, ·), see Fig. 2.5.
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Figure 2.5: Examples of different errors d CSD(·, ·). From left to right: 0.25,
0.50 and 0.75. Bottom row: details of above figures.

2.3.3 Distances on SDFs

Another way to express shape dissimilarity is to equip the space of SDFs with a certain

norm, e.g. the L2 norm according to

dL2(S1, S2)2 =

∫
Ω
|φ1 − φ2|2dΩ. (2.12)

Note that this norm depends on the domain size. As noted by Charpiat [11], SDFs and

their gradients ∇φ are square integrable on Ω. Hence they belong to the Sobolev space

W 1,2 and we can define the Sobolev distance by

dW 1,2(S1, S2)2 =

∫
Ω
|φ1 − φ2|2 + |∇φ1 −∇φ2|2dΩ. (2.13)

This norm is also promoted in [65], for it imposes regularity on active contour energies and

can reduce the order of involved PDEs. For a comprehensive evaluation of shape metrics,

the reader is referred to [11].

2.4 Shape Registration

We now address the projection of a set of shapes to global transform free shape space.

This amounts to eliminate translation, isotropic scale and rotation, as parametrised by

a similarity transform. Formally, we search the set of transformations {Ti} that align
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the training shapes to a fixed reference shape SF such that a given similarity measure is

maximised.

At this point we are not interested in registering shapes non-rigidly by a diffeomorphism

to match exactly. Instead the residual variation will provide the information to build a

statistical model. Note, that when confronting the model with unknown shapes, e.g. in a

segmentation process, these have to be projected to shape space as well, thereby stressing

further registrations.

2.4.1 Procrustes Analysis

Given two shapes, each defined by a set of control points along with correspondences,

Procrustes Analysis [33] provides means to find the optimal pose registration in a least

squares sense. For this purpose we define a shape as l×N matrix S, with l the dimension

of the image domain and N the number of points. Registration is achieved by minimising

the Procrustes distance

dPr(SM ,SF )2 =
1

N

N∑
j=1

|µRsM,j + t− sF,j |2 . (2.14)

Here sM,j and sF,j denote the jth column of SM and SR respectively. Parameters {µ,R, t}
constitute the similarity transform in question. Equation (2.14) has a closed form solu-

tion which is outlined below. In a first step SM is translated to SR such that their

centres of gravity coincide. The rotation angle is then discovered by Singular Value De-

composition (SVD) on the covariance matrix UΛVT = STMSR. The so found rotation

matrix R = VUT allows to compute the scale and finally the translation is adjusted by

t = S̄F − µRS̄M .

To align several shapes, Generalised Procrustes Analysis [6] can be used. Here all shapes

are registered successively as described above to a reference shape, initially one in the set.

Then the mean of the transformed shapes is computed, serving as reference for the next

alignment round. This process is repeated until the mean reaches steady state.

2.4.2 Implicit Shape Registration

Implicit shape representations such as SDFs and characteristic functions are defined on

the whole image domain Ω. Therefore their alignment can be performed by techniques

established for intensity based image registration. Note that SDFs are robust to slight
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misalignment, since nearby values are highly correlated [46]. Tsai and coworkers [71, 72]

align a set of shapes simultaneously by minimising a one-shot energy given by

ESSDχ({T}i=1...q) =

q∑
i=1

q∑
j=1
j 6=i

∫
Ω Ti(χi)− Tj(χj)

2dΩ∫
Ω Ti(χi) + Tj(χj)2dΩ

. (2.15)

Here Ti is the similarity transform for shape χi given by a characteristic function. The

metric is a modified version of the symmetric difference, where the denominator coun-

teracts to shrinking. In [53] Paragios et al. propose to register two SDFs φF , φM by

minimising the SSD

ESSDφ(T ) =

∫
Ω

(µ φM (x) − φF (T (x)))2 dΩ. (2.16)

Here µ is the transform’s scale and x a location of the moving SDF. Distance maps are

invariant only to translation and rotation [53], hence µ in above equation compensates for

scale variance. Huang et al. [36] propose a misalignment metric originating from multi-

modal medical image registration, Mutual Information (MI). MI establishes a statistical

relationship between two images by considering their information content expressed in

terms of entropy. In this context, two images are considered aligned, when their mutual

information reaches a maximum. Huang et al. employ this metric for the alignment of

SDFs, the corresponding functional that is to be minimised is given by

EMI(φ)(T ) = −
∫∫

p(a, b) log
p(a, b)

p(a) p(b)
da db. (2.17)

Here a denotes SDF values of the transformed moving image φM (T (x)) and b describes

values of the fixed distance map φF (x). Accordingly, p(a) and p(b) represent the marginal

probability density functions (PDF). The joint PDF p(a, b) gives the probability of a SDF

value having magnitude a in T (φM ) and magnitude b in φF . These densities may be

estimated by histograms or Parzen windowing.

In order to compare the aforementioned metrics w.r.t. capture range, we conduct an

experiment by transforming an IMM face SDF by various scales and rotations. Then the

registration error d Ωin
SD (S, T (S)) between transformed SDF and its originator is measured.

Since translational displacement can be eliminated by an initial CoG alignment, we do not

account for it. For this experiment we revert to the elastix image registration toolbox [39],

which provides a rich diversity of adjustable parameters. In all experiments we use the

quasi-newton optimiser with a 4 layer image pyramid to avoid local minima. Figure 2.6
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Figure 2.6: Capture range of implicit registration metrics. Evaluation in-
cludes various rotation and scale combinations. (a) Exemplary initial trans-
formation for ρ = 60◦, µ = 1.3. Registration error d Ωin

SD (S, T (S)) for (b) MIφ,
(c) SSDφ, (d) SSDχ. Blue dots indicate an error d CSD(SF , SM ) < 1.

shows the results. Obviously, MIφ has problems aligning shapes being rotated above 40◦,

in particular at scales beyond µ = 1. Both, SSDφ and SSDχ perform well for angles up

to ρ = 60◦ and beyond, depending on scale. Note that for scales below µ = 1 all metrics

yield poor precision since the moving SDF is sampled sparsely. Alternative choices for

dissimilarity metrics include the sum of absolute differences, cross correlation and joint

entropy.

Reconnecting to the application of shape modelling, Fig. 2.7 shows the alignment of mul-

tiple shapes to a reference. Having removed global transforms, variations appear as dis-

tributions of corresponding contour points.
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Figure 2.7: Examples of aligning multiple shapes to a reference with the
SSDφ metric: 20 IMM faces (l) and four Cause07 shapes (r).

2.5 Discussion

In this chapter we gave an overview of popular shape representations. We examined ex-

plicit representations which require parametrisation as well as point correspondence and

can not handle topological changes naturally. Implicit representations alleviate these prob-

lems. Especially SDFs are well established representations with advantageous properties

defined by the level set framework. Therefore we will focus on SDF hereafter. Further-

more, we investigated in measures for shape similarity. These are of importance for shape

registration and for feature extraction techniques discussed in Chapter 3. There seems to

be no consensus about the ideal similarity measure in the literature. However, since we

decided to use SDFs, we will stick to the L2 - and Sobolev W 1,2 norm. Finally, this chapter

shed light on techniques for rigid shape registration. Although SDF registration is sub-

ject to non-convex optimisation, the cost functions involved turn out to be well-behaved -

especially for the SSDφ metric.
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The human sensory perception captures a vast amount of data from the environ-

ment. For instance, the bandwidth of a human retina is about 105 bit per second. This

overwhelming flood of information exceeds the brain’s processing capacity and is therefore

reduced to the order of 10 bit/s [40]. Obviously, we are equipped with efficient meth-

ods to compress information to its essentials. In analogy, many applications in Science

and Engineering gather high-dimensional signals for analysis and control. Likewise to the

perceptual apparatus, it is desirable to reduce the captured data for further processing.

High-dimensional data hides beyond human imagination, for our mind is adapted to a

three dimensional world. Nevertheless, algebra allows us to operate in such realms. In

this context, the term Curse of Dimensionality refers to problems induced by an increas-

ing input space. A finite set of samples populates high-dimensional spaces very sparsely,

thereby complicating data analysis. As it turns out, for many applications the intrinsic

dimensionality of data is lower due to redundancies and correlations in the measurement.

This observation founds the motivation for dimensionality reduction methods to which

this chapter is dedicated.

21
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3.1 Definitions

Although dimensionality reduction techniques may be used on arbitrary data, we will

emphasise the application on shapes represented as distance maps. Therefore we sub-

sample a SDF φ at discrete grid locations. The resulting values are stored in shape

vectors {si}1≤i≤q, which can be considered as points in a high-dimensional observation

space RN . Note that even in the limit of an infinite number of shapes gathered from a

specific object (that do not vary arbitrarily), RN will not be populated exhaustively. The

distance map constraint |∇φ| = 1 imposes additional narrowing. This gives rise to the

assumption that shape space resembles a lower dimensional sub-manifoldM. A manifold

is a geometric entity of lower dimension than its ambient space. Therefore we aim at

finding a mapping (or embedding) Ψ that projects {si} ∈ M to Rn, where n << N such

that most information is retained. We denote the corresponding lower-dimensional feature

vectors by {yi}1≤i≤q ∈ Rn. Both sets of vectors are organised column-wise in matrices

S and Y. Furthermore, let a dissimilarity metric be indicated by d(si, sj) and δ(yi,yj)

measured in observation space and feature space respectively.

3.2 Feature Selection

SDFs are a highly redundant shape representation. For the embedded contour is uniquely

defined by close isophotes, it suffices to maintain values in a narrow-band guided by C.
Combining the narrow-bands of several aligned shapes, these form a narrow-band overlap

map, restricting the area in Ω where the contours are present. This idea is also suggested

in [53], its formal description reads

χNB(x) =

{
1, min{|φi(x)|} ≤ εNB
0, min{|φi(x)|} > εNB,

(3.1)

with εNB defining the bands minimal width. The shape vector is then simply reduced

to values where χNB = 1. This allows for a high reduction factor that increases with

domain size. Equipped with this insight as an optional preprocessing step, we now turn

our attention to unsupervised dimensionality reduction techniques.
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3.3 Linear Dimensionality Reduction

Preliminary we consider dimensionality reduction methods that assume the data to reside

in a linear subspace embedded in observation space.

3.3.1 Principal Component Analysis (PCA)

PCA was introduced by Pearson [54] and became a popular approach in multivariate

statistics. By taking advantage of the belief that several attributes of high dimensional

data are correlated linearly, PCA fits a new orthogonal basis to the data. The objective

is to maximise the variance along the ith dimension while its axis is orthogonal to all

preceding ones. To this end, in a first step the data is centred at the origin by subtracting

the mean observation s̄ = 1
q

∑q
i=1 si. By stacking the residuals si − s̄ in a N × q data

matrix X column-wise, the covariance matrix is obtained by

C =
1

q
XXT. (3.2)

Variance maximisation is then achieved by diagonalising C by eigendecomposition

λu = Cu. (3.3)

The resulting eigenvectors {ui}, coined principal components, represent the rotated vari-

ance maximising basis while corresponding eigenvalues {λi} constitute the eigenspec-

trum. The principal components assigned by PCA are in order of decreasing variance

which is reflected by a decay in the eigenspectrum. As a result, the tailing dimensions

can be discarded thus reducing the dimensionality while most information is retained.

To retain 95% of information, the leading n principal components are kept such that∑n
i=1 λi ≥ 0.95

∑q−1
i=1 λi. Finally the input data is projected to the new basis by the set

of retained eigenvectors Un by

yi = Ψ(si) = UT
n (si − s̄). (3.4)

The very same operation allows to project an unseen shape to feature space. Accordingly

a shape may be synthesised by adding a weighted sum of the leading n eigenvectors to the

mean

s = s̄ + Uny. (3.5)
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To facilitate notation, we refer to y = Ψ(s) as image of s. By contrast, the shape resulting

from the inverse mapping s = Ψ−1(y) is termed the pre-image of y. To keep instances

valid, the Gaussian standard deviation constraint

− 3
√
λj ≤ Y(·, j) ≤ 3

√
λj (3.6)

should be considered with Y(·, j) the jth row of Y. PCA returns an optimal basis trans-

form for multivariate Gaussian distributions, as they are characterised by mean and co-

variance. Note that natural sources of shape like anatomical structures (faces, organs,

etc.) indeed can be assumed Gaussian.

3.3.2 Multidimensional Scaling

In contrast to coordinate based PCA, Multidimensional Scaling (MDS) [18] uses pairwise

distances between shapes. These are organised in a matrix D where dij = d(si, sj). For

shapes any similarity metric discussed in Section 2.3 may be chosen. MDS generates a

point distribution by optimising a stress function, such that all pairwise distances are

preserved as good as possible. Such a mapping is referred to as isometry. Classical MDS

maps the data in a linear subspace by

min
y1...yq

∑
i<j

(
d(si, sj)

2 − δ(yi,yj)2
)

(3.7)

A solution to above equation is obtained by eigendecomposition of the Gram matrix K

given by

K = −1

2
HDH with H = I− 1

q
11T . (3.8)

Here H is a centring matrix, I the identity matrix and 1 a vector of ones. The decompo-

sition yields eigenvalues {λi} of decreasing magnitude and their eigenvectors {ui}. The

embedding to feature space Rn is then given by

Y = (
√
λ1u1, ...,

√
λnun)T (3.9)

Evidently Equation (3.7) prefers to conserve large distances, as those contribute most to

the sum. To circumvent this issue, Sammon [62] proposed to weight each sum term by

d(si, sj)
−1. Minimising the stress is then subject to iterative optimisation.
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3.4 Nonlinear Dimensionality Reduction

Let us consider a vivid benchmark manifold, the Swiss roll depicted in Fig. 3.1a. The

ultimate ambition is to unfold the data to a rectangle. Apart from the non-Gaussian

data distribution, PCA can not handle non-linearity and would project the roll to a 2D

spiral. MDS will attempt to preserve inter-winding distances, thus it can not unravel the

manifold. Such rigid behaviour gives rise to considerations that respect possible non-linear

structures. This insight leads to a variety of nonlinear dimensionality reduction techniques,

subject to the remainder of this section. Fig. 3.2 shows dimensional dependencies for some

Figure 3.1: The swissroll manifold is shown embedded in R3. The example
illustrates the disparity of geodesic distance along M (solid line) and the
euclidean distance (dashed line) between s1 and s2. The desired embedding
to R2 is given by the unravelled roll.

of our shape data-sets. We plot the most prominent principal components y1 versus y2

and y1 versus y3 for the Eclipse, Cup and FGnet set. Obviously all observed data-sets

reveal strong non-linear dependencies, stressing the necessity for nonlinear approaches for

our application.

3.4.1 Isometric Feature Mapping (Isomap)

Kernel PCA yields a nonlinear map but does not assume the data to have manifold struc-

ture. One method that does so is Isomap proposed by Tennenbaum et al. [67]. Here

the basic idea is to approximate the geodesic distance interconnecting two points over

the manifold by the sum of Euclidean distances of points in between. Isomap builds an
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Figure 3.2: Non-linearity of SDF shape data-sets. We plot the principal
component y1 versus y2 in the first row and y1 versus y3 in the second row.
(l) Eclipse, (m) Cup, (r) FGnet.

adjacency graph where nodes represent the input samples and links are interconnecting

each point with its set of neighbours N . The authors suggest two policies for the notion

of neighbourhood: All points within an ε-ball centred at the point in question, or alter-

natively, its k nearest neighbours. The link weights are assigned to input space distances

d(si, sj), sj ∈ Ni, thus the graph is a sparse representation of the MDS distance matrix.

From the resulting graph, all-to-all geodesic distances are derived by following the cheapest

path through the graph connecting each pair of points, see Fig. 3.1. These approximated

geodesic distances are stored in a symmetric q × q matrix DM which is fed to classical

MDS as described earlier. The choice of neighbourhood parameters is crucial for a correct

embedding since noisy data is likely to reroute the geodesics. Also, Isomap is not able to

embed non-convex data correctly. Considering a hole in the Swiss roll band, geodesics will

bypass the hole resulting in a distorted embedding [74].

3.4.2 Local Linear Embedding (LLE)

Proposed by Roweis and Saul [61], LLE approximates the data manifold linearly at a small

scale. The basic idea is to describe each point solely by a fixed number of neighbours. Like

in Isomap, for each point si, its nearest neighbours N are identified. This neighbourhood

is assumed to be in the tangent space of si. Barycentric weights associating si with its

neighbours are then determined and stored in rows of the q × q weight matrix W. Rows

of W sum up to one and wij = 0 if sj /∈ N . LLE performs an isometric embedding with
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respect to these weights, so each point is reconstructed from its neighbours with the same

weights in lower dimensional space. The cost function is therefore given as

C(Y) =
∑
i

|yi −
∑
j

wijyj |2 (3.10)

which can be solved in terms of an eigendecomposition. Exclusion of the trivial solution

Y = 0 is achieved by the constraint ‖y‖2 = 1. However, because of this rather simple

constraint, LLE is likely to collapse most of the data to a narrow area and may cause

undesired manifold rescaling. Also, LLE is known to perform poorly for nonuniform data

density [74].

3.4.3 Laplacian Eigenmaps

Another geometrically motivated method termed Laplacian Eigenmaps (LEM) was intro-

duced by Belkin and Niyogi [2]. In fact, LEM is similar to LLE as it computes a map that

preserves distances in the local neighbourhood. LEM aims at minimising the weighted

sum ∑
i,j

d(yi,yj)
2
L2Wij . (3.11)

The matrix W is derived from the adjacency graph obtained from some neighbourhood

policy, by weighting links with the Gaussian kernel eq. (3.16). Since short links receive

high weight, the minimisation will map similar shapes close to each other. As shown by

the authors, above objective is achieved by solving the eigenproblem

Lu = λDu (3.12)

where the degree matrix D is of diagonal form with entries Dii =
∑

j Wij and L = D−W

being the Laplacian matrix of the graph. It can be shown that in the limit of infinite sample

size, the graph Laplacian converges to ∆ + E. Here ∆ is the Laplace-Beltrami operator,

a generalisation of the Laplace operator to curved spaces and E a data density dependent

scalar [2]. Omitting the trivial solution λ0 = 0, the embedding is given by the eigenvectors

corresponding to eigenvalues λ1, ..., λm.

3.4.4 Kernel Principal Component Analysis (KPCA)

Kernel PCA was introduced by Scholkopf and Smola [63]. It generalises standard PCA

to a nonlinear method by mapping the input data to a higher dimensional feature space.
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This mapping can be achieved implicitly by employing the kernel trick. Briefly, the inner

product in feature space is substituted by a kernel function k : S × S 7→ R

k(si, sj) =
〈

Ψ̂(si), Ψ̂(sj)
〉
, (3.13)

mapping the data to a hyper-ellipsoid in feature space. Unlike its linear pendant, KPCA

avoids to compute the principal components in feature space. After all we are only inter-

ested in the projections of the data onto those vectors. The projection operation can be

expressed solely in terms of an inner product, for which we can insert the kernel. Hence

there is no need to compute the mappings Ψ̂ explicitly. One then proceeds as follows. The

kernel is centred in feature space as in Equation (3.8), thereby obtaining the Gram matrix

K. By solving the eigenproblem

qλu = Ku (3.14)

the embedding is obtained by

yi = (u1 · ki, ...,un · ki)T , (3.15)

with ki the ith column of matrix K. This can be understood as performing nonlinear PCA

in observation space. An open question concerns the choice of the kernel function. Any

symmetric positive-semidefinite kernel may be used. Well-established variants include the

Gaussian

k(si, sj) = exp

(
−d(si, sj)

2

2σ2

)
(3.16)

or polynomial functions. For the linear function, we obtain standard PCA. However, such

choice is data dependent and non-trivial. Weinberger et al. [76] address this issue by a

technique termed Maximum Variance Unfolding (MVU). In their approach, the optimal

kernel for a given data set is learned by semidefinite programing. MVU explicitly attempts

to unfold the manifold by maximising inter point distances [74]. Another variation related

to KPCA is Gaussian Process Latent Variable Model (GP-LVM) [45], a probabilistic ap-

proach where the kernel is applied in feature space.

3.4.5 Diffusion Maps

Another method based solely on a distance measure are Diffusion Maps (DFM), introduced

by Coifman, Lafon and coworkers in [14, 43]. The central idea of DFM is to express

similarity in terms of a Markov chain that captures the probability of a random walker
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to move from one shape to another as in a diffusion process. As before, the data can be

thought of as the nodes of a graph interconnected by links. To limit connectivity to a

local scale, links are weighted by a rotation invariant kernel k(si, sj). Since the diffusion

process is closely related to the heat equation, the authors suggest the Gaussian kernel.

Methods such as LEM combine geometry and density information into the embedding.

For our application, non-uniform data density can be considered as sampling artifact and

should not influence the embedding. As shown in [43], this issue can be resolved by using

the normalised kernel

k̃(si, sj) =
k(si, sj)

q(si)q(sj)
with q(s) =

∑
z∈S

k(s, z) (3.17)

being the degree of node s, indicating its connectivity. Subsequently a Markov chain is

obtained by a second normalisation according to

p(si, sj) =
k̃(si, sj)∑

sk∈S k̃(si, sk)
. (3.18)

The resulting matrix Pi,j = p(si, sj) reveals the probability of transition from shape si to

shape sj . Moreover, taking the tth power of P yields the transition probabilities for t time

steps, allowing to define the local neighbourhood on different scales. In the limit of large

sample size and narrow kernel width, the entity I−P converges to the Laplace-Beltrami

operator. For a comprehensive justification of the Laplace-Beltrami being desirable for

embeddings, see [2]. DFM aims at an isometry that preserves implicitly the diffusion

distance

dDFM (si, sj)
2 =

∑
sk∈S

(pt(si, sk)− pt(sj , sk))2

v0(sk)
. (3.19)

With v0 the top left eigenvector of P. In contrast to the geodesic distance, this measure

integrates over all paths of length t, resulting in a robust measure regarding noise. Thus

the diffusion distance takes small values for points connected by links with high weight.

By Eigendecomposition of matrix P we get real eigenvalues λ0 = 1 ≥ λ1 ≥ λ2 ≥ ... ≥ 0

and corresponding right eigenvectors {ui}. Since the trivial eigenvector u0 is constant, it

can be omitted. Hence the diffusion maps embedding is given by

Y =
(
λt1u1, λ

t
2u2, ...λ

t
nun

)T
(3.20)
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As shown in [14], in general few eigenvectors suffice to obtain a good approximation to

the diffusion distance.

3.5 Discussion

In this chapter we investigated techniques for dimensionality reduction to extract modes

of variability from a set of shapes. To this end most methods employ the eigenvectors of

a distance matrix. This reflects the desire to preserve inter sample distances so to find an

isometric mapping. For a more comprehensive overview of the diversity of dimensionality

reduction methods, the interested reader is referred to van der Maaten et al. [74]. We ex-

amined PCA and MDS which are not well suited for non-linear variations occurring in our

data sets. We then studied the non-linear approaches Isomap, LLE, Laplacian Eigenmaps,

KPCA and DFM. Geodesics based Isomap can not handle non-convexity and is prone to

noise. Sparse spectral techniques LLE and Laplacian Eigenmaps suffer from the curse of

dimensionality of real-world data and the high dynamic range of eigenvalues resulting in

numerical issues [74]. DFM equips the input space with the diffusion distance that has

shown to yield a robust mapping w.r.t. outliers [14]. Furthermore, DFM approximates

well the input space distances with few eigenvectors while providing a density indepen-

dent mapping. For these advantageous properties, the remainder of this work will focus

on DFM for shape manifold construction.
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After investigating tools to represent, handle and reduce shape information we now review

key shape models proposed in the literature. A coarse categorisation can be made into

linear and non-linear models, considering respective types of shape variations. Another

distinction splits global and local approaches. Global shape models, having received most

attention, deform the whole contour at once. Local models treat parts of the contour

separately.

4.1 Active Shape Models

In their influential work termed Active Shape Models Cootes, Taylor and coworkers [17]

introduced the point distribution model (PDM). A set of shapes is modelled by application

of PCA on a control point based representation. Therefore training shapes are aligned
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by generalised procrustes analysis as discussed in Section 2.4.1. The methodology of

PCA was already discussed in Section 3.3.1. Using control points amounts to treat their

coordinates as input vectors, i.e. s ..= (x1, y1, x2, y2, ...xl, yl)
T in 2D. Hence new shapes

may be generated by a linear combination of eigenmodes (Equation (3.5)). Figure 4.1a-b

illustrates the so obtained most significant modes for the IMM faces data-set. As can be

seen, the first mode obtained by y = (y1, 0, ..., 0)T controls mostly the left-right head pose.

The second mode alters nodding variation along with prominent facial expression. Active

Shape Models performs segmentation by deforming an initial model instance according to

image information. The same authors later introduced Active Appearance Models [16].

Here the shape information is augmented by learning the appearance enclosed by the

shape. Consistently, the image intensities warped onto a reference shape are subject to

PCA.

(a)

(b)

(c)

(d)

−2
√
λ −

√
λ S̄

√
λ 2

√
λ

Figure 4.1: Modes of variation: rows (a) and (b) are generated by a PDM,
representing the two most significant modes. Rows (c) and (d) show the first
two modes of the same training set using Leventon’s approach. For this model
120 IMMfaces were trained.
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4.2 Liner Model On Distance Maps

Leventon, Grimson and Faugeras introduced shape priors to the level set framework in

[46]. Adopting the principle of PDM, linear PCA is applied to SDFs to obtain eigen

distance maps. The authors augment the geodesic active contour (GAC) segmentation

energy [8] with prior knowledge formulated by a maximum a posteriori (MAP) approach

stated as

P (y, T |φ,∇I) =
P (φ |y, T ) P (∇I |y, T, φ) P (y) P (T )

P (φ,∇I)
. (4.1)

Above equation estimates the probability of a certain shape modelled by coefficient vector

y and its pose T , given a test shape φ and image edge response∇I. Considering a Gaussian

distribution on y, the prior term is modelled by

P (y) =
1√

(2π)n|Cn|
exp

(
−1

2
yTC−1

n y

)
, (4.2)

with Cn the model variance of the n retained eigenmodes. Without interaction of the other

terms in Equation (4.1), P (y) reaches its maximum for the mean shape. As noted by the

authors, the space of SDFs does not form a vector space, thus linear combinations will

not result in correct SDFs. Also, a variation of the SDF and the cause on the contour are

not related in a direct manner. Therefore meaningful shape modes are not concentrated

in the first components, but are scattered throughout all modes. This requires high n in

contrast to the PDM approach [22]. As an example, the leading two modes of the IMM face

data-set are shown in Fig. 4.1c-d. As can be seen, this formulation tends to smooth out

details. Also, mode deflections within the Gaussian assumption produce unnatural shapes

compared to the point distribution model. Nevertheless, well-balanced combinations of

these modes (as produced by Equation (3.4) and Equation (3.5)) generate valid instances.

This model inspired various extensions and modifications. For example, in [24] Cremers et

al. use the prior energy Equation (4.2) on an explicit representation without projecting to

a reduced space. Since this might lead to a covariance matrix of deficit rank, regularisation

is applied to compute its inverse. In [19] Cremers applies PCA on distance maps to define

dynamic priors. Given a temporal sequence of shape variation, the goal is to find the MAP

shape for the next frame. As shown by the author, this approach handles a great deal

of noise and may be used to synthesise oscillating variations such as a walkers shape. In

[60] Rousson et al. propose to enforce the mean shape to be a SDF. Tsai et al. [71] and

Bresson et al. [7] adopted this model with an improved segmentation energy formulation.
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4.3 Linear Model on Probability Maps

Cremers and coworkers [23] propose to replace SDFs by probability functions, where shape

is defined by p : Ω 7→ [0, 1], assigning each pixel the probability p(x ∈ Ωin). Since the

resulting shape space forms a convex set, mean and covariance can be obtained under

the linear assumption. By applying PCA on the probability maps, their eigenmodes are

recovered. To restrict pre-images of the model to feasible shapes, an iterative projection

scheme is proposed. This scheme alternates two steps until convergence. First the evolving

shape is approximated by the model eigenmodes. Then shapes outside the probabilistic

shape definition are projected onto shape space by clipping values p(x) /∈ [0, 1].

Probability maps were also used by Pohl et al. [55] in terms of Log Odds, the logarithm

of the ratio p
1−p . Log odds are a generalisation of SDFs with the advantage of embedding

shapes to a linear space.

4.4 Chord Length based Model

Another approach is to not consider control point coordinates but inter-point distances,

also known as chord lengths instead. This idea was proposed by Cootes [15] among others

to account for non-linear variations like bending and relative rotation. Here the authors

apply PCA to the vectors of chord lengths to obtain a model. As discussed in [17], chord

lengths are invariant to rotation and translation and after appropriate normalisation also

to scale.

Besbes [5] extended the chord-length approach to a local model. Here the authors use shape

maps by Langs and Paragios [44], an extension to diffusion maps to eliminate redundant

shape information. Shape maps are applied to cluster control points into groups of high

correlation. Control points closest to the centres of each cluster are then identified as

points of reference. Next a graph is constructed by assigning edges from center points to

corresponding cluster points. Finally, for each of the so obtained edges a Gaussian kernel

density is learned from training samples. The model probability reads

p(x1, ...xn) ∝
∏

(i,j)∈Rk

p(xi,xj)
2
k

∏
(i,j)∈Ek

p(xi,xj)
1
k (4.3)

with the first product over inter-center probabilities and the second one over center to

non-center points. In order to model shape instances from a random point cloud, the
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authors maximise Equation (4.3). This is achieved by iteratively applied constrained per-

turbations, see Fig. 4.2.

Figure 4.2: Local Chord length model. Clusters in first three shape maps
dimensions with colour coded density (l). Control points assigned to their
centres depicted by squares (m). Deformation of random points towards the
mean shape (r). Reproduced from [5].

4.5 Local Statistics on SDFs

The methods mentioned above impose the SSM globally, i.e. uniformly distributed along

the contour. In contrast, Rousson and Paragios [58, 59] pursue a local approach. From a set

of aligned SDFs, the objective is to extract the Gaussian probability density distributions

at the pixel level. This boils down to estimate a mean shape φm along with a confidence

map σm that best describes the training set. Hence for each pixel x, the goal is to find

the distribution

P (φ(x)) =
1√

2πσm(x)
exp

(
−(φ(x)− φm(x))2

2σ2
m(x)

)
, (4.4)

while constraining φm to a SDF. Translating above equation to a MAP formulation, one

obtains the energy functional

E(φm(x), σ2
m(x)) = − log

p∑
i=1

P (φ(x)) =
1

2

p∑
i=1

[
log(σ2

m(x)) +
(φi(x)− φm(x)2)

σ2
m(x)

]
(4.5)
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which is subject to minimisation. Extending this formulation to the whole image domain,

eventually we get

E(φm, σ
2
m) = α

p∑
i=1

∫
Ω

[
log(σ2

m) +
(φi − φm)2

σ2
m

]
dΩ +

∫
Ω
ψ(∇σ2

m) dΩ. (4.6)

The added last term acts as variance regularisation, causing σm to vary smoothly.

Figure 4.3 illustrates an example of a mean shape and its associated confidence map for

two horse shapes. Bright regions in the latter indicate low confidence which is propagated

to domain borders. In practice φm is computed as the empirical mean φm = 1
p

∑p
i=1 φi

followed by a projection to the space of SDFs. Based on this result, the confidence

map is obtained by gradient descent. Opposite to the global model from Section 4.2,

local statistics allow to enforce the prior locally varying. Thus in regions of low prior

confidence the segmentation energy is given more weight.

Figure 4.3: Mean shape resulting from two horse shapes along with its zero
level (l). The confidence map and the two training samples are pictured (r).
Reproduced from [59].

4.6 Statistics on Deformation Fields

In [11, 12] Charpiat et al. propose to apply statistics based on shape distances, thereby

exploiting the advantage of independence regarding representation. The authors devise a

control point based approach with a continuous approximation of the Hausdorff metric as

well as a SDF approach using the Sobolev W 1,2 norm. Minimising the distance d(Si, Sj)

between two shapes defines a normal deformation field β on the contour that warps one

shape towards another. While the methods in Section 4.1, 4.2 assume a linear shape space,
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here the idea is to linearise the space of normal deformations around a mean. Therefore,

the mean of a set of shapes is defined as the Karcher mean

S̄ = arg min
S

q∑
i=1

d(S, Si)
2. (4.7)

Based on S̄, there exists a set {βi}i=1...q of deformation fields that warp S̄ to Si. Hence

a covariance matrix can be defined on those deformations and PCA yields their ordered

modes of variance. This can be interpreted as moving in the tangent space of the deforma-

tion space, attached to S̄. Figure 4.4 illustrates the so obtained mean and modes resulting

from 12 starfish shapes. In practice above mean is computed by gradient descent which

does not guarantee to find the global minimum. Hence the mean becomes less meaningful

for large data-sets as more local minima emerge [11].

Figure 4.4: Charpiat’s Model learnt from 12 starfish shapes. The mean is
depicted by the contour along with the leading three modes of deformations.
Lines indicate the transport of deformation fields caused by single mode vari-
ation. Reprinted from [12].

4.7 Density equipped Feature Space

In an extension to [24], Cremers, Kohlberger and Schnörr [20] build a nonlinear shape

model by combining the ideas of KPCA and Parzen density estimation. Control points

are used to parametrise shape. Assuming a Gaussian data distribution in KPCA feature

space, non-Gaussian density estimates are obtained in input space. An unknown shape is

then attracted to regions of high sample density by minimising the energy

E(S) = Ψ(S)T C−1 Ψ(S). (4.8)
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With Ψ(S) being the mapping to feature space. To cope with non-invertible covariance

matrices C, a regularisation is introduced which effectively splits the energy in a distance

in feature space and a distance from feature space. The authors integrate above prior into

the Mumford-Shah segmentation.

Pricasariu and Reid [56] follow a similar idea. They describe shape by Fourier Descriptors

as discussed in Section 2.1.2. It is assumed that the Fourier harmonics of the training

set lie on a non-linear manifold. A model is derived by embedding the harmonics of the

training shapes to reduced space by Gaussian Process Latent Variable Model (GP-LVM)

[45]. Here the Gaussian process is defined by a mean and covariance function. LVM is

a non-linear dimensionality reduction technique which requires constraints to make it an

isometry. GP-LVM equips the reduced space with a variance map indicating locations

likely to generate valid shapes. Figure 4.5 exemplifies this concept by a heat-map. An

Figure 4.5: GP-LVM shape model. 2D feature space, the heat map indicates
regions of low variance / high probability in cold colours and unlikely locations
in hot colours (l). Crosses depict embeddings of training shapes. Labelled
points generate the correspondingly labelled shapes (r). Figure is reprinted
from [56].

unknown shape is projected to feature space by a maximum likelihood approach. Prior

knowledge is imposed to a segmentation process by attracting the evolving contour towards

regions of low variance. Since the image driven shape is represented by a level set function

and the prior as Fourier descriptor, both are unified to a control point description by

sub-sampling. The authors show that even strong articulation can be recovered from a

2D feature space.
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4.8 Discussion

In this chapter we reviewed approaches to SSMs based on various shape representations

and feature extraction techniques. As discussed, linear feature extraction combined with

control points can not model complex variations such as bending. Plugging in SDFs as

done by Leventon et al. [46] relaxes this constraint since SDFs are not directly related to

specific contour points. Although this approach does not operate in the space of SDFs, it

has shown to work well in practice [22]. Chord length models alleviate the liner restriction

but do not provide the advantages of SDFs. Having no internal parametrisation, the

approach in Section 4.5 is more of an segmentation regularisation term than a SSM. The

linear deformation space of Section 4.6 is an interesting idea to model nonlinear variations.

One step further is to utilise a non-linear feature extraction technique as in Section 4.7

that seem most promising for our purpose. Being mostly related to the techniques in

Sections 4.6 and 4.7, the next chapter details a manifold approach within the space of

SDF representations.
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Hitherto the principles for shape representation and SSMs were established. Our goal is

to find a model meeting concerns with strong nonlinear shape variations using the ad-

vantageous implicit shape representation by signed distance functions (SDFs). In this

chapter we detail the model proposed by Etyngier and Thorstensen [31, 69] which follows

the assumption of shapes being sampled from a low-dimensional manifold. Indeed, shape

variation is often caused by few parameters. Consider for example the multiple 2D views

produced by a rigid 3D object, where shape is determined by only two spherical coordi-

nates. The basic idea is then to map the shape manifold comprised by training samples to

low dimensional Euclidean space in order to recover the independent modes of variation.

Within this approach three central requirements emerge:

• We need a way to estimate the manifold continuously between samples,

• define a projection operator that attracts a new, potentially noisy shape onto the

manifold and

• define a map from feature space back to shape space.

41
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Figure 5.1: Illustration of the manifold framework. The shape manifold M
is indicated by a saddle surface embedded in RN=3, a few samples are shown
as points (l). Embedding to Rn=2 (r). Embedding y = Ψ(s) of a sample s and
its inverse, the pre-image mapping s = Ψ−1(y) and the projection of a noisy
shape sN are illustrated.

These concepts are illustrated in Fig. 5.1. In this chapter we explore approaches addressing

these issues, allowing for the formulation of a proper nonlinear shape model.

5.1 Discovery of the Shape Manifold

As proposed in [31, 69] we recover the shape manifold indicated by q samples by a map to

a lower dimensional Euclidean space Ψ : S → Rn. To project the samples to shape space,

we first align the training set by registration with the SSD(φ) metric, see Section 2.4.2.

For the input space distance we employ the Sobolev W 1,2 norm defined in Section 2.3.3 as

it includes information on the SDF gradient. Bear in mind that the presented framework

can be applied with any differentiable distance. With the Gaussian kernel, the initial

Diffusion kernel reads

w(φi, φj) = exp

(
−dW 1,2(φi, φj)

2

2σ2

)
. (5.1)

Appropriate normalisation and eigendecompositon as discussed in Section 3.4.5 yields the

embedding

Ψ : φi ∈ RN 7→ yi ∈ Rn ∀φi ∈ S. (5.2)

Examples of embeddings for n = 2 are given in Fig. 5.2. Note how DFM clusters shapes

with distinct head poses. Based on the embedding, designing a head pose classificator is
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straight forward. The IMM faces form a parabolic structure while the nuclei caudate are

distributed more uniformly with one distinct outlier at the top.

Figure 5.2: Embedding of 120 IMM faces to R2 (l), embedding of 33 3D
shapes of caudate nuclei (r). The illustrated shapes reference to their location
on the manifold.

The intrinsic manifold dimension, the reduced space dimension n can be interpreted as

the number of modes retained. It may be known beforehand (e.g. it is one for the eclipse

shapes) or be inferred from the eigenspectrum of the Diffusion kernel. Hereafter we set n as

a parameter, usually low values of n ≤ 4 suffice even for complex data sets. The parameter

σ > 0 in Equation (5.1) is of crucial importance as it defines the local connectivity among

samples and therefore determines the obtained manifold geometry. High σ transfers most

eigen-power to the leading eigenvalues thereby capturing most variation in few reduced

dimensions but degrades the ability to capture nonlinear structures. On the other hand,

choosing σ too small leads to a disconnected graph. In this work we set σ to the median

of nearest neighbour distances, ensuring a connected graph. This heuristic was proposed

throughout the literature [1, 31]. Since Diffusion Maps provides an isometry w.r.t. the

diffusion distance, the local neighbourhood of shapes can be inferred in feature space.

In [31], a Delaunay triangulation in reduced space is performed, partitioning feature space

into n-simplices, each having n + 1 samples as vertices. The union of those simplices

defines the shape manifold M.

5.2 Shape Warping

Given a finite set of training shapes sampling the manifold, we want to move continuously

along its structure, i.e. between samples. To do so, a basic requirement is to warp a
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shape S continuously towards a target shape ST . In this work we tackle shape warping

by minimisation of a dissimilarity energy E : S × S → R comparing S and ST , Hence we

first need to establish the notion of the gradient ∇E with respect to a shape.

5.2.1 Calculus of Variations

In mathematics, Calculus of Variations deals with finding extrema of functionals mapping

from the domain of functions to the real axis. Then one is interested in finding functions S

for which the functional E(S) becomes stationary. In this context the Gâteaux variation

generalises the directional derivative according to

δE(S, β) = lim
ε→0

E(S + εβ, ST )− E(S, ST )

ε
=

∂

∂ε
E(S + εβ)

∣∣
ε=0

(5.3)

Here δE is called first variation and β is a small but arbitrary test function. For S

represented by a contour, β is a normal deformation field, while for S being a SDF we

have β : Ω → R. Equation (5.3) relates an infinitesimal change of deformation to the

change of energy. In this sense δE(S, β) is the derivative of E with respect to S in

“direction” β. Let us consider the generic functional

E(S(x)) =

∫
Ω
f(x, S(x), S′(x))dx with S′ =

dS

dx
. (5.4)

Then it can be shown that for δE to vanish, i.e. the functional reaching an extrema, the

Euler-Lagrange Equation (5.5) has to hold.

∇SE =
∂E

∂S
− d

dx

∂f

∂S′
!

= 0 (5.5)

5.2.2 Variational Shape Warping

Note that unlike usual variational problems we are aware of the energy’s minimum. It is

reached for S = ST . We are rather interested in shapes between defined ones. An open

question concerns the choice of the dissimilarity energy. Candidates are continuous shape

distances discussed in Sec. 2.3. For example, inserting the Sobolev energy

E(S, ST ) = dW 1,2(S, ST )2 =

∫
Ω
|φ− φT |2 + |∇φ−∇φT |2dΩ. (5.6)
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(a) (b) (c) (d)

Figure 5.3: Intermediate shapes obtained by warping the topmost shape
towards the bottom one by minimising the Sobolev W 1,2 norm.
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to the Euler-Lagrange Equation (5.5), we get

∇φE(φ) = (φ− φT )− div (∇(φ− φT )) (5.7)

Evolving φ towards φT by gradient descent is then achieved by solving

∂φ

∂t
= −∇φE(φ) (5.8)

Note that this approach also provides a solution for the correspondence problem when

contour points are tracked during evolution. For an exhaustive analysis of deformation

variants, the reader is referred to [11]. Examples of intermediate shapes obtained by the

Sobolev warp are shown in Figure 5.3. As can be seen, the warp produces a natural tran-

sition between a frontal and rotated face. When warping the letter C to letter S, common

parts at top and bottom remain while the middle part splits at first, then reconnects.

Transition between 3D nuclei shapes also produces plausible intermediate shapes. How-

ever, attempting to warp between shapes having barely overlap of corresponding parts,

yields poor results (Fig. 5.3d). This issue will be addressed by incorporating manifold

knowledge such that the warp bypasses intermediate shapes of the training set.

5.2.3 Distance Map Creation and Reinitialisation

The warp presented in the previous section deforms shapes without consideration of the

SDF condition |∇φ| = 1 ∀x ∈ Ω. This issue also occurs when an SDF is evolved by a

segmentation energy. To counteract this behaviour, Lie et al. [47] propose a regularisa-

tion term for active contour evolutions by incorporating the SDF error into the energy.

However, their method is restricted to a narrowband. Starting with an initial function

embedding a zero level, several algorithms were proposed to compute the associated full

domain SDF. One way is to evolve the PDE (partial differential equation) of Sussman et

al. [66] until steady state:
dφ

dt
= sign(φ0)(1− |∇φ|). (5.9)

With the sign function taking values −1 inside and 1 outside the shape. During evolution

values of the opposite region act as boundary conditions. While this method is intended to

preserve the zero level, in practice it tends to smooth away high curvature due to discreti-

sation errors. The algorithm yields highly accurate SDFs coming at high computational

cost, especially for φ0 being far from a SDF.
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Another approach, termed fast marching, starts with an initial band of SDF values ad-

jacent to the zero level. Distance information is propagated according to a normal flow

of the band, thereby updating the traversed pixels to SDF values. This approach can be

implemented efficiently by a binary tree resulting in a cost of O(n log n) with n being the

number of grid points. In its original formulation fast marching is first order accurate.

Maurer et al. [49] construct a SDF by principles of dimensionality reduction and partial

Voronoi diagrams. This results in a very efficient algorithm that executes in linear time.

We evaluated the time to construct a 256 × 256 SDF from its characteristic function on
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Figure 5.4: The SDF gradient |∇φ| obtained by the algorithms of Maurer (l),
fast marching (m) and Sussman (r). The resulting zero level is superimposed
as contour. Ridges indicate points of equal distance to at least two contour
points.

an Intel R© C2D at 3 GHz. Sussman’s method requires 9 s for reaching convergence after

175 iterations. Fast marching takes 120 ms, Maurer’s algorithm only 10 ms. Figure 5.4

shows the resulting SDF gradient in colour code. Obviously, Sussmans’ method produces

fewest numerical artifacts at the contour proximity resulting in a smooth zero level. All

mentioned methods are applicable for 3D shapes as well. For a 2563 SDF Maurer’s method

takes 7.33 m, fast marching finishes after 16 s.

5.2.4 Warp by Velocity Projection

In order to avoid reinitialisation, Chen, Charpiat and Radke [13] propose a warp by velocity

projection within the space of SDFs. To this end the authors establish the relation between

contour gradient ∇EC and SDF gradient ∇Eφ according to Equation (5.10).

∇CE(C(c)) = −
∫
l(c)
∇φE(φ(x)) |1− κ(C(c)) φ(x)| drnC(c) (5.10)
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Here l(c) represents the normal projection line through contour point c with κ(C(c)) being

the local contour curvature. Above equation relates a change of the contour ∇EC at

contour point C(c) to the change in the corresponding SDF. Applying a normal deformation

vector at C(c) causes a constant SDF update along the normal projection line. The

magnitude of the update is given by integrating the weighted SDF gradient along the

projection line. This scheme allows to warp with gradient formulations defined along the

contour which are intricate for the EL minimisation. As shown in Fig. 5.5a, the resulting

dL2-warp features a nice fluid-like flow. In contrast, the EL warp would resolve the lower

shape followed by spawning it at the top shape.

In practice projection lines are replaced by radial widening rays for integration. Also,

occasional SDF reinitialisations are required to correct for accumulating numerical errors.

In another example, we warp a flower-like shape, see Fig. 5.5b. At first the flower shrinks

to adjust for the radial size while splitting, followed by reconnecting to adjust for finger

width. Clearly, this technique is not suitable for our application as we require intermediate

contours being of weighted mean nature. We found this warp not straight forward to

extend for shapes involving multiple contours like the face shapes. Furthermore, the

algorithm’s performance does not scale well with domain size.

Figure 5.5: Warp by velocity projection: warping the lower circle to the
upper one reveals fluid-like behaviour (top). Warping a flower like shape shows
unexpected topological changes (bottom).
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5.3 The Out-Of-Sample Problem

The embedding Ψ : S 7→ Rn is defined for the training set but not for unknown shapes.

Therefore we require a way to map arbitrary shapes e.g. an evolving segmentation shape S

to feature space. This is known by the term Out-of-Sample Problem, depicted in Fig. 5.1.

For linear PCA, this simply amounts to evaluate Equation (3.4). However, kernel based

maps require a different approach. A naive solution is to augment the training set with

the test shape and then recompute the embedding, This approach strains an eigendecom-

positon, which is expensive for large data-sets, having complexity O(q3). The eigendecom-

position should be kept as a pre-computation step in the model creation phase. Hence a

more efficient alternative is desirable.

5.3.1 The Nyström Extension

Since the embedding coordinates given by Diffusion Maps are constituted by eigenvectors

of a transition kernel, it seems a natural idea to extend them for an additional sample.

A widely uses technique exploiting this concept is the Nyström extension as detailed

subsequently. Since each sample in Si satisfies

∑
Sj∈S

p(Si, Sj) uk(Sj) = λkuk(Si), (5.11)

the Nyström extension embeds S according to

Ψ̃k(S) =
1

λk

∑
Sj∈S

p(Sj , S) uk(Sj). (5.12)

In words, the kth coordinate of the embedding Ψ̃(S) is given by a weighted sum over the

elements of the kth eigenvector uk. Weights are constituted by the transition probability

kernel p(Sj , S). Eigenvalues λk and eigenvectors are those of the training kernel. This

amounts to compute the distances {d(Si, S)}1≤i≤q followed by their integration to the

diffusion kernel, having time complexity O(q). Notably, when S differs significantly from

shapes in S, the extension maps close to most similar shapes.

As shown in by Bengio et al. [4], this technique can be applied to most kernel methods.

Figure 5.6 presents an evaluation of the so obtained extension for the eclipse data-set. We

plot the two most significant Diffusion kernel eigenfunctions as solid lines. In a leave-one-

out fashion all but one shapes are used to train a model, while the Nyström extension
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is applied to the left out shape. Resulting extensions are indicated by crosses. From the

systematic variation in the data-set it can be expected that extended values lie between or

close to neighbours. As seen in Fig. 5.6 this expectation is met. Note that even samples

1 and 26 in the rim of coordinates are embedded quite accurately. In [43], Lafon and

Figure 5.6: Evaluation of the Nyström extension. The approximate first (l)
and second (r) eigenfunction are plotted as solid line. Crosses illustrate the
values estimated by the Nyström extension.

coworkers suggest a multi-scale extension that finds a separate extension kernel for each

diffusion coordinate. This is justified by the fact that each eigenfunction is of different

complexity and so is extendable more or less. The resulting algorithm requires a repeated

eigendecomposition and the method introduces two additional parameters which were

found hard to tune for generic data-sets.

5.3.2 Embeddings outside the Manifold

We now address the scenario when the point y = Ψ̃(S) comes to lie outside the convex

hull of Y. This might occur when S differs significantly from the learned shapes. Another

cause may be an inappropriate choice of the target dimension. We handle this exception

by following the suggestion of Etyngier [31] to project y onto the convex hull CH(Y). The

facets of CH(Y) resemble n− 1 dimensional simplices, subsets of hyperplanes in Rn. The

orthogonal projection ỹ of a point y onto a hyperplane is given by

ỹ = y − (y − yi) · n
n · n

· n. (5.13)

In this Equation, yi refers to any point on the hyperplane and n is its normal vector. We

perform a search among the facets to find the hull simplex which includes the projection ỹ.

Then we regard those shapes as neighbours, which constitute the vertices of that simplex.

Obviously, in such a case we get n neighbours instead of n+1 for y inside CH(Y). However,
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such a projection is not guaranteed to exist. This circumstance is handled by using the

n− 1 nearest neighbours of y in Rn.

5.4 Pre-Image Problem

Having performed operations in low dimensional feature space, we are interested in map-

ping back a point y to shape space. Formally, we search the pre-image S = Ψ−1(y) of y

such that Ψ(S) = y. In the context of PCA any shape can be recovered from its low dimen-

sional counterpart by a linear combination of eigenmodes. However, when embedding data

by non-linear kernel methods, more sophisticated approaches are required. As pointed out

by Mika et al. [50], in such cases the pre-image problem is ill-posed and an unique solution

might not exist. Nevertheless, it is common practice to revert to an approximation of S.

One such approximation is given by the shape having minimal embedding distance to y

as stated by Equation (5.14).

S = Ψ−1(y) = argmin
S
‖Ψ(S)− y‖2 (5.14)

Likewise, maximisation of the collinearity criterion may be performed as was done by

Dambreville et al. [25] and [50]. Kwok and Tsang [42] approach the pre-image problem

by relating shape space distances to feature space distances as done by multi dimensional

scaling. A comparison of various pre-image approaches is given by Arias et al. [1]. Note

that a solution to the pre-image problem allows the projection of an arbitrary shape onto

the manifold by πM(S) = Ψ−1(Ψ(S)).

5.4.1 Pre-Image by Minimum Embedding Distance

In [31, 69, 70] Etyngier and Thorstenson et al. utilise the manifold assumption to compute

the pre-image. Their approach is to interpolate shapes as weighted Karcher mean in the

tangent space of the manifold. Recall that M is parametrised by a set of n-simplices.

Given the point in question y, we can easily determine the enclosing simplex ∆y. The

corresponding simplex ∆S in input space has vertices given by the (n + 1) neighbouring

shapes Si ∈ N according to the Delaunay triangulation. The simplex ∆S is employed

to parametrise the tangent space of manifold M at shape S. In the vicinity of ∆S , each

shape is related to the vertices Si by barycentric weights θi with
∑n+1

i=1 θi = 1. The authors
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compute the pre-image in Equation (5.14) while constraining S to a Karcher mean

S = argmin
Sθ∈S

∑
Si∈N

θi d(Sθ, Si)
2. (5.15)

To this end S is initialised with the simplex shape having the closest embedding to y and

minimisation is performed by gradient descent. For the Euclidean input space a small

variation of the barycentrics causes a shape deformation

∂S =
n+1∑
i=1

∂θiSi (5.16)

Evaluation of ‖Ψ(S + ∂S)− y‖2 produces a gradient flow drawing the shape towards min-

imum embedding distance to y. In practice this scheme computes the pre-image in few

iterations. The optimisation is performed in an orthogonalized tangent space as the

barycentrics are not linearly independent. As shown in [68], this method outperforms

the approaches by Arias [1] and Dumbreville [25] in the application of image de-noising.

Instead of dividing the manifold by a fixed triangulation, in [69] the n-simplex defined by

the nearest neighbours of y is used for pre-image computation.

5.4.2 Manifold Projection in Shape Space

Etyngier, Ségonne and Keriven [30] propose to compute the projection πM(S) directly in

shape space. Indeed, when provided a new shape e.g. from a segmentation process, the

embedding step can be omitted. Having identified the tangent space at S, i.e. the simplex

∆S , the objective is to find the manifold shape SM that minimises the distance to S:

πM(S) = argmin
SM

d(S, SM). (5.17)

As stated by the authors, above optimisation problem is intricate and involves time con-

suming second order shape gradients. Therefore an approximation coined the snail al-

gorithm is proposed. The algorithm approaches SM by alternated warps between two

shapes in ∆S . Etyngier et al. incorporate an adaptive step size that itself is subject to

optimisation. However, we will use a slightly modified and thus simplified version that

has shown to yield good approximations.

Provided a smooth and convex shape distance d(·, ·), we can formulate the procedure as

described in Algorithm 1. See also Fig. 5.7 for an illustration of the concept. Note that
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when dividing one warp in a fixed number of steps, the step size refines implicitly. In

practice few iterations suffice for a good approximation.

Algorithm 1 Approximate the manifold projection SM of shape S

Require: The neighbouring shapes {Si}i=1...n+1 of S forming simplex ∆S

Ensure: d(S, SM) is minimal
Construct a cyclic list L of {Si}:

Insert the the shape being most similar to S into L
Insert remaining shapes ordered by adjacency

SM ← L0

ST ← Lk=1

while δd(S, SM) > ε do
while d(S, SM) improves do

Warp SM towards ST
end while
ST ← Lk+1

end while

  

S1

S 2

S3

SM

S

Figure 5.7: Illustration of the snail algorithm for n = 2. Shape S is projected
to the manifold by alternated warps between simplex shapes Si.
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The manifold approach (DFM-SDF) discussed in Chapter 5 seems to have promising

attributes for a shape model. To confirm our belief, in this chapter we will conduct

evaluations with respect to

• model generalisation

how well can the SSM reconstruct unseen shapes,

• shape disturbance handling

how does the model respond to noisy or occluded shapes,

• training pool size

how does the number of training samples influence the results and

• sample density

what impact does the degree of similarity among training samples have.
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We also provide comparison to the linear model by Leventon et al. hereafter termed

PCA-SDF. Eventually we show how the DFM-SDF model can be incorporated to level set

based image segmentation and show results on synthetic and medical data.

6.1 Manifold Explorer

In order to gain a better insight in various combinations of concepts discussed in this thesis,

we designed the Manifold Explorer which provides a graphical interface to study manifold

creation by Diffusion Maps, the Out-of-sample extension and Pre-image algorithms. The

screenshot in Fig. 6.1 shows the 2D manifold of slices from the SLiver07 data-set along

with an pre-image.

Figure 6.1: The Manifold Explorer was designed to facilitate the concepts
in this work.
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6.2 Manifold Model Evaluation

We now evaluate the DFM-SDF approach and observe the impact of altering parameters.

Therefore a certain amount of shapes is learned followed by observing the model response

to various test shapes. To measure the quality of the response we will use the normalised

measure d CSD(Sresponse, Sexpected) defined in Section 2.3.2.

Since the FGNet data-set provides most shapes along with fine-grained sampling, we will

use a specific test setup - the FGNet-Test - repeatedly with various modifications. The test

successively expands the training pool size q = {10, 15, 20, ..., 95, 100} by picking equally

spaced frames from the data-set. If not mentioned otherwise, each 5th frame is taken.

For each q the model is queried for 25 unseen shapes and the reconstruction error d CSD

is evaluated in terms of mean and variance. Recall that a value of d CSD = 1 indicates a

non-overlapping area that equals the length of the expected shape contour evaluated on

the discrete pixel grid. Note that we use different test shapes for each q, such that test

samples are equally spaced between training samples.

6.2.1 Manifold Projection and Tangent Space Policy

First off, we will utilise the FGNet-Test to compare the manifold projection operators

minimum embedding distance (MED) from Section 5.4.1 and projection in shape space

(PSS) from Section 5.4.2. Moreover we include different policies on manifold tangent

space selection, i.e. how to pick the samples defining the simplices. In [31] a Delaunay

triangulation was performed while [69] used the n+ 1 neighbourhood Ny in feature space.

As a third option we add the n+1 neighbourhood in shape space NS . The obtained results

for target dimensions n = 3 and n = 4 are depicted in Fig. 6.2. Obviously, PSS yields

way more accurate shapes with less deviations than MED. Setting n = 3 we get rather

inconsistent results for Delaunay and Ny, see Fig. 6.2l. For non-uniform feature point

distributions, Delaunay allows large simplices of training shapes being highly different (see

e.g. Fig. 5.2). Thus poor interpolations are obtained in these manifold regions. Since we

used a rather low feature space dimension, DFM embeds the shapes quasi-isometrically

[31], causing Ny 6= NS . Hence NS provides better projections. Considering Fig. 6.2r,

n = 4 is a better choice. Delaunay performs better due to the fact that most test shapes

lie outside the manifold and are projected on its convex hull. Also for Ny the additional

dimension contributed a major improvement - Ny now coincides better with NS . Overall

NS cooperates best with MED and PSS.
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Figure 6.2: FGNet-Test of the projection operators MED and PSS in con-
junction with simplex selection policies. Target dimensions n = 3 (l) and
n = 4 (r).

6.2.2 On the number of Training Samples

Since any model is founded by a set of training shapes, the question of the sample pool

size arises naturally. Yet there is no universal answer. Major factors regard the variations

to be captured by the model. Variation amplitude as well as the number of variation

modes contribute to the answer. A principled approach for a given data-set is to find a

pool size q such that the reconstruction error falls below an acceptable threshold. Result

diagrams of the FGNet-Test - e.g. refFigfig:fgnettestpreimgneigh - show the reconstruction

improvement for up to 100 training samples. Apparently, for the variation encoded in the

selected FGNet shapes, 50 samples suffice for accurate model responses. A larger pool size

generates only marginal better results.

6.2.3 Model Interpretations

This section evaluates DFM-SDF model responses for our data-sets. In a leave-one-out

fashion all but one samples are trained in turn and the model interpretation by PSS-NS of

the omitted shapes is observed. In Fig. 6.3 we show the best and worst responses for each

data-set along with error distributions d CSD. The eclipse results are very good with most

errors below 0.1. The single poor response is caused by the test shape falling outside the

rim of the 1D-manifold. Since the cup data has an sufficient amount of uniformly sampled

shapes, responses are quite accurate. Contrary, the walker results are rather poor with

most errors being located in the upper error zone. IMM faces score little better with errors

heap at lower errors. Apparently the poor results for walker and IMM are caused by to
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Figure 6.3: DFM-SDF model interpretations. Rows correspond to data-sets,
solid shapes indicate the expected result, contours depict the model response.
Best (l) and worst (m) responses along with error distributions d CSD (r).
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Table 6.1: Evolution of shape. Direct warp of left to rightmost shape (top).
Warp by moving along the manifold (bottom). Evolving shape projected to
feature space (r).

few training samples available to capture the heavy variations. The cause07 3D shapes

perform well except for one distinct sample differing too much from the other ones.

6.2.4 Manifold Warp

Revisiting the defective warp of Section 5.2.2 caused by too different shapes, we now

introduce manifold knowledge to the task. Figure 6.1 shows the warp between two shapes

from the Runner set. The direct warp by Equation (5.8) (top row) deforms arm and

feet in an implausible manner as they dissolve and reemerge. Incorporating the manifold,

transition becomes naturally as the evolving shape bypasses intermediate samples (bottom

row).

6.3 Comparison To Linear Models

This section provides comparison of DFM-SDF to linear PCA-SDF by Leventon et al.

[46]. Since for PCA-SDF shape information is scattered through all principal modes, the

eigenspectrum is not representative. Therefore we decided to keep 20% of modes. We also

include PDM evaluation for data-sets available in control point representation. Here 95%

of information as indicated by the eigenspectrum is retained.
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6.3.1 Modes of Variation

To study the capability of manifold modes separating shape features, we construct a 3D

manifold from 200 samples of the FGNet data-set. Therefore we perform orthogonal fea-

ture space warps through the center of the manifold by MED-Ny. In Fig. 6.4 the manifold

is pictured by a wire-frame with traces of the warps pictured as point interconnected lines.

Shapes produced by the warps are presented in Fig. 6.2a-c. Apparently mode (a) controls

head rotation from frontal to upper left. Mode (b) deflects narrow eyes. All three modes

deflect mouth opening.

Linear mode (d) is similar to (a) and most mouth opening is captured by mode (e).

Mode (f) deflects head shape alike to mode (c). PCA-SDF encodes the spatial location of

variation by its eigen-SDFs. By contrast, distance based DFM-SDF does not distinguish

whether a distance difference is caused be a face’s eye or its chin. Hence feature separation

is handled better by PCA-SDF.

Figure 6.4: The FGNet 3D diffusion maps manifold pictured by a wire-frame
along with traces of mode directions a, b and c.

6.3.2 Sample Density

As stated before, the sample density has a major impact on the reconstruction result

for DFM-SDF. In other words, for a given training set size the samples should not vary

too much. To demonstrate the influence of density we conduct the FGNet-Test with

training samples picked from increasingly spaced sequence frames. Fig. 6.5 shows the

results for spacings of 1 up to 40 frames for DFM-SDF (n = 4) and PCA-SDF (n = 6). As

expected both methods achieve most accurate results for high density, both approaches
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(a)

(b)

(c)

(d)

(e)

(f)

Table 6.2: Comparison of the modes of variation for the FGNet data-set
embedded to R3. Rows (a), (b) and (c) are obtained by warping in orthogonal
directions of the diffusion maps manifold, see also Fig. 6.4. For comparison,
rows (d), (e) and (f) show the modes of the linear PCA model by deflecting
the mean from −2

√
λ to 2

√
λ.
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perform almost equally for dt = 1. For lower density (dt ≥ 5 frames), PCA-SDF clearly

outperforms DFM-SDF. The reason being that PCA-SDF takes into account variations of

the whole training set, thus allowing better adjust to unseen features. Contrary, DFM-SDF

considers only the most similar samples. See also Fig. 2.5 to interpret the reconstruction

errors.
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Figure 6.5: FGNet-Test for sample density variation by training increasingly
spaced sequence frames. We plot the reconstruction error averaged over 25 test
shapes for DFM-SDF (l) and PCA-SDF (r).

6.3.3 Coping with Shape Distortions

A question of great practical interest concerns the tolerance of a shape model regarding

occlusion and noise. Hence we perform a test by confronting the model with an corrupted

instance and observe the ability to recover the shape. We compare DFM-SDF to PCA-

SDF using the walker and eclipse data-set. Artificial occlusion is introduced by removing

the head from the walker shape and by an additional disk in the upper left corner / a

horizontal bar for eclipse shapes. For the noisy sample we distort the eclipse boundary

with 70% salt & pepper noise. See Fig. 6.6 for the queried shapes and obtained results.

Evidently, PCA-SDF tries to imitate the corruptions by deflecting modes highly, thereby

generating non-plausible shapes. In contrast, DFM-SDF returns accurate reconstructions

even for substantial disturbances.

For a more quantitative analysis, we introduce occlusion to the FGNet-Test by removing

the mouth sub-contour. The model should be able to reconstruct the shape including

the mouth. Figure 6.7l-m exemplify reconstructions for PCA-SDF and DFM-SDF respec-

tively. As can be seen, PCA-SDF avoids forming the mouth and has problems with the

eye sub-contours. Note that PCA-SDF deflects modes up to 100 σ, causing heavy con-
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(a) (b) (c) (d)

Figure 6.6: Occlusion and noise handling by PCA-SDF (top row) and DFM-
SDF (bottom row). The corrupted shape is pictured solid while the contour
represents the model response.

tour distortions which we corrected by restricting modes to ±2σ. In contrast, DFM-SDF

yields a sound reconstruction. See Figure 6.7-l for the whole evaluation results. Having

lower mean and variance in reconstruction errors, DFM-SDF clearly excels in the task of

occlusion handling. From this experiments we can infer that the rigidity of DFM-SDF

causing inferior results for low sample density in Section 6.3.2 proves beneficial for shape

distortions.

6.3.4 Projection Timings

Run times for our MATLAB implementations of pre-image algorithms on an Intel R© C2D

at 3GHz are presented in Table 6.3. Various parameter combinations are considered:

SDF domain sizes, dissimilarity norm, target dimension n and number of snail iterations

k. Timings do not include SDF restoration. PSS computes the projections very fast for

k = 6 and the L2-norm with timings below those of of PCA. MED is considerably slower

since the embedding has to be computed within the gradient descent. Thus the cost for

MED increases with sample pool size. The impact of higher target dimension n seems to
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Figure 6.7: FGNet-Test for shape occlusion by removing the mouth. Ex-
amples of model responses for mode restricted PCA-SDF (l) and DFM-SDF
(m), overall reconstruction errors (r). Solid shape represents the test shape
presented to the models, the red contour is the expected reconstruction and
the blue contour is the model response.

128 × 128 256 × 256 512 × 512
q n L2 W 1,2 L2 W 1,2 L2 W 1,2

PCA 60
30 5 24 148
59 12 54 279

PSS(k = 6) 60
2 3 15 10 67 222 2280
3 12 66 38 120 231 2330

MED 30
2 333 1829 1520 5080 5007 29860
3 718 2132 1879 5830 6592 43000

MED 60
2 710 3885 2743 8180 9470 62900
3 1080 3726 2640 10050 12750 95700

Table 6.3: Timings in (ms) for pre-image algorithms with various domain
sizes and parameters.

decrease for higher domain sizes. Overall, computing the Sobolev W1,2 is more expensive

since two SDF gradients are required.

6.4 Image Segmentation

Following Etyngier et al.[31], we now demonstrate how the DFM-SDF model can be inte-

grated to the task of level set based image segmentation and show the results.
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6.4.1 Geodesic Active Contours

A popular approach for segmentation is the Geodesic Active Contour (GAC) energy pro-

posed by Caselles et al. [8]. In its general formulation, the GAC energy is given by

EGAC =

∫ |C|
0

g(|∇I(C)|)ds. (6.1)

Here I is the input image and g is a monotonic decreasing function mapping to (0, 1].

Hence EGAC weights the Euclidean contour elements ds depending on the covered image

gradient. As shown in [8], minimisation of the energy can be achieved by deriving the

associated Euler-Lagrange equation. Formulated in the level set framework, the evolution

writes
∂φ

∂t
= g|∇φ|κ+∇g · ∇φ. (6.2)

The first term on the right hand side of above equation imposes a smoothness constraint,

driving the contour towards a minimal surface. The second term takes into account the

input image, slowing down or stopping the evolution at high gradients. An additional

normal flow term αg|∇φ| can be incorporated to bypass low gradient regions and increase

convergence speed.

6.4.2 Adding the Shape Model

Since the GAC is stated as an energy minimisation, it is a natural idea to add an energy

EPrior accounting for the shape prior knowledge. An intuitive approach is to define a force

that attracts the evolving SDF φt towards the shape manifold M [25, 31]. This amounts

to minimise the distance to its projection πM(φt) on the manifold . Another aspect to

address is the global transformation between evolving shape φt and the manifold shapes.

Therefore we introduce a similarity transform T (φ) mapping φt to the prior shape space.

The resulting energy is then given by Equation (6.3) leading to the overall segmentation

energy Equation (6.4) where γ is a weighting factor.

EPrior = d(T (φt), πM(T (φt)))
2 (6.3)

ESegment = EGAC + γEPrior (6.4)

In practice we alternate GAC and prior iterations with intermediate pose transform up-

dates. To increase convergence speed, we employ an adaptive weight γ and increase the
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prior influence when the GAC energy becomes static. In most of the following experiments

an initial value of γ = 0.3 was used.

6.4.3 Results

First we apply the pure GAC energy to a binary image from the walker data-set occluded

by vertical bars. As seen in Fig. 6.8-top, the GAC driven shape sticks to edges regard-

less of the disturbances. However, when augmenting the energy with SSM information,

the process overcomes the obstacles and yields a sound segmentation of the walker - see

Fig. 6.8-bottom. In another experiment we test the ability to handle topological changes.

Figure 6.8: Segmentation of an occluded binary image. Shape evolution is
from left to right. Pure GAC energy (top). Evolution including the shape
manifold (bottom).

Therefore we use a cup shape with distinct handle cavity and add severe distortions. The

evolution of the segmenting shape is shown in Fig. 6.9. As expected, the pure GAC energy

sticks to the outer cup boundary with the given initialisation. Incorporating the prior term

allows to bypass this minimum by gradually developing a cavity until the final result is

obtained. Note that the cup data-set could not be as easily modelled and segmented with

a point distribution model. Figure 6.9f shows the corresponding shape manifold for n = 3

along with projections yt of the evolving shape.

The DFM-SDF model can easily be integrated in other segmentation energies. For exam-

ple, when facing severe noise distortion, the Chan-Vese energy [9] is a preferable choice.
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(a) (b) (c) (d)

1
2

35681315

(e)
(f)

Figure 6.9: GAC prior segmentation: initial shape (a), DFM-SDF model
guided segmentation for iterations 10, 12 and 15 (b-d), result without prior
information (e), projection of the evolving shape on the cup manifold (f).

Replacing EGAC with the Chan-Vese energy in Equation (6.4), we obtain the result shown

in Fig. 6.10. As can be seen, the pure Chan-Vese energy en-wraps homogeneous regions

but can not account for occlusions. In contrast, the prior augmented energy yiels a sound

cup-shaped result while changing topology.

(a) (b) (c) (d) (e)

Figure 6.10: Chan-Vese segmentation: (a) initial contour, (b) result of pure
Chan-Vese energy, (c) - (e) prior enhanced segmentation process at iterations
3, 6 and 8.

We now introduce the manifold shape prior to medical image segmentation. Therefore a

total of 300 transversal slices of the SLiver 3D data-set [34] is trained to a model with n = 3.
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As artificial occlusion is imposed to the image, the pure GAC energy can not segment the

shape correctly Fig. 6.11b. However, projecting the GAC shape to the manifold, a sound

result is obtained - see Fig. 6.11d. Note that to overcome the low tissue contrast, histogram

equalisation is performed on the image.

(a) (b)

(c) (d)

Figure 6.11: Liver segmentation: (a) input image and initial contour, (b)
result with pure GAC energy. Introducing the shape prior: (c) iteration 5, (d)
iteration 15.
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7.1 Conclusion

In this work we investigated an approach for global non-linear SSMs combined with the

implicit shape representation by SDFs. SDFs avoid the need for correspondence and ad-

vantageously handle topological changes. The lack of correspondence may result in flawed

shape warps at non-overlapping regions. However, this shortcoming is compensated by

manifold knowledge so to achieve natural transitions between strongly differing shapes.

Although complex in nature, the DFM-SDF model has proven to give sound shape inter-

pretations at reasonable computational cost.

As we have seen, the DFM-SDF technique does not generalise as precisely to unseen

shapes as PCA-SDF does. The reason being is the rigid global nature considering the

most similar shapes only. In this respect the PCA-SDF approach is more flexible as it

may deflect some modes - being unintended for this purpose - to compensate for one unseen

feature while other modes serve other features. On the other hand, DFM-SDF benefits

from this very same rigidity in that disturbances such as noise and occlusion are tackled

robustly without attempt of false imitation. We saw that the distances involved in DFM-

SDF can not encode the location of variability. By contrast, PCA-SDF uses eigen-SDFs

resulting in better feature separation.

71
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In terms of model compactness, PCA-SDF might discard components up to required pre-

cision. Alike DFM-SDF could exclude shapes being sampled near by.

DFM-SDF applies very well to image segmentation as inaccurate model responses are

caught by low level image information while even severe image distortions are coped by

the the model.

7.2 Where to go from here

Several further evaluations and applications are worthy of consideration. The shape man-

ifold might be extended for multiple highly differing objects, being of interest for object

classification or prior based segmentation not tied to a specific object. Thus applications

such as activity recognition - e.g. hand gesture- or head pose estimation, shape retrieval

and animations come to mind. A rather challenging issue to address is better feature

separation. While distinct sub-contours such as the faces mouth could be handled inde-

pendently, separating sub-parts of a closed contour is not straight forward for SDFs. A

hybrid DFM-PCA model might be designed with PCA applied to clusters found by DFM,

so to combine the strengths of both.

In order to tackle strong global transform deviations, discrete transforms could be in-

corporated into the manifold. Another possibility is an adaptive learner being able to

accumulate shape knowledge on-the-fly. In a related manner, handling very large data-

sets could be approached by a hirarchical manifold that subjoins finer levels of detail on

demand.

Also worthwhile of investigation is model aided 3D reconstruction from multiple views.

Since the manifold framework is generic in nature, i.e. not bound to SDF shapes, other

shape representations might be incorporated. Moreover the approach could be applied to

appearance manifolds in the spirit of Cootes et al. [16].

For feature extraction we investigated in diffusion maps with a Gaussian kernel exclu-

sively. Hence an evaluation of other dimensionality reduction methods with possible data

dependent kernels would be interesting.
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