
Graz University of Technology

Institute for Computer Graphics and Vision

Master’s Thesis

Automatic segmentation of the glottis

from laryngeal high-speed videos using

3D geodesic active contours

Fabian Schenk
Graz, Austria, September 2014

Thesis supervisor

Prof. Dr. Horst Bischof

Thesis advisor

Dr. Martin Urschler

Ludwig Boltzmann Institute for Clinical Forensic Imaging





To My Mother





Abstract

During the last few decades our economy changed from a manual labor to a service ori-

ented one and speech, as the main form of communication between people, has gained

a tremendous economic value. Diagnosis and classification of voice and speech disorders

have become important research topics in recent years because generating an appropriate

voice signal plays an essential role in verbal communication. In this context laryngeal

high-speed videos have emerged as a state of the art method to investigate vocal fold

vibration, but the vast amount of data produced prevents it from being used in every day

clinical applications.

Segmentation of the glottal opening is an essential, preliminary step for voice and

speech disorder research. We present a novel, fully automatic segmentation method involv-

ing rigid motion compensation, salient region detection and 3D Geodesic Active Contours

segmentation. By using the whole color information and establishing spatio-temporal

volumes with time as third axis, our method deals with problems due to low contrast or

multiple opening areas. Efficient computation is achieved by a parallelized implementation

using modern graphics adapters and NVidia CUDA. A comparison to the seeded region

growing based clinical standard on a set of ground truth data shows that we achieve higher

segmentation accuracy.

Keywords. laryngeal high-speed videos, geodesic active contours, salient region detec-

tion, glottis, segmentation, larynx
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Kurzfassung

In den letzten Jahrzehnten fand eine Deindustrialisierung statt und unsere Gesellschaft

hat sich zu von einer industriellen zu einer dienstleistungsorientierten gewandelt. Sprache,

als wichtigstes Kommunikationsmittel zwischen Menschen, hat daher einen unglaublich

hohen wirtschaftlichen Stellenwert. Aus diesem Grund wurden die Diagnose und Klas-

sifizierung von Sprach- und Stimmerkrankungen auch in der Forschung immer wichtiger.

In diesem Zusammenhang haben sich Hochgeschwindigkeitsvideos des Kehlkopfs (LHSVs)

als wichtigste Methode zur Erforschung von Vibrationen der Stimmlippen etabliert, aber

die große Datenmenge verhindert einen vernünftigen Einsatz im klinischen Alltag.

Die Segmentierung der Glottisöffnung ist ein wichtiger, vorbereitender Schritt für die

Analyse von Sprach- und Stimmerkrankungen. In dieser Arbeit präsentieren wir eine neue,

vollautomatische Segmentierungsmethode, die Kamera- und Patientenbewegungen kom-

pensiert, die Glottis detektieren kann und eine 3D Geodesic Active Contour Segmentierung

durchfḧrt. Wir verwenden die gesamte Farbinformation und etablieren Zeit als dritte Di-

mension, um ein räumlich-zeitliches Volumen zu erstellen, was uns beim Umgang mit

geringem Kontrast oder mehreren Öffnungen hilft. Effiziente Berechnungen werden durch

eine parallele NVidia CUDA Implementierung auf der Grafikkarte ermöglicht. Ein Ver-

gleich mit dem auf region-growing basierten klinischen Standard auf einer Grundwahrheit

zeigt, dass unsere Methode eine höhere Genauigkeit aufweist.
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Medical Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Overview and Contribution . . . . . . . . . . . . . . . . . . . . . 11

1.5 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Motivation

During the last few decades our economy changed from a manual labor to a service ori-

ented one and speech, as the main form of communication between people, has gained

a tremendous economic value. With e.g. around 60 % of the jobs in the US requiring

communication skills and an abundance of 9,5 % of speech and voice disorders, they have

become a crucial part in any country’s economy [48]. Diagnosis and classification of these

disorders have become important research topics in recent years because generating an

appropriate voice signal plays an essential role in verbal communication. Voice is usually

generated by the glottis in the larynx, which consists of two vocal folds and the opening

between them (see Fig. 1.1). The primary voice signal is generated within the larynx by

the two opposing vocal folds when set into vibrations by streaming air provided by the

lungs [56]. The frequency and intensity of the voice signal can be varied within a wide

range by modifying muscle tensions, lengths of vocal folds and lung pressure [55].

Generally, a healthy voice requires symmetric and regular vocal fold oscillations [16, 24].

Perturbations of the acoustic speech signal can be caused by irregular and asymmetric

1



2 Chapter 1. Introduction

Figure 1.1: Several frames of a laryngeal high-speed video sequence showing a complete
cycle of glottis movement including the open and closed states.

vibrations, which results in hoarseness [26]. Eysholdt et al. [17] define hoarseness as

the unspecified symptom of a diseased larynx, which originates from irregular vocal fold

vibrations. The International Classification of Disease and Related Health Problems of

the World Health Organization classifies voice disorders according to etiological aspects∗.

Depending on whether organic abnormalities exist or not, they are then further divided

into organic and functional dysphonia. Therefore, for an investigation of voice disorders

both, the anatomy and vocal fold vibration patterns, have to be analyzed.

Due to the very high frequency of the vocal fold vibrations (e.g. 250 Hz in Fig. 1.1),

a high-speed camera with a frame rate of 4000 frames/s is used for the recordings. In

this context, laryngeal high-speed videos (LHSVs) have emerged as a very sophisticated

tool [13] to accurately record the vocal fold vibrations within the larynx, with the poten-

tial of image analysis based post-processing and investigation. Figure 1.1 shows a video

recording depicting a typical, complete vocal fold oscillation cycle with a duration of 16

frames, including the open and closed states. The main limitation of LHSVs is the vast

amount of video material produced in a single investigation, which makes a manual assess-

∗World Health Organization, International Classification of Diseases and Related Health Problems,
2010,http://apps.who.int/classifications/icd10/browse/2010/en#/R49.0, Accessed: 2014-09-12.
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ment very time-consuming and renders this method nearly impossible to use in everyday

clinical applications. Therefore, methods for automatically processing LHSVs with the

aim of detecting voice disorder patterns are highly relevant for speech disorder research.

Figure 1.2: This is a diagram of the glottal opening area over time, showing the opening
and closing cycles.

The automated segmentation of the glottis area is an important preliminary step for

later visual assessment of spatio-temporal plots (i.e., phonovibrograms [40], opening area

plots (see Fig. 1.2)). Typical obstacles for this segmentation problem are the drift of

the glottis due to patient and camera movements, fluid artifacts, brightness changes and

contrast inadequacies during acquisition. State of the art methods are far from ideal when

it comes to accuracy and efficiency. Processing speed is also limited due to required user

input and often necessary manual corrections that complicate the detection process even

further. Additionally, these methods neglect the available color information and lack a

proper motion compensation step. Therefore, a method to overcome these problems and

provide an automatic and robust way for the glottis segmentation is really important to

advance voice and speech disorder research. The presented work was done in cooperation

with the General Hospital Vienna (AKH Wien) and the Signal Processing and Speech

Communication Laboratory of Graz University of Technology, where research on LHSV-

based voice disorder detection is ongoing.

For this master’s thesis the following goals were defined:

• Designing a method to fully automatically detect and segment the glottal opening

with the possibility to process multiple recordings consecutively.

• Development of a fast and efficient algorithm, so that it can be used in everyday

clinical applications on a standard computer.

• Providing the user with the tools to manually refine the segmentation if necessary.
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1.2 Medical Image Data

The medical image data for the experiments and additional material for general testing

was provided by the General Hospital of Vienna. Most of the recordings were performed

by Dipl.-Ing. Philipp Aichinger, who currently establishes a database of LHSVs videos.

A schematic setup of the recording process is depicted in Figure 1.3, where it can be seen

that an endoscope with a high-speed camera (2) is inserted into the patient’s mouth to

record the vocal fold vibrations (1) in real time. During the acquisition process the patient

Figure 1.3: Typical recording setup for LHSVs (taken from [41]) and resulting single
frames. A high-speed camera (2) is attached to an endoscope in a 90◦ angle to provide an
optimal view of the glottis and the vocal folds (1). The video is then recorded from this
position in real time.

is instructed to generate sound to induce vocal fold vibrations. Depending on the research

question, the patient varies pitch or intensity of the voice. Usually a few consecutive

recordings are performed and afterwards the best ones are analyzed.

In the laboratory in Vienna a High Speed ENDOCAM 5562 from Richard Wolf GmbH

is used. It has an active-pixel sensor with a full color resolution of 512 x 384 pixels and

includes a microphone to record the voice as well. Different recording modes are possible

with the device but only the high speed mode is fast enough to accurately capture the

vocal fold vibrations. During high speed recordings it is not possible to use the full

resolution because the sensor can only record with 128 x 256 pixels at a very high frame

rate. One such color video is usually recorded at 4000 frames per second and has a length

of 2,048 seconds, resulting in a total number of 8192 single images. By reading only every

second pixel from the charge-coupled device array in the sensor a 256x256 chessboard-

like pattern is generated. The resulting missing data points are then interpolated using
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bilinear interpolation [21, p. 88].

Our algorithm can only process single images, so the frames have to be extracted from

the recording. For the in- and output we chose the Portable Network Graphics (PNG)

format, which is a raster graphics file format supporting color and gray-scale images. The

main benefit compared to JPEG is the lossless compression, which is extremely important

when the resolution is not really high. Color information is stored in three separate

channels representing red, green and blue (RGB) as a value between 0 and 255. These

images have to be stored in a folder and named using a 4 digit numbering system (e.g.:

0002.png, 6415.png). Memory requirements on the hard disk are usually between 500 and

600 MBytes per video.

1.2.1 Artifacts and Obstacles

The video material is essential for the whole image processing method but a perfect record-

ing is not possible. This is due to the acquisition being exhausting for both, the patient

and the doctor, the rather low resolution of the high-speed camera, noise, illumination

and anatomical reasons. We decided to exclude recordings where the glottal opening is

not visible from the experiments (see Fig. 1.4(a) and (b)).

Figure 1.4: In these two recordings the glottal area is not clearly visible and therefore they
were excluded from the experiments.

Even though common problems can be overcome by an experienced person controlling

the camera, there are still certain obstacles we have to deal with using image processing

techniques. Typical problems with the LHSVs will be explained in the following sections.
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Resolution

With a resolution of 256x256 the image size is quite small and as depicted in Figure 1.5

the glottal area only occupies a small part of the whole image. The border between the

glottal area and the vocal folds is not clearly visible and therefore an exact segmentation

with an algorithm or even by experts is very difficult.

Figure 1.5: The low resolution of the high-speed camera does not show the edges clearly.

Contrast

Poor illumination leads to parts of the recording appearing very dark because not the

whole color range (0-255) is used (see Sec. 2.2.1). This leads to rather small contrast

differences resulting in difficulties when finding the glottal opening and calculating edges

for the segmentation.

Non-homogeneous Background

A homogeneous background is very important to distinguish the glottal opening from its

surroundings. As depicted in Figure 1.6, there are typically two factors influencing the

homogeneity: anatomical structures and light artifacts. Blood vessels, the epiglottis and

other structures are normally visible in every recording. Light artifacts reflected by body

fluids like saliva are also very common and can result in small, brightly glowing points in

the images. In some videos there is also a reflection of the light source taking up a big

part of the image (see Fig. 1.6(b)), which may influence image registration.
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Figure 1.6: These three images depict the typical obstacles causing a non-homogeneous
background. Light artifacts caused by reflecting fluids are visible in all of them with (b)
showing an extreme case. Blood vessels and other structures are also common in every
recording. The epiglottis only appears in (b) and (c).

Patient and Camera Movements

In every recording a global drift occurs caused by breathing or an unsteady camera (see

Sec. 2.2.3) Depending on the patient and the experience of the doctor, this global move-

ment is different in all the videos and even unpredictable throughout one sequence. For-

tunately, these movements occur rather slowly in comparison to the vocal fold movement

due to the high frame rate of the LHSV recording. Therefore, they may be corrected using

image registration.

Partly visible Glottis

A completely and well visible glottal area is essential for a correct segmentation. Figure 1.7

shows that in some of the recordings the glottis is only partly visible. The glottal opening

in (a) looks very similar to the background because it is covered by saliva. In (b), the

reflected light source is covering a large part of the image resulting in difficulties with the

glottis detection. Anatomical structures cover the glottal opening in (c) and in Figure 1.4

(a) and (b) rendering a correct segmentation impossible.
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Figure 1.7: In (a) the glottal opening is covered by saliva, whereas in (b) the reflected
light source is an obstacle. In (c) an anatomical structure is covering the glottis.

1.3 Related Work

In recent years the number of people studying voice and speech disorders has increased

and new recording techniques have greatly extended the research possibilities. With the

introduction of LHSVs researchers have received a very powerful tool to analyze vocal fold

vibrations. The huge amount of data produced by this method has lead to the development

of computer-aided tools to study the video material. Especially the segmentation of the

glottis from LHSVs has received a lot of attention in the last decade. In general, the

previous approaches can be divided into seeded region growing (SRG) [41, 67], active

contour [34], a combination of these two [14] and histogram based methods [37, 43]. For

this section we will focus on three well-known and established algorithms and one very

recent work.

The first widely known segmentation method was developed by Lohscheller et al. [41],

who presented a segmentation approach using a seeded region growing algorithm [21, p.

785]. In this method the necessary initial seed points and a continuous threshold progres-

sion have to be manually specified by the user on a large number of frames throughout the

video, which is a tedious, time consuming task. A general obstacle is the crucial choice of

an appropriate homogeneity criterion, which can be very difficult. This is due to intensity

and brightness variations and unclear transitions between glottal opening and surrounding

tissue. A constant set of seed points is used to re-detect the glottis after a full closure. To

account for a glottal drift they divide the video into intervals and use the segmentation

of the maximum opening as seed points for the next interval. Even though this method

has emerged as the clinical standard, it has a few drawbacks. The biggest problem of
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this method is that a lot of user-intervention is necessary and most of the time the final

segmentation has to be refined as well because threshold based methods often suffer from

leakage or only partially segmented regions. Another drawback of this method is its lack of

a proper motion compensation step to account for patient or camera movements, because

the propagation of seed points does not always work well.

Demeyer et al. [14] developed a method, which avoids user-interaction by first analyzing

the video. The primary goals of this analysis are the detection of interesting frames

and getting an estimation of the vocal fold oscillation frequency. They define the most

important images per cycle as the ones with the maximum glottal opening, which is usually

a dark, big area. This particular frame can be detected by calculating the sum of pixel

intensities and taking the one with the lowest value. For the glottis localization they

look for dark, elliptical regions bordered by the brighter vocal folds using a Laplacian

of Gaussian. After a few filter steps they are able to detect the center of the glottis

and estimate its size. Then an SRG method is applied with an automatically calculated

threshold from the mean value of the already detected area until the segmented region size

is greater than previously estimated. This segmentation result is then propagated for- and

backward throughout the image cycle using per image level sets, which evolve the seed

regions towards the glottis edges. The detection of the glottal opening is not very robust

and the authors state that size may be underestimated due to inclination of the glottis.

Similar to [41] this algorithm can also have leaking problems due to the SRG approach

and motion is supposed to be compensated through result propagation. Another problem

is that the edges can not be calculated accurately without a denoising step, which will

later be discussed in Section 2.2.2. Further, the empirically selected parameters of the 2D

level set are crucial and the propagation heavily depends on the initialization from the

SRG step.

Karakozoglou et al. [34] proposed another interesting way for a fully automatic glot-

tis segmentation. First, they look for the frames with the maximum opening similar to

[14], which they call landmark frames (LF). Then they search these images for large,

nearly vertically oriented areas and apply an edge detection filter. With the following

connected component analysis [50] they find the vertically oriented object with the largest

area in each cycle. A bounding box is then computed for every frame to reduce calculation

time and memory requirements. The glottal drift and endoscope movements are compen-

sated by keeping the bounding box steady throughout every cycle. To avoid segmenting

frames without a glottal opening they exclude images with pixel intensities above a certain
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threshold and a bounding box far away from the one of the LF. They use an active contour

segmentation as proposed by Chan and Vese [10] using information obtained from the LF

like shape and area of the object of interest. The segmentation always starts from the LF,

where they use either an automatically computed threshold or an elliptic mask for the

critical curve initialization. After this process, the segmentation results are propagated

using the mask of the (n-1)th or (n+1)th frame as initial mask for the nth frame. Despite

showing promising results and being fully automatic, this method has certain limitations.

The calculation of the initial curve for the LF can be problematic due to leaking (especially

when using thresholding) or when the glottis does not have an elliptic form. Segmentation

accuracy of the active contours is also reduced by the noise in the image, which results in

imprecise edges (see Sec. 2.2.2). Changes in topology (i.e., two glottal openings) are really

hard to correctly segment with 2D active contours, a problem which could be overcome

by a 3D active contour approach.

Recently, a novel approach was proposed by Koç, Turgay and Çiloğlu [37], which is

based on image histogram modeling and thresholding. They try to detect the glottal open-

ing due to the area changes caused by the opening and closing cycles. The problem is that

the relatively small glottal area in most of the recordings does not change the histogram

enough to give any useful information but by looking just at the region containing the

glottis, the changes are significant. Accurately determining the region of interest (ROI) is

essential to make the histogram bimodal and sensitive to changes in the glottal area. To

find the glottis in the image they assume that the vocal folds are the most active structures

within the sequence and their movement produces pixel changes. By calculating the Total

Variation (TV) norm over a time sequence they get the largest TV values where there is

the most movement, which coincides with the glottal area. The non-uniform illumination

is a big issue when determining a threshold from the intensity histogram but they overcome

this problem by using a novel illumination model to calculate a reflectance histogram. As

a last step they present an automatic threshold computing method using Gaussian Mix-

ture Models and the reflectance. This work presents some interesting techniques, provides

solutions for common segmentation problems in LHSVs and the results look promising but

there are still a few limitations. They completely neglect the global drift and therefore do

not provide any type of motion compensation. This and the assumption that the vocal

folds are always the most active regions of the image imply that the detection of the ROI

is not very robust. When there is no movement over a longer period of time or the global

drift is high the TV calculation leads to wrong results and a wrong ROI detection.
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All methods presented in this section neglect the full color information and lack a

proper motion compensation step. The clinical standard [41] requires a lot of user-

interaction and has problems with leakage due to the SRG method, while other methods

[14, 34] have problems with special topologies and leakage due to the 2D nature of the

algorithms. With the very recent work [37] it is impossible to detect the glottis when the

vocal folds are not moving.

1.4 Overview and Contribution

This master’s thesis has its focus on a robust, automatic segmentation of the glottis. For

this purpose we developed a new image processing algorithm to overcome the drawbacks

and issues seen in previous methods (see Sec. 1.3).

Our method is fully automatic, computationally efficient and is also able to process

multiple recording consecutively, which is especially useful when working with different

videos from one patient or analyzing a whole database of videos. With a specially designed

preprocessing step we address most of the common problems induced by the acquisition

process and prepare the video for the segmentation. This includes contrast stretching, a

motion compensation step to correct rigid patient or camera drifts and edge-preserving

denoising to get clearer edges for the segmentation. We also offer a robust detection of

the glottis region in the image to address the difficult problem of finding the ROI. For this

purpose we use a novel salient region detection method adapted from eye-tracking, which

is also used for finding the initialization for the segmentation. We are also able to extract

more information compared to traditional methods based on gray-scale images by taking

the full color-information into account. For the image segmentation we establish time

as a third axis to generate a spatio-temporal volume. On this volume we perform a 3D

Geodesic Active Contour segmentation, which gives an advantage over more traditional

2D active contour approaches [14, 34].

A big drawback in most of the previous works is that the computation time is rather

slow and therefore the method can not be used in everyday clinical practice. Most of our

algorithm is implemented in CUDA (Compute Unified Device Architecture), a parallel

programming platform by NVidia, which uses the immense capabilities of modern graphics

adapters to greatly increase the speed of 2D and 3D image processing algorithms.
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1.5 Structure of this Thesis

This thesis is organized as follows. Chapter 2 gives an overview and a detailed description

of the different algorithms we use for contrast stretching, denoising, rigid motion compen-

sation, salient region detection and segmentation. Related work to these models and the

deductions are also shown in this chapter.

In Chapter 3 we present the results of our method by comparing it to the clinical stan-

dard [41] using a previously created ground truth. For that purpose we use an experimental

setup of randomly selected single and consecutive frames from different recordings.

The work is summarized and concluded in Chapter 4. Appendix A shows a publication

and a list of oral presentations based on this master’s thesis. Abbreviations and defini-

tions are described in Appendix B. Appendix C explains the two configuration files used

by our software and Appendix D finally gives an overview of the libraries and software

dependencies used for the implementation.
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2.1 Overview

An overview of the image processing pipeline we use to tackle the problem of fully auto-

matic glottis segmentation from LHSVs is depicted in Figure 2.1. The high-speed record-

ings are characterized by a short time span between the frames allowing us to treat the

LHSVs as 3D spatio-temporal volumes, where the typical behavior of the glottis is a re-

peated opening and closing process, which is responsible for producing sound. Our method

is split into three major blocks: preprocessing, region of interest (ROI) and seed region

detection, and segmentation. In the preprocessing phase we prepare the image material

for the segmentation and deal with obstacles (see Sec. 1.2.1) like non-homogeneous back-

ground, light-artifacts and global movement by performing denoising and frame-based

13
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Figure 2.1: Our method can be divided into three major blocks: preprocessing, region of
interest and seed region detection and segmentation

image registration. Then the glottis ROI is computed and in a similar fashion the seed

regions are calculated as initialization for the final segmentation. As a result we get a 3D

spatio-temporal volume of the opening and closing glottis.

After this brief overview, our method will be explained in greater detail as shown in

Figure 2.2. First, we utilize a simple contrast stretching operation to scale the color chan-

nels to the full range of [0, 255]. To get rid of small light and fluid artifacts and generate a

homogeneous background, we apply an edge-preserving denoising filter to the 3D spatio-

temporal volume. Global motion, which is present in most of the images, is compensated

by a rigid intensity-based registration of the single frames. Efficient computation is very

important for everyday clinical application, thus requiring a GPU based implementation.

Unfortunately, graphics adapter memory is still limited compared to CPU main memory.

To save memory, we limit computation to a ROI from the image. This ROI contains the

glottis, the interesting part for subsequent analysis, and achieves a reduction of the size

of the investigated video data.

The core of our method is the salient region detection using a Boolean Map based

approach, which is used for detecting the ROI and the seed regions located in the interior

part of the glottis. To find the correct ROI we search for the frame with the maximum

opening, compute the interesting areas and eliminate all that are not fulfilling a certain

criteria. For the seed region detection we also calculate the interesting areas and simply

multiply with the ROI to filter unwanted details. These seed regions are then used as

initialization in the following 3D Geodesic Active Contour segmentation. Our final result

then resembles the 3D spatio-temporal volume of the opening and closing glottal area. The

output can be single images or a volume file, which can be visualized using ITK-Snap [68]

or similar tools.
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Figure 2.2: Detailed image processing pipeline for the proposed automatic glottis segmen-
tation approach.
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2.2 Preprocessing

In the preprocessing phase the images are prepared for the segmentation and we ad-

dress obstacles like non-homogeneous background, light-artifacts and global movement

(see Sec. 1.2.1). Figure 2.3 shows the image processing sequence and the results after each

step.

Figure 2.3: The preprocessing pipeline showing the contrast stretching, denoising and
registration steps and their results.

First, we reduce contrast inadequacies using a simple contrast stretching operation.

The following denoising step generates a homogeneous background by removing unwanted

details like blood vessels, small light artifacts and noise while preserving the edges. Global

drifts are then compensated by a rigid motion compensation step accounting for translation

and rotation. To reduce computation time and memory requirements a ROI is detected

and a surrounding bounding box is calculated. After this step only the image information

within this bounding box is used for the calculations.

In the following sections every single step will be described in detail.

2.2.1 Contrast Stretching

Part of the source material is very dark, because not the whole contrast range from 0 to

255 is used, resulting in contrast inadequacies. This can lead to rather small differences

between glottal opening and background intensities, which makes a glottis detection and

edge computation rather difficult. We want to enhance the image quality of these pictures
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by performing a contrast stretching operation on all the color channels of the image. In

[37] the authors also perform an image enhancement operation before the actual processing

steps. For a gray-scale image the contrast stretching operation [21, p. 137] is defined as

Ioutput = (Iinput − oldMin)
newMax− newMin

oldMax− oldMin
+ newMin,

where newMin and newMax are the limits the image should be stretched to and oldMin

and oldMax are the old limits. For a color image the greatest contrast range among

the three color channels is calculated. This can be done by first calculating a histogram

for every color channel [21, p. 142], which is basically a data structure representing the

number of occurrences of each intensity value in an image. To calculate the new limits

we take the color value greater than 5 % of the intensities as newMin and the one greater

than 95% as newMax (see Fig. 2.4). The resulting transformation is then applied to all

the color channels separately.

Figure 2.4: Contrast stretching using the 5 and 95 percentiles of the histogram.
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2.2.2 Edge-preserving Denoising

Noise is a general problem in digital images and the principal sources arise during image

acquisition (digitization). The performance of imaging sensors is also affected by a variety

of factors [21, p. 335]. In all of the videos there is noise as well as small structures like

disturbing light artifacts and blood vessel greatly influencing following steps like salient

region detection (see Sec. 2.3) and edge calculation (see Sec. 2.5.2). The effects of noise and

small structures like blood vessels and light artifacts is shown in Figure 2.5. They greatly

affect the edge computation for the segmentation and result in more salient regions, thus

we have to include a denoising step in our method, which also provides image edges since

those are central to later segmentation.

Figure 2.5: The effect of noise and small structures like blood vessels and light artifacts
on the salient region detection and the edge detector function compared to a denoised
version.

In computer vision one often has to deal with problems like image denoising or restora-

tion, which are typically ill-posed. Hadamard [22] defined three conditions that have to
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be fulfilled for a problem to be well-posed :

• Existence: A solution x exists for the problem.

• Uniqueness: The solution x is unique.

• Stability: The solution x depends continuously on the initial conditions.

Every other problem is ill-posed. Solving ill-posed, inverse problems is only possible with

prior knowledge. A common way is to use the Bayesian approach on inverse problems,

which has been extensively studied.

The Bayesian approach leads to an optimization problem, which is given by:

max
u

p(u|f),

where we have to find a hypothesis u by maximizing the probability based on the ob-

servation f . Using Bayes theorem [1] we can define the maximum a posteriori (MAP)

as

p(u|f) =
p(f |u)p(u)

p(f)
,

with the prior p(u), conditional probability p(f |u) and a normalization term p(f), which

can be ignored for the optimization. From the Bayesian approach we will now deduce

the Tikhonov regularized model [54] for image denoising. The following derivation closely

follows the one in Markus Unger’s PhD thesis [57]. By assuming that the observed data

f is subject to Gaussian noise with a variance of σ2 and mean µ2, the likelihood can be

represented as

p(f |u) =
∏
x∈Ω

1√
2πσ

e−
(u(x)−f(x))2

2σ2

and the prior probability as

p(u) =
∏
x∈Ω

1√
2πµ

e
− |∇u(x)|2

2µ2 .
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If we introduce these terms into the MAP formulation we get

max
u

p(u|f) = max
u

{∏
x∈Ω

e
− (u(x)−f(x))2

2σ2 − |∇u(x)|2

2µ2

}

= max
u

{
e
−

∫
Ω

(u(x)−f(x))2

2σ2 +
|∇u(x)|2

2µ2 dx
}
. (2.1)

To maximize 2.1 we have to minimize the exponent, which leads to:

min
u

{∫
Ω

(u(x)− f(x))2

2σ2
+
|∇u(x)|2

2µ2
dx

}
= max

u
p(u|f).

Assuming 1
σ2 = λ and µ = 1 we get the convex formulation of Tikhonov denoising [54]:

min
u

{
1

2

∫
Ω
|∇u|2 +

λ

2

∫
Ω

(u− f)2dx

}
,

By replacing the quadratic regularization with the L1-norm, we get the ROF model,

named after its inventors Rudin, Osher and Fatemi [49]. The convex formulation of the

ROF model was introduced by Chambolle and Lions [8] as

min
u

EROF =

∫
Ω

|∇u|dx+
λ

2

∫
Ω

(u− f)2dx

 . (2.2)

with the original, noisy image f , the reconstructed image u and a weighting factor λ.

The first term is the regularization or total variation (TV) term, which punishes non-

homogeneous regions and the second one is the L2-data fidelity term, which makes differ-

ences between f and u expensive. λ determines the influence of the data fidelity term and

therefore sets the similarity between the original image f and the reconstructed, denoised

image u. The ROF model is giving better results than the Tikhonov-regularization model,

because it also preserves image edges. In Figure 2.6 three functions with different step

sizes are shown, which illustrate the edge-preserving effect. Smaller steps cost significantly

less in the Tikhonov model due to the quadratic regularization term, which favors smooth

transitions leading to a blur of the image. For the TV term the cost is always the same

and therefore only the data term is important for the final result, which results in a preser-

vation of edges or smooth transitions. TV regularization prefers flat over rippled functions

and the higher cost of noise and small structures is responsible for the denoising effect. In

the denoised images in Figure 2.7 small plateaus occur, which can be especially well seen
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Figure 2.6: Comparison between the quadratic regularization of the Tikhonov model and
the total variation (TV) regularization used in the ROF model based on three different
functions. Smaller steps cost less in the quadratic regularization because of the square,
whereas the TV regularization always costs the sum of all steps.

for λ = 1. This is a well known side-effect of TV regularization, called stair-casing effect.

A higher value reduces the denoising effect because differences become more expensive

and a lower value even smoothes over the edges. For our denoising problem we empirically

found a value of 25 to yield good results. We achieve efficient computation by using a

Figure 2.7: Denoising effects of λ, where a higher value reduces the denoising and a lower
one smoothes over the edges. We empirically determined a value λ = 25 for our method.
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continuous convex optimization scheme based on the primal-dual algorithm by Chambolle

and Pock [9]. This operation is performed on the 3D spatio-temporal volume utilizing the

graphics adapter in an NVidia CUDA implementation.

2.2.3 Image Registration

In practice, LHSVs always contain global movement caused by the patient and the camera

during the recording process, which can greatly effect the image segmentation quality. This

can happen due to breathing and the uncomfortable feeling of having an endoscope in the

mouth while creating different pitches and voice patterns.

In Figure 2.8 the difference between the original, fixed image I0 combined with the

contours of a registered and unregistered image In are shown. Without a proper regis-

tration step, the glottis would not always be in the same position, making it impossible

to generate a smooth 3D spatio-temporal volume from the single frames, which is crucial

for our method. Most of the previously published methods discussed in Section 1.3 also

identify these global drifts as a problem in the segmentation process. The solutions are

Figure 2.8: This image shows the importance of the registration by showing the contours
of the registered and unregistered on top of the original.
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quite different in every algorithm, depending on the final segmentation step. In [41] there

is already a lot of user-intervention necessary in the overall procedure, so they simply

let the user specify seed points in a lot of images and the result is then interpolated in

between. Other methods [14, 34] perform calculations for every opening and closing cycle

and assume that the movement within one of these cycles is negligible. Motion compensa-

tion in LHSVs has been a topic since the development of the first segmentation techniques.

Deliyski et al. [12] conducted a study of seven different methods, with two using image

cross-correlation, two minimizing the L2-norm and magnitude difference between two im-

ages, and three FFT-based methods. The evaluation was based on the computation speed,

the mean absolute error and the absolute range of error. While the FFT based methods

were by far the fastest, their accuracy was not among the best. They showed that the

magnitude of difference minimization method is a very good compromise between speed

and accuracy.

In our work we use a similar method but we additionally take rotation into account.

We use the well studied sum of absolute differences (SAD) [25, 62, 63, 65] as similarity

measure derived solely from the color pixel intensities of the three RGB channels. It

is an intensity based rigid registration, which means that translation and rotation are

compensated.

As depicted in Figure 2.9 a common problem in the videos is that very big structures

like the epiglottis ((a) through (d)) or light sources ((e) and (f)) move during the whole

recording process. Their movement would look like a global drift for an intensity based

algorithm taking the whole image into account because large parts of the image are in-

volved. To overcome this limitation we only use the pixels within the previously calculated

bounding box (see Sec. 2.4) for our calculation. We define the first image I0 in a sequence

Figure 2.9: In images (a) through (d) the epiglottis takes up huge part of the images,
while a light source causes problems in (e) and (f).

as fixed and register all the subsequent ones I1, .., In onto it. Then we calculate a similarity

value Ci,T between the image I0 and a following, transformed image Ii,T , i ∈ [1, n] using
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the SAD,

Ci,T =
1

N

∑
x

∑
y

∣∣∣∣∣∣∣∣
R0(x, y)−Ri,T (x, y)

G0(x, y)−Gi,T (x, y)

B0(x, y)−Bi,T (x, y)

∣∣∣∣∣∣∣∣ ,
where R,G,B represent the color channels of I0 and Ii,T , N the number of pixels and x

and y the pixel coordinates. N is not the same for every frame because due to rotation

or translation, pixels are moved outside of the image space leaving blank spaces. These

empty areas are filled with a default value to allow a later identification. To provide a

meaningful comparison between different results Ci,T we normalize each value according

to its area.

The optimal registration is found by applying combinations of rotation and translations

to Ii until the minimum of Ci,T is found. Since individual differences between frames are

small, it is feasible to solve this registration problem globally by such an exhaustive search

strategy over the two translation and the single rotation parameter in a limited range. In

our calculations we cover a translation space of [-2 px, 2 px] with a step size of 1 px in x-

and y-direction and a rotation space of [− π
240 ,

π
240 ] with a step size of π

720 . This results in

9 rotations and 5 translations in each direction, leading to a total number of 225 different

configurations to be tested.

The high frame rate of the recording allows us to speed up the registration process

even further because we can assume that there is no movement between two or even a few

consecutive frames, since global drifts occur usually more slowly over the videos. Therefore

we only register every tenth image to our fixed image I and apply the transformation

of the optimal registration to the four frames before and the five after the registered

frame (see Fig. 2.10). Efficient computation of this step is achieved by a parallel NVidia

Figure 2.10: Due to the high frame rate, only every 10th frame is registered and the
calculated transformation is applied to the images before and after it.
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CUDA implementation of the similarity computation on the graphics adapter. For the

transformation process we use a bi-cubic interpolation [53] and a prefilter kernel [60] for

correct interpolation results. The interpolation is a computationally expensive step and

we try to reduce the number of transformation processes to a minimum. In order to reduce

the 225 transformations, we only calculate the 9 rotations and perform the translation by

simply copying the data of the rotated image into an empty one with an offset according

to the translation.

2.3 Salient Region Detection

The salient region detection is an important tool in our method and we use it for two

different problems:

• Detection of the region of interest and the bounding box

• Finding the seed regions or constraints for the segmentation

In our case we face a saliency detection problem, where we have to calculate a saliency

map from an RGB-image to represent the interesting regions. The basic idea is to find

salient areas and show their likelihood to be of importance as intensity value in a mean

attention map. Figure 2.11 depicts the mean attention maps of generic image examples,

which were taken from [69].

We define an area surrounded by background and not connected to the borders as a

salient region. The glottal opening fulfills the requirements for a salient region because

it is a dark area surrounded by tissue and usually is in the center of the image. With-

out the previous denoising step more light artifacts caused by reflecting fluids and blood

vessels would be detected as interesting regions as they are also areas surrounded by a

homogeneous background (see Sec. 2.2.2).

Recently, saliency detection methods and the different possibilities to use them have

received a great amount of attention. Only a few of the important methods will be dis-

cussed in this work but for an extensive review of the state-of-the-art see [2, 47]. Most

saliency models detect complex or rare salient patches by using center-surround filters

or image statistics. In [29] conspicuous regions on multi-scale feature maps are detected

applying center-surround difference. Other methods use the negative logarithm of prob-

ability [5, 70] or the ”Bayesian surprise” [30] to find salient patches by calculating im-

probabilities. A recent method [19] utilizes a hierarchically whitened feature space, with
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Figure 2.11: With the salient region detection we can find interesting areas and their
likelihood to be of importance is shown as intensity value in a mean attention map. More
important regions are depicted in white, whereas background is dark-gray or black. Taken
from [69].

the square of the vector norms used as saliency metric. There are also models based on

spectral domain analysis [27, 39, 51]. In [39] it is shown that a few of these spectral

domain methods are equivalent to a local gradient operator and Gaussian blurring and

therefore large salient regions can not be detected. They overcome that problem by using

spectral scale-space analysis. Another type of model follows a machine learning approach

by training a support vector machine (SVM) [33, 36]. A modern approach, called Boolean

Map based Saliency (BMS), recently proposed by Zhang and Sclaroff [69] does not use

any of the above mentioned techniques but relies on topological structural information,

which is known to attract visual attention [11, 64]. This method shows promising results,

performs very well compared to other state-of-the-art methods, has great capabilities in

salient object detection and is very easy to implement. For the problem of the glottal area

detection we slightly modified this approach.

2.3.1 Boolean Map based Saliency (BMS)

A Boolean Map is a spatial representation that partitions a visual scene into two distinct

complementary regions [28], where one is the foreground and the other the background.

Figure 2.12 shows a typical Boolean Map (right) calculated from a color image (left). As it
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can be seen all the color information is lost during the process. Boolean in this case refers

to the division into two binary regions. BMS [69] was originally designed for eye-tracking

Figure 2.12: The input color image on the left and its Boolean Map on the right, where
white represents the foreground and black the background.

and uses the concept of showing an observer’s momentary conscious awareness of a scene

as a Boolean Map [28]. They assume that Boolean Maps can be generated from randomly

selected feature channels, and the influence of a Boolean Map B on visual attention can

be represented by an attention map A(B), which highlights regions on B that attract

visual attention. The saliency is then represented as mean attention map Ā, which can be

further processed depending on the task. Figure 2.13 shows that from an image I a set of

Boolean Maps B = B1, B2, ..., Bn is generated. For each of these maps an attention map

Figure 2.13: Saliency detection based on Boolean Maps, adapted from [69].

Ai is calculated and through linear combination the mean attention map Ā is computed.

To generate a Boolean Map we have to randomly threshold the image’s feature map φ(I)
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at a value θ:

Bi = THRESH(φ(I), θ),

φ ∼ pφ, θ ∼ pθ.

The threshold function THRESH(φ(I), θ) assigns 0 to every pixel smaller than θ and 1

otherwise. Feature channels are assumed to be in the range between 0 and 255 and can be

color, depth, orientation, motion, etc. φ ∼ pφ and θ ∼ pθ represent the prior distribution

of θ and φ.

In our case we only use the color information of one frame at a time. When generating

Boolean Maps we want salient regions to have a higher chance to be separated from the

background. To achieve that we need a uniform distribution of the threshold θ, which is

best represented by a color space that reflects the visual differences between colors. We

use the CIE Lab [18, p. 200] color space due to its perceptual uniformity, where L is

lightness, a the position between red and green and b the position between yellow and

blue. L is usually in the range between 0 and 100 but a and b do not have a certain range,

which is why we limit them to [−127,+127] in our conversion from RGB. For the actual

calculation all channels are translated to [0,255] using Lnew = 2.55Lorig, anew = aold+ 127

and bnew = bold + 127 and assuming that all of them are equally important for visual

perception.

In order to generate Boolean Maps we iterate through all the channels and sample at a

certain intensity threshold value θ, where 1 is assigned to every value ≥ θ and 0 to all the

others. After each iteration θ is increased by a fixed step size δS , which can be selected

by the user. The final saliency map can vary depending on step size, which is caused by

the structures in the image and the color distribution. For our evaluation we used δS = 3

and δS = 8. A higher δS means faster computation because not so many Boolean Maps

must be calculated.

From the Boolean Map B an attention map A(B) is computed using a Gestalt principle

for figure-ground segregation, which states that surrounded regions are more likely to be

perceived as figures [45]. This principle was also used in the salient region definition. A

surrounded region in a Boolean Map has a closed contour, which means that all areas

connected to the borders are not surrounded. Therefore, the holes of the Boolean Map,

which represent the salient parts, are determined by simply filling all the regions connected

to the borders. This operation is performed using a region growing method with the image

borders as seeds.
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To additionally emphasize the salient regions we dilate [21, p. 655] them. The resulting

attention maps have to be normalized to give small concentrated areas more emphasis.

For the normalization we use the Frobenius norm [20, p. 55] instead of the proposed

L2-normalization (largest singular value) because of the easier and faster calculation. The

Frobenius norm of an image with height h and width w is defined as

||A||F =

√√√√w−1∑
x=0

h−1∑
y=0

(axy)2.

The normalized attention maps Ai are then summed up to a mean attention map Ā and

a threshold operation with 1
δS

filters out weak signals. After that the map is differently

processed for the ROI and seed region detection.

2.4 Bounding Box and Region of Interest Detection

The glottis area only takes up around 25 % of the whole image and therefore most of the

image is not interesting for the analysis and segmentation. To guarantee a fast calculation

most of the data should be stored and processed on the graphics adapters, with memory

capacity being a limiting factor. Finding a region of interest (ROI) and a surrounding

bounding box therefore is a very important task to reduce both, the computation time

and the memory requirements. This step was also incorporated in previous works using

different approaches like searching for regions with certain properties [14, 34] or calculating

the region with the maximum movement [37].

We use a novel method for this task, which is depicted in Figure 2.14. Throughout the

video the glottal area varies resembling an opening and closing cycle (see Sec.1.1). The

frame with the largest opening is the best way to detect the ROI and derive the bounding

box from it. Due to the glottal opening being a dark area surrounded by tissue it can

be assumed that the sum of pixel intensities of the gray-scale image is lowest when the

opening is large and highest when there is none. In [34] they use the term landmark

frame (LF) for the frames with the maximum opening, which we will use in this thesis

in a similar fashion. The only difference is that we just have one LF because due to the

image registration we do not have to calculate a new one for each cycle. After finding the

LF we convert it to a gray-scale image using the formula for the luminance signal from
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Figure 2.14: Processing pipeline to find the region of interest and bounding box for the
largest glottal opening. Images were contrast-enhanced for visualization purposes.
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the ITU-R BT.709 standard for HDTV∗ leading to

Igray = 0.2126 · Ired + 0.7152 · Igreen + 0.0722 · Iblue,

with Ired, Igreen and Iblue describing the different color channels.

We also computed a saliency map from the LF and apply a connected component

analysis [50]. This method usually gives us many different, potential glottal opening areas

and choosing the right one is not an easy task. Requirements for the ROI are that it is a

large and dark area and we want the size to be the dominant factor. By multiplying our

potential ROIs with the previously calculated gray-scale image we get areas with a certain

size and intensity. From these regions we calculate a ranking value for all the potential

areas and afterwards choose the highest ranked as ROI. Our ranking value xi has to get

bigger for larger and darker areas and we want size to have a greater influence. Therefore,

xi is defined as

xi =
A2
i

|Ai|
,

where A2
i is the squared size to give more emphasis to small concentrated areas and |Ai| is

the sum of all the intensity values within the area. |Ai| can never be 0 because a connected

component can not have zero size. First, the smallest bounding box BB1 fully enclosing

the ROI is calculated and then a larger one BB2 is determined by using a fixed offset to

the left, right, bottom and top of the center point (see Fig. 2.15). In our application we use

an offset of 75 pixels to the top and bottom and 40 pixels to the left and right side leaving

us with dimensions of 150 x 80 for the final bounding box BB2. After the registration

process only the information within this bounding box is stored on the graphics adapter

to reduce the necessary memory and computation time. The ROI is very important to

calculate the seed regions for the final segmentation step.

2.5 Segmentation

The size of the glottal opening is a very important information for speech and voice disorder

research and its segmentation is the main purpose of this master’s thesis. All the previous

steps were necessary to optimally prepare the LHSVs for this most important part of our

∗ITU - International Telecommunication Union, Parameter values for the HDTV standards for produc-
tion and international programme exchange, 2002, http://www.itu.int/dms pubrec/itu-r/rec/bt/R-REC-
BT.709-5-200204-I!!PDF-E.pdf, Accessed: 2014-08-29.
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Figure 2.15: First, a small bounding box BB1 is found for the ROI and then a bigger one
BB2 is computed from center point using a fixed offset.

image processing pipeline. As depicted in Figure 2.16 we calculate the seed regions and

edge information from the preprocessed images and use them as initialization. These seed

regions then evolve towards the edges to yield the final segmentation.

2.5.1 Seed Region Detection

For the algorithm to know where to start the segmentation process we need initial seed

points or rather constraints. Finding this first initialization was also studied in the works

presented in Section 1.3. The easiest method was [41], where the user simply specifies

seed points. In [34] and [14] they go through the images looking for certain qualities like

large, nearly vertical oriented areas or dark, elliptical regions. Another way was presented

in [37], where they use the TV-norm to detect the most active regions, which are then

used as ROI.

We present a novel way of detecting the glottis by utilizing the previously described

salient region detection model (see Sec. 2.3). The seed region detection is performed on

each image and is very similar to the extraction of the ROI discussed in Section 2.4

but faster and simpler. After calculating the mean attention map we use a threshold

filter with 1
δS

, where δS is the saliency step size, to filter out weak signals. Then we

only extract the information inside the previously calculated bounding box (2.4) from

the image. In the next step we multiply with the ROI to remove all unwanted salient

regions in the image, which avoids the time consuming connected component analysis and

ranking used in the ROI calculation. The resulting area is still too large to be used for the
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Figure 2.16: First, a bounding box is cut out from the preprocessed images and the edges
are computed from the gray-scale image. The seed regions are determined using a salient
region detection and the previously calculated ROI.

segmentation, so we use a thresholding operation to set all pixels above a certain intensity

to zero. This threshold value is the mean intensity gray-scale value of the previous seed

region. It is possible that the initialization is still equal or a little bit larger than the

actual segmentation and we would directly start at the outer edges of the glottal area,

which can result in a wrong segmentation. We overcome this problem by performing an

erosion [21, p. 525] to reduce the initial segmentation. If the initialization is very small,

this process sometimes eliminates the complete seed region of this frame but thanks to the

3D segmentation we have the information of the previous and next frame to work with.

2.5.2 3D Geodesic Active Contours

For segmentation we apply the 3D Geodesic Active Contour method. The original Snakes

or Active Contour model, which deforms an initial contour C0 towards the boundaries of

an object, was developed by Kass et al. [35]. This deformation is performed by minimizing
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Figure 2.17: The seed region detection is divided into three major blocks: the salient
region detection, the filter step with the ROI to get rid of unwanted areas and the final
mean threshold filter.

a functional, whose (local) minimum is at the boundaries of the object. For a parametrized

planar curve C(q) : [0, 1]→ R2 and an image I : [0, a]× [0, b]→ R+, in which we want to

detect the object’s boundaries, the classical approach is given by

E(C) = α

∫ 1

0
|C ′(q)|2dq + β

∫ 1

0
|C ′′(q)|2dq − λ

∫ 1

0
|∇I(C(q))|dq, (2.3)

with α, β and λ being real positive constants. The first two terms represent the internal

energy and control the smoothness of the contour, whereas the third term is the external

energy, which is responsible for attracting the contour towards the object. To solve the
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active contour problem a curve C must be found that minimizes E with respect to the

given constants α, β and λ. Although this method has been used for many different

applications [42] [66] [32] especially in medical image segmentation, it also has certain

limitations. The main limitation is that it is not possible to detect multiple objects in an

image because the topology of the initial curve will be the same as the one of the final

curve and therefore this method is not able to deal with changes in topology. Another

problem is the parameter estimation to determine a trade-off between proximity to the

object and smoothness.

To overcome some of the limitations of the classical Snakes model, Caselles et al. [7]

introduced the Geodesic Active Contour (GAC) model. The following derivation was

established with the help of [23, 57]. In order to derive the GAC model Caselles et al.

only considered a certain instance of the original model by setting β = 0, which leads to

E(C) = α

∫ 1

0
|C ′(q)|2dq − λ

∫ 1

0
|∇I(C(q))|dq. (2.4)

This simplification is possible because the regularization effect on the GACs comes from

curvature based curve flows obtained only from these two terms. To minimize 2.4 the value

of |∇I| has to be maximized. −|∇I| reaches the lowest value at the edges, so it acts like an

edge detector and stops at the minimum point of the curve. We can then define an edge

detector function, which is high for flat areas and low for strong edges. In mathematical

terms this means a strictly decreasing edge detection function g : [0,+∞) → R+ in a

way that limr→∞g(r) = 0. Therefore, −|∇I(C(q))| can be replaced by the edge detection

function g(|∇I(C(q))|)2 leading to

E(C) = α

∫ 1

0
|C ′(q)|2dq + λ

∫ 1

0
g(|∇I(C(q))|)2dq. (2.5)

After a few calculations using the metric gij = 4αλg(|∇I(C)|)2δij and E0 = Eint −
Eext = 0 we get the length LR as

LR :=

∫ 1

0
g(|∇I(C(q))|)|C ′(q)|dq.

For details please refer to [7]. The minimization problem (2.4) has been transformed

into a geodesic computation in a Riemannian space. From the classical Euclidean length
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L(C) :=
∮
|C ′(q)|dq =

∮
ds we get |C ′(q)|dq = ds and obtain a new definition of the length

LR :=

∫ L(C)

0
g(|∇I(C(q))|)ds,

which weighs the Euclidean length element ds by g(|∇I(C(q))|) and therefore takes edge

information into account. This leads to the GAC model, which is defined as the following

variational problem:

min
C

{
EGAC :=

∫ L(C)

0
g(|∇I(C(q))|)dq

}
. (2.6)

The minimization of 2.6 is equal to finding a geodesic curve in a Riemannian space. Using

a steepest-descent method for minimizing, we end up with the curve evolution equation

∂C(t)

∂t
= g(I)κ

−→
N − (∇g(I) ·

−→
N )
−→
N,

where κ is the Euclidean curvature and
−→
N the unit inward normal. This is equal to the

following level-set representation with c = 0 (no constant velocity):

∂u

∂t
= g(c+ κ)|∇u|+∇u · ∇g,

One way to globally minimize 2.6 are graph based approaches like the one proposed by

Boykov et al. [3], which approximates the Euclidean length element by partitioning a graph

based on the image. Bresson et al. [4] introduced a different approach using the weighted

Total Variation, which is defined as

TVg(u) =

∫
Ω
g(x)|∇u|dΩ. (2.7)

For u being a characteristic function 1C , Bresson et al. showed that EGAC (2.6) is equiv-

alent to TVg(u) (2.7). The characteristic function 1C is a closed set in the image domain

Ω and C represents its boundaries. By allowing u to vary continuously between [0, 1], we

get a convex functional for (2.7) and therefore we are able to compute a global minimizer.

Looking at the definition of the weighted TV model (2.7) we can see that a global mini-

mizer is given by the trivial solution C = 0 (a point), thus we need additional constraints

to get meaningful results. Although this only approximates the original GAC energy, the

choice of a suitable threshold in [0, 1] is not critical in practice. A threshold value of
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0.5 was used in our implementation. In [4] they used a TV-L1 data fidelity term, which

resulted in the following minimization problem:

min
C

{
EB :=

∫
Ω
g(x)|∇1C |dΩ + λ

∫
Ω
|1C − f |dΩ

}
,

where u is approximated by a binary function 1C . A similar approach was used by Leung

and Osher to unify denoising, segmentation and inpainting, where they used the weighted

TV (2.7) with a spatially varying L1 data fidelity term [38] and the continuous formulation

of u instead of 1C giving

min
C

{
EL :=

∫
Ω
g(x)|∇u|dΩ +

∫
Ω
λ(x)|u− f |dΩ

}
. (2.8)

Including various local constraints was also described in [58], showing promising results

for different medical gray-scale datasets. We use a Geodesic Active Contour segmentation

method similar to Unger et al. [59], but we replace the data term with the one proposed

in [46]. The variational image segmentation model is then defined as

min
u∈[0,1]

{
ESeg :=

∫
Ω
g(x)|∇u|dΩ + λ

∫
Ω
ufdΩ

}
. (2.9)

Predefined constraints can be included into the energy functional because f is provided

by user, where f = −∞ indicates foreground and f = +∞ background. To minimize the

second term of 2.11 u tends to 0 for the background (f = +∞) and 1 for the foreground

(f = −∞). Note that in our implementation we use constants to indicate hard fore-

and background, which are then translated to the correct u values as mentioned above.

Instead of letting the user choose constraints we calculate seed regions (see Sec. 2.5.1)

using the salient region detection described in Section 2.3. These seed regions are then

evolved iteratively towards the edges of the image.

λ is a trade-off between the constraints and the contour. For our algorithm we used a λ

value of 0.01.

The edge detector function g(x) in 2.11 has not been discussed yet, but is an important

part of the segmentation model. In their work [7], Caselles et al. suggested an edge

detector function

g =
1

1 + |∇Î|p
,
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where Î is a smoothed version of I and p = 1 or 2 for the GAC model in 2.6. The authors

used Gaussian filtering to compute Î and stated that other filters and decreasing functions

of the gradient are possible as well. Unger et al. [59] proposed an edge detector

g(I) = e−α|∇I|
β
, (2.10)

using α = 10 and β = 0.55. The authors also denoise the image I using the ROF

model [49] (see Section 2.2.2) before the actual edge computation, to ensure that noise

does not influence the edge image and the GAC energy is only computed on significant

edges (see Fig. 2.5).

In our work, we use ROF denoising already in our preprocessing phase and then compute

the edges (2.10) using α = 15 and β = 0.55 from the denoised gray-scale volume. For the

conversion we use

Vgray = 0.2126 · Vred + 0.7152 · Vgreen + 0.0722 · Vblue,

with Vred, Vgreen and Vblue representing the different color volumes. We also evaluated the

edge detector 2.10 on a full color volume, which did not give clear edges. The algorithm

is directly used on the 3D spatio-temporal volume and leads to a smooth minimal surface

segmentation solution. As the numerical optimization scheme we use the primal-dual

algorithm from Chambolle and Pock [9], which is extensively explained in [57]. Efficient

calculation is achieved by using the graphics adapter and an NVidia Cuda implementation.

2.6 Manual Segmentation Refinement

We developed a fully automatic method to segment the glottis, but there is always the

possibility that the segmentation is not accurate enough. Therefore, one of the goals of

this thesis is to provide the user with a tool to correct the segmentation if it should be

necessary (see Sec. 1.1). Generally there are two different problems that can arise during

the segmentation process:

1. The ROI and bounding box is not detected correctly, which results in a wrong

segmentation.

2. The seed regions are not correct, which can be caused by the ROI being too large

or miss detections due to artifacts or dark areas.
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The first problem can be solved by using a configuration file blocks.ini (see Appendix C),

where the user can specify the landmark frame and bounding box for a certain part of the

recording. Our algorithm then only searches for the ROI inside this predefined bounding

box.

For the second problem we use an interactive segmentation tool developed by Urschler

et al. [61]. It uses the same GAC segmentation model as we do, which is defined as

min
u∈[0,1]

{
ESeg :=

∫
Ω
g(x)|∇u|dΩ + λ

∫
Ω
ufdΩ

}
, (2.11)

where f contains the constraints or seed regions. With this software it is possible to load

the seed regions calculated by our method and refine them. Completely new ones can also

be added if the topology of the glottis is special (e.g. multiple openings). Figure 2.18

shows the typical scenario where the constraints in the left image are not enough for a

complete segmentation whereas an additional region leads to a much better result.

Figure 2.18: On the left side the seed region (green) is not enough for a correct segmenta-
tion (red), whereas on the right side an additional region was added with the segmentation
tool [61] leading to a much better result.

The tool also has denoising and segmentation capabilities, which allows the user to

easily try different parameters for edge calculation, denoising and segmentation.
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2.7 Summary

In this section we described the different steps and algorithms used in our work. We

start with a preprocessing phase to deal with common problems like non-homogeneous

background, light and fluid artifacts, and the global drift in order to prepare the video

sequence for segmentation. This phase incorporates contrast stretching, ROF denoising

and intensity-based rigid registration. For finding a ROI and seed regions, which are then

used as initialization for the segmentation, we use a salient region detection. The final

step gives us a segmentation of the 3D spatio-temporal volume of the glottal area using

3D Geodesic Active Contours.
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3.1 Implementation Details

A fast and efficient implementation was very important in order to use the proposed

automatic glottis segmentation method in everyday clinical applications. For that purpose

we decided to use C++ because it is a very flexible and efficient language. The main

speed up in our algorithm comes from the use of parallelized computations on the NVidia

graphics adapters. CUDA is a platform developed by NVidia and offers the basic methods

to access the GPU. Another abstraction level was introduced by a special framework

developed at ICG and LBI, which provides implementations of common image processing

algorithms and easily accessible data structures. For reading and writing image files to and

from the hard disk we use the QT4-framework, a cross-platform application framework.

Due to the memory limitations of the graphics adapter not all the 8192 images of one

video can be processed at once and therefore we divide the whole recording into blocks

(see Fig. 3.1). Each block is treated independently and has a predefined size BS, which

can be configured according to the memory capacity of the graphics adapter. There is

a certain overlap OV between the single blocks to prevent errors at the borders during

41
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denoising and segmentation. Even though each block is processed completely, only part of

it is actually taken as output. In the first block BS− 1
2OV and in all the others BS−OV

images are used.

Figure 3.1: Due to memory limitations on the graphics adapater the recording is split into
blocks, which are then processed separately.

3.1.1 Configuration

In our method there are a lot of different values to be set and in this section we will state the

standard settings we used for the experiments. For every recording a different setup leads

to the best results but we chose values best suited for a wide range of videos. These values

are fully configurable by the user using two INI files, which will be explained in detail in

Appendix C. Basically there is a configuration file for the method itself (config.ini) and one

for later user-intervention like bounding box or LF specification (blocks.ini). Table 3.1.1

shows the standard setup we used for our experiments.

3.2 Evaluation

To evaluate our method we compared our results to an implementation of the clinical

standard [41] on a set of ground truth (GT) images. On all the frames an experienced

computer vision researcher has performed a manual segmentation of the glottal opening,
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Table 3.1: This table shows the standard configuration values, which were used for the
evaluation.

Standard configuration values

Bounding Box

Width 80 px

Height 150 px

Block settings

Block size BS 1500 frames

Block overlap OV 10 frames

Denoising settings

Trade-off factor λ 25

Maximum Iterations 10000

Registration settings

Angle range π
240 (translates to [- π

240 , π
240 ])

Angle step size π
720

Translation range 2 px (translates to [-2 px, 2 px])

Translation step size 1 px

Default fill value 280

Register every ... frame 10th

Salient region detection

Step size δS 3 and 8

Segmentation

α for edge computation 15

β for edge computation 0.55

Trade-off factor λ 0.01

Maximum Iterations 10000

Landmark frame detection

Images to check 150 frames

which was investigated and corrected by an expert in kymography and voice disorders. In

order not to influence the annotation, it was performed without knowing, which videos

were from sick or healthy patients. We decided to evaluate on three video sequences with

many consecutive, annotated frames including one or more opening and closing cycles as

well as on single frames. For that purpose we designed four different experiments with

their own data sets:

• Experiment 1: 63 frame video sequence, where only every second frame was an-

notated.

• Experiment 2: 61 frame video sequence.

• Experiment 3: 33 frame video sequence.
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• Experiment 4: 30 randomly picked frames.

Experiment 4 was especially designed to give a broad overview of the segmentation qual-

ity, but 5 out of the 30 frames caused major problems, so we excluded them from the

evaluation. These problems will be discussed in Section 3.4 and might be addressed in

future work. To show the benefits of the 3D segmentation we decided to also segment

±100 frames around the chosen sequence or single frame.

We compare our proposed method and the reference implementation of the clinical

standard [41] using the following measurement methods.

Dice coefficient

To evaluate our method an overlap measure between the ground truth and our results has

to be calculated. For that purpose we use the Dice Coefficient (DC) (sometimes also called

Sørensen-Dice index) [15, 52], which is a statistical value for comparing the similarity of

two samples by calculating an overlap between 0 and 1, which is then converted into a

percentage. It is defined as

DC =
2 |A ∩B|
|A|+ |B|

,

with A the ground truth and B the proposed segmentation. Even though the DC is a

well established way to compare two segmentations, it has a limitation, which is especially

crucial in our case. Due to the opening and closing cycles of the glottis, the segmentation

area varies over time and can get very small or even disappear. If the area is small, even a

tiny difference between the two segmentations has a great impact on the overlap measure,

even though the absolute error is small. Figure. 3.2 illustrates this, since on the left the

absolute segmentation error is 10 pixels and the DC still gives 94 % compared to the right

frames with an absolute error of 1 pixel and a DC of 85 %.

Over- and Undersegmentation

A common way to compare a segmentation to a ground truth is the calculation of the

Sensitivity (also Recall), the Specificity and the Precision, which are defined as:

Sensitivity =
TP

TP + FN
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Figure 3.2: This image shows the problems with the DC and small areas. Even though
the absolute error in the left segmentation is 10 times higher than the one in the right
picture, the DC is better for the bigger area on the left.

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

TP = number of true positives, pixels segmented in the GT and by the algorithm.

FP = number of false positives, pixels segmented by the algorithm but not in the GT.

TN = number of true negatives, pixels not segmented by the algorithm and the GT.

FN = number of false negatives, pixels not segmented by the algorithm but in the GT.

The Sensitivity tells us how much of the GT we actually cover with our segmentation

whereas the Specificity does the same for the background. A problem here is that an

image, where every pixel is part of the segmentation, would give an optimal score for

Sensitivity, thus we can not use this value alone. With the Specificity we have the same

problem when nothing is segmented. Another obstacle is that the background area is very

large compared to the actual foreground and errors of a few pixels are too small to have

any effect. By computing the harmonic mean of the Precision and Sensitivity we get the

F1 score:

F1 =
2TP

2TP + FP + FN

In [44] it was shown that the DC is equal to F1 score and therefore it is not really useful

for our evaluation.
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As representation of over- and undersegmentation we will use the absolute values FP

and FN . The absolute segmentation error εabs is given as the sum of these two.

Figure 3.3: The ground truth, three different segmentations and the scores we use for the
evaluation of the results.

Segmented Area

The most intuitive way of comparing segmentations is a simple comparison of the segmen-

tation area, which gives us a basic idea if the results can be correct. A limitation here is

that we do not get any idea if the segmentations are in the same place in the image and

that is why we have to take the FN and FP values into account.

3.3 Results

In this section we present the results of our automatic glottis segmentation method and

compare them to a previously annotated set of ground truth data. Further, we compare

our method to the clinical standard [41] in order to show an improvement to a traditional

approach. All the calculations were performed on a standard Linux computer with a

GeForce GTX 580, Intel Core i7 (8 cores/3.4 GHz), 8 GB of memory and Ubuntu 14.04

LTS.

For our method we used two different step sizes δS = 3 and δS = 8 for the salient region

detection to show the differences in the outcome. The presented results were created

completely automatically without any user corrections or refinement. Figure 3.5 shows
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one qualitative results for Experiment 1, 2, 3, while all the single frames of Experiment 4

are depicted in Figures 3.5, 3.6, 3.7 and 3.8.

We use four different values to measure the quality of the segmentation - segmented

area, Dice Coefficient (DC), number of false positives (FP) and number of false negatives

(FN). A higher DC and lower FP and FN values indicate a better segmentation. The

mean x̄ and median x̃ values of the four experiments are shown in Table 3.3, with the best

scores for the DC highlighted. For Experiment 4 the results for the 25 single frames are

shown in Table 3.3 and 3.4. Figure 3.4 shows a separate box-whisker plot of the DC for

all four experiments with the proposed method in turquoise (δS = 3) and orange (δS = 8),

and the SRG-based clinical standard in red. Each box has the median as central mark

(red line) and its edges are the 25th and 75th percentiles. The whiskers represent the most

extreme data points not considered outliers, which are plotted separately (red cross). If

the intervals of two data sets described by their notches do not overlap, the medians are

significantly different at the 5 % significance level.
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Figure 3.4: This box-whisker plot shows the DC results of the four different experiments
with the proposed method in turquoise for δS = 3 and orange for δS = 8, and the SRG [41]
version in red.
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Table 3.2: The mean x̄ and median x̃ values of the segmentation evaluation of the three video sequences (Experiment 1,2,3) and
the randomly picked frames (Experiment 4). We evaluated the Dice Coefficient, false positives (FP), false negatives (FN) and
the segmented area.

DC [%] FP [px] FN [px] Area [px]

# δ3 δ8 SRG δ3 δ8 SRG δ3 δ8 SRG GT δ3 δ8 SRG

Experiment 1 - 63 frame video sequence, every second frame annotated

x̄ 73.4 75.5 56.6 29.7 30.3 41.2 5.8 5.1 28.7 115.0 138.9 140.2 127.5

x̃ 86.1 85.9 67.4 18.5 21.0 49.0 2.5 2.0 28.5 106.0 151.0 154.5 123.5

Experiment 2 - 61 frame video sequence

x̄ 53.7 52.7 35.5 10.4 10.6 72.4 44.8 43.9 51.2 92.7 58.3 59.4 113.9

x̃ 61.3 60.5 41.6 4.0 4.0 46.0 40.0 39.0 45.0 93.0 51.0 55.0 85.0

Experiment 3 - 33 frame video sequence

x̄ 91.5 91.3 78.8 5.3 5.3 62.2 44.0 44.7 64.7 332.4 293.7 293.0 329.8

x̃ 92.7 92.6 79.8 5.0 5.0 62.0 45.0 45.0 65.0 311.0 288.0 288.0 315.0

Experiment 4 - 30 randomly picked frames

x̄ 71.8 73.9 53.0 97.8 45.2 101.1 45.8 43.9 81.5 196.5 248.5 197.7 216.1

x̃ 76.7 76.4 54.5 10.0 14.0 35.0 34.0 32.0 62.0 161.0 124.0 138.0 145.0



5
0

C
h

ap
ter

3.
E

x
p

erim
en

ts
an

d
R

esu
lts

Table 3.3: The first part of the evaluation results of the randomly picked frames (Experiment 4). We evaluated the Dice
Coefficient, false positives (FP), false negatives (FN) and the segmented area.

DC [%] FP [px] FN [px] Area [px]

# δ3 δ8 SRG δ3 δ8 SRG δ3 δ8 SRG GT δ3 δ8 SRG

1 82.5 75.7 22.1 3 25 0 34 32 106 121 90 114 15

2 67.1 68.7 28.9 1 0 526 96 93 73 195 100 102 648

3 81.3 81.7 19.0 13 14 1039 94 91 183 326 245 249 1182

4 73.3 74.2 47.8 21 33 27 49 40 91 145 117 138 81

5 88.5 88.5 79.0 7 7 59 49 49 53 264 222 222 270

6 73.7 73.7 83.4 0 0 50 159 159 73 382 223 223 359

7 86.1 84.5 80.5 3 3 33 36 40 29 157 124 120 161

8 82.5 84.5 66.7 6 6 11 14 12 25 61 53 55 47

9 92.9 92.8 84.2 1 1 108 62 63 51 474 413 412 531

10 80.9 81.5 55.9 47 47 4 24 22 105 174 197 199 73

11 71.6 76.4 69.1 72 73 26 99 75 135 315 288 313 206

12 63.7 63.7 50.4 0 0 11 89 89 107 167 78 78 71

13 83.8 83.8 30.6 0 0 5 108 108 317 388 280 280 76



3.3
.

R
esu

lts
51

Table 3.4: The second part of the evaluation results of the randomly picked frames (Experiment 4). We evaluated the Dice
Coefficient, false positives (FP), false negatives (FN) and the segmented area.

DC [%] FP [px] FN [px] Area [px]

# δ3 δ8 SRG δ3 δ8 SRG δ3 δ8 SRG GT δ3 δ8 SRG

14 59.5 59.5 52.6 52 52 119 16 16 0 66 102 102 185

15 65.3 68.0 43.6 4 4 50 13 12 7 29 20 21 72

16 85.2 85.3 58.1 100 102 81 23 21 190 378 455 459 269

17 92.8 92.8 83.4 7 7 50 40 40 62 343 310 310 331

18 14.6 39.1 79.7 1802 477 23 6 6 39 161 1957 632 145

19 23.7 23.7 0.0 8 8 14 50 50 59 59 17 17 14

20 76.7 76.5 54.5 173 180 41 10 7 179 311 474 484 173

21 83.1 87.5 54.8 45 28 28 12 12 84 152 185 168 96

22 60.3 60.3 49.1 19 19 51 31 31 30 69 57 57 90

23 56.9 65.2 29.5 31 18 120 13 13 14 42 60 47 148

24 61.9 73.7 20.0 10 5 17 6 5 15 19 23 19 21

25 86.4 86.4 81.7 20 20 35 12 12 11 114 122 122 138
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3.4 Discussion of Results

The results show that our fully automatic segmentation approach yields good qualitative

results, which are promising for voice and speech disorder research. It also overcomes

certain problems of the SRG-based clinical standard [41] like leakage, over- and underseg-

mentation, and outperforms it in all four experimental setups.

The proposed method with salient step size δS = 3 performs better than the reference

implementation of the clinical standard with mean DC values (x̄) of 73.4, 53.7, 91.5, 76.7

compared to 56.6, 35.5, 78.8, 53 and median values (x̃) of 86.1, 61.3, 92.7, 76.7 and 67.4,

41.6, 79.8, 54.5. The SRG method has a problem with leakage as depicted in Figure 3.5

(Exp. 1 (e), Exp. 2 (e) and Exp. 4 (2e, 3e)), while with our method a similar effect only

occurs once in Figure 3.7 (18c, d). Both approaches have limitations when the glottal

opening is very small as can be seen in Figure 3.8 (19). It also performs slightly better

than the version with salient step size δS = 8 with mean values (x̄) of 73.4, 53.7, 91.5, 76.7

compared to 75.5, 52.7, 91.3, 73.9 and median values (x̃) of 86.1, 61.3, 92.7, 76.7 and 85.9,

60.5, 92.6, 76.4. Both versions of our method show a significantly better median value

than the clinical standard at the 5 % significance level because their intervals, represented

by the notches of the box plots, do not overlap in all of the experiments. As mentioned in

Section 2.3, the main benefit of a larger step size is the lower calculation time. Using δS = 8

instead of δS = 3 results in a speed-up of around a factor 2, while the results are similar.

The computation of a block with 1500 frames at δS = 8 takes approximately 5 minutes

and for a whole video around 30 minutes. Some of the outliers in the box-whisker plot (see

Fig. 3.4) can be explained due to the nature of the Dice Coefficient, which over-emphasizes

relatively small mistakes for small structures (i.e., missing a ground truth segmentation

that only consists of a single pixel would result in DC = 0). The segmentation of the

two video sequences (Experiment 1 and 3) worked very well, while there were problems in

Experiment 2 and 4, which will be discussed in the next section.

3.4.1 Image Segmentation Problems

In Experiment 2 the narrow opening causes problems when detecting the seed regions

as initialization for the segmentation. An erode operation is performed on every seed

region, which can lead to the vanishing of very small areas. This is usually not a problem

because the glottal opening gets bigger and we have the 3D information to work with, but

if the initialization vanishes, in most of the cases there are not enough seeds for a correct

segmentation.
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Figure 3.5: This figure shows the first part of the segmentation results of Experiment
1. There are five different images for each dataset: original (green), ground truth (blue),
segmentation results for the proposed method with δS = 3 (turquoise) and δS = 8 (orange),
and the result of the SRG reference method (red).
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Figure 3.6: This figure shows the second part of the segmentation results of Experiment
1. There are five different images for each dataset: original (green), ground truth (blue),
segmentation results for the proposed method with δS = 3 (turquoise) and δS = 8 (orange),
and the result of the SRG reference method (red).
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Figure 3.7: This figure shows the third part of the segmentation results of Experiment
4. There are five different images for each dataset: original (green), ground truth (blue),
segmentation results for the proposed method with δS = 3 (turquoise) and δS = 8 (orange),
and the result of the SRG reference method (red).
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Figure 3.8: This figure shows the third part of the segmentation results of Experiment
4. There are five different images for each dataset: original (green), ground truth (blue),
segmentation results for the proposed method with δS = 3 (turquoise) and δS = 8 (orange),
and the result of the SRG reference method (red).
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Due to the broad range of video data given by Experiment 4, a few different shortcom-

ings of our method can be seen. In Figure 3.5 (3c, d), 3.6 (11c, d), 3.7 (16c, d) and 3.8

(22c, d) it can be seen that the initialization does not evolve completely towards the upper

or lower end of the glottal opening, which is caused by GAC segmentation algorithm. It

tries to minimize the surface of the segmentation volume and it stops if it is too costly to

grow over certain edges.

Another problem is shown in Figure 3.5 (1d) and 3.7 (18c, d), where the segmentation

is bigger than the actual glottis. In this case the ROI is not detected correctly because

there is a connection to a nearby dark area, which could not be removed by filtering out

weak signals. The wrong saliency maps and ROIs are depicted in Figure 3.9(a,b).

Figure 3.9: In the saliency map a connection between the glottal opening and the sur-
rounding areas can be seen, which causes problem when calculating the seed regions.
Experiment 4 (1d) is depicted in (a), (18d) in (b) and (6d) in (c).

Our current ROI detection algorithm only chooses one region from the saliency map

and ignores the other ones. Therefore, two glottal openings can never be a ROI and usually

the larger one is selected. This can be seen in Figure 3.6(6c,d) and 3.9(c), where only the

larger opening is segmented. If the glottis has only one big opening in the beginning

and later changes to two or more, the ROI normally covers all the glottal area and the

segmentation works.

Figure 3.10: These four recordings were excluded from the evaluation because (a,b,c) had
too narrow openings to yield meaningful results, while in (d) the ROI detection failed.
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As mentioned in Section 3.2, five out of the 30 single frames were excluded from the

evaluation because we encountered segmentation problems with these recordings. Three

were excluded because of too narrow openings to yield meaningful segmentation results

(see Fig. 3.10(a,b,c)). In (d) there are a lot of disturbing anatomical structures giving

stronger signals than the actual glottal opening, thus it was automatically filtered out,

rendering a segmentation impossible. The fifth video was excluded due to a problem with

the seed region detection, which resulted in a segmentation of the vocal folds in the first

frames and later no segmentation at all.
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Summary and Conclusion

We presented a fully automatic glottis segmentation method from LHSVs, which shows

promising qualitative results and is usable for everyday clinical applications due to very

efficient implementation on the graphics adapter. Our algorithm addresses problems in

the video recordings by using a combination of contrast stretching, denoising and motion

compensation. We tackled the difficult problem of finding the glottis and an initialization

for the segmentation by using a salient region detection method. Finally, we use a 3D

Geodesic Active Contour segmentation, which overcomes limitations of traditional 2D

based methods.

The proposed method was evaluated by comparing it to the clinical standard on a

set of ground truth data. We designed four different experiments consisting of three

video sequences and 25 single frames, randomly picked from various recordings. In all the

experiments our method performed significantly better than the current clinical standard,

without requiring any user interaction, thus our expected run-time scales much better to

the real-world application of segmenting thousands of video frames or a database of videos.

On a standard computer we achieve efficient and fast computation of around 30 minutes

for a whole recording (δS = 8) by using a parallelized CUDA implementation on an NVidia

graphics adapter, making it perfectly applicable in everyday clinical applications.

Even though the achieved results were more accurate than the current clinical standard,

there is still room for improvements. Especially the ROI and bounding box detection

requires further refinements. An additional filter step could be included to prevent the

occasional connection between surrounding dark areas and the glottal opening. Another

improvement would be that the ROI detection could also handle special topologies like

multiple or narrow openings. A future goal is to make this method usable for as many
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videos as possible, including the recordings excluded from evaluation as well as bad ones,

where the glottis is occasionally covered by the epiglottis. This could be achieved by first

analyzing the video sequence and marking all the frames with a covered glottis and treat

them specially.

For those videos, where problems occur, the user can manually specify parameters

like the landmark frame or bounding box in configuration files or use an external tool for

interactive segmentation editing. However, currently this requires manual screening of the

segmentation results. To make the program easily accessible for non-experienced users, a

graphical user interface for segmentation refinement and configuration directly integrated

into the software would be a great improvement of usability.

Another possible next step is a more extensive evaluation on a larger database and a

comparison to different segmentation methods. With the good qualitative results it could

also be possible to automatically make a connection between a segmentation and certain

voice or speech disorders.



Appendix A

Publications and Presentations

Publications

[1] Schenk, F., Urschler, M., Aigner, C., Roesner, I., Aichinger, P. and Bischof, H. Au-

tomatic glottis segmentation from laryngeal high-speed videos using 3D geodesic active

contours. In: Proceedings Medical Image Understanding and Analysis (MIUA); London

(2014).

Oral Presentations

[1] Schenk, F. and Urschler, M. Towards automatic segmentation of the glottal area.

Scientific seminar 2: Detection of Diplophonia; Vienna (2013)

[2] Schenk, F. and Urschler, M. Automatic glottis segmentation from laryn-

geal high-speed videos using 3D geodesic active contours. Scientific seminar 3: Detection

of Diplophonia; Vienna (2014).

[3] Schenk, F., Urschler, M., Aigner, C., Roesner, I., Aichinger, P. and

Bischof, H. Automatic glottis segmentation from laryngeal high-speed videos using 3D

geodesic active contours. In: Proceedings Medical Image Understanding and Analysis

(MIUA); London (2014).
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Abbreviations and Definitions

BMS Boolean Map based Saliency proposed by Zhang and Sclaroff [69].

BS Block Size.

CIE LAB A color space with perceptual uniformity, where L is lightness, a the

position between red and green and b the position between yellow

and blue.

CPU Central Processing Unit.

CUDA Compute unified device architecture. A parallel programming plat-

form invented by NVidia, which runs on the graphics adapter.

DC Dice Coefficient.

FN Number of false negatives.

FP Number of false positives.

Glottis The glottis consists of the vocal folds and (glottal) opening between

them.

GPU Graphics Processing Unit.

ICG Institute for Computer Graphics and Vision.

JPEG Joint Photographic Experts Group. Is a file format for lossy com-

pression of digital images.

LBI Ludwig Boltzmann Institute for Clinical Forensic Imaging.

LF Landmark frame. The frame with the maximal glottal opening in

a cycle or a block.

LHSV Laryngeal high-speed videos.

NVidia American company that manufactures GPUs.

OV Overlap between the different processing blocks.
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PNG Portable Network Graphics. A raster graphics file format that sup-

ports lossless data compression.

RGB Color space, which represents every color by mixing red, green and

blue values.

ROF Edge-preserving denoising according to Rudin, Osher and

Fatemi [49].

ROI Region of Interest.

SVM Support Vector Machine.

SRG Seeded Region Growing.

SAD Sum of Absolute Differences.

TN Number of true positives.

TP Number of true negatives.

TV Total Variation.
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Configuration Files

There are two configuration files, one for general settings (config.ini) and one for the

separate blocks. We use the very intuitive and simple INI file format. Basically it consists

of groups or sections and keys with values:

[ Group1 ]

keyA = 123

keyB = true

[ Group2 ]

keyA = ’ Hallo ’

abc = 123

name1 =

The key value only has to be unique inside one group and can be boolean, integer, string,

etc. For name1 the value part is left empty because only the name of the key is important.

If the file config.ini does not exist, the program will automatically create one with the

standard values. The settings and values generated by the program are shown in the next

paragraphs, with explanations of the more complicated sections.

[ B lockSe t t ing s ]

BlockOverlap=100

BlockS ize =1500

[ BoundingBox ]

Height=150

Width=80

65



66 Chapter C. Configuration Files

[ Denois ing ]

DenoisingLambda=25

DenoisingMaxSteps=10000

In [GeneralSettings] the file name of the blocks configuration file has to be specified as

well as if it should be used. UseBlockInfoFile has to be true to enable user-intervention

such as bounding box specification. DebugModus gives additional output.

[ Genera lSe t t ing s ]

BlockInfoFileName=blocks . i n i

DebugModus=f a l s e

UseBlock In foF i l e=true

[ Input ]

MainInputFolder=/home/ schenk /DA/ Kehlkopfv ideos /MIUA/

The folders in [InputFolderList] are read from the MainInputFolder. It is important to

use the equality sign after the key name.

[ InputFo lde rL i s t ]

ab123771 A001=

xy123565 A003=

If Output is false, no images or volumes will be written. ImagesInVolume specifies the

size of the output volume because the tool for later user-refinement cannot work with

extremely large volumes.

[ Output ]

ImagesInVolume=300

MainOutputFolder=/home/ schenk /DA/ Kehlkopfv ideos /MIUA/ r e s u l t s / s a l 8 /

Output=true

OutputBBImg=true

OutputConstraintsVolume=true

OutputSegmentationVolume=true

OutputWholeImg=true

[ Preproce s s ing ]

Cont ra s tSt r e t ch ing=true
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ImagesToCheck defines in how many frames the algorithm searches for the maximum

glottal opening/landmark frame.

[ ROIandBB ]

ImagesToCheck=150

[ R e g i s t r a t i o n ]

AngleRange =0.01308996939

AngleSteps =0.00436332313

De f au l t F i l lV a lue =280

ImagesToSkip=10

Translat ionRange=2

Trans la t i onSteps=1

[ Sa l i encyDetec t i on ]

Sa l i en c yS t e pS i z e=3

[ Segmentation ]

EdgeAlpha=15

EdgeBeta =0.55

SegmentationLambda =0.01

SegmentationMaxSteps=10000

If UseBlockInfoFile is true in [GeneralSettings] a file will be created with information

about each block. It is named according to the value in BlockInfoFileName. The file

will be created in the first run, saving all automatically calculated information like the

landmark frame file name and the bounding box specifications. An example can be seen

in the next paragraphs. If the file exists and UseUserSpecifiedValues is true, the values

will be read instead of calculated and therefore a user can simply change the settings.

[ ba100771 A001 ]

UseUserSpec i f i edValues=f a l s e

The information for the first block B0 contains the bounding box dimensions and the file

name of the landmark frame, which can be changed by the user. StartFrame and EndFrame

are fixed values to give the user additional information. BBHeight and BBWidth have

priority over the one specified in config.ini. LandmarkFrameNumber is the index in the

file list and changes effect the image segmentation process, while LandmarkFrame just
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shows the file name as additional information.

[ ba100771 A001B0 ]

BBHeight=150

BBStartX=77

BBWidth=80

BBstartY=5

EndFrame=5311.png

LandmarkFrame=4458.png

LandmarkFrameNumber=146

StartFrame =4312.png

[ ba100771 A001B1 ]

BBHeight=150

BBStartX=57

BBWidth=80

BBstartY=6

EndFrame=6210.png

LandmarkFrame=5257.png

LandmarkFrameNumber=46

StartFrame =5211.png



Appendix D

Software Dependencies and

Libraries

We implemented our method in C++ and evaluated under Ubuntu 14.04 LTS. 64 bit

versions of all the libraries were used an we developed with Qt Creator. Table D shows

the open source libraries and tools we used in our work.

Table D.1: Libraries and tools required for compilation of our program.
Tool/Library Version

CMake 2.8.12.2

CUDA 6.5.12

GCC 4.8.2

ITK 3.2

Qt Creator 3.0.1

Qt 5.2.1
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[53] Thévenaz, P., Blu, T., and Unser, M. (2000). Interpolation revisited [medical images

application]. IEEE Transactions on Medical Imaging, 19(7):739–758.

[54] Tikhonov, A. N. (1963). Regularization of incorrectly posed problems. Soviet Math-

ematics Doklady, 4(6):1624–1627.

[55] Titze, I. (1976). On the mechanics of vocal-fold vibration. The Journal of the Acous-

tical Society of America, 60:1366–1380.

[56] Titze, I. R. (1994). Principles of Voice Production. Prentice-Hall, 1 edition.

[57] Unger, M. (2012). Convex Optimization for Image Segmentation. PhD thesis, Graz

University of Technology.

[58] Unger, M., Pock, T., and Bischof, H. (2008a). Continuous globally optimal image

segmentation with local constraints. In Computer Vision Winter Workshop, volume

2008.

[59] Unger, M., Pock, T., Trobin, W., Cremers, D., and Bischof, H. (2008b). TVSeg –

interactive total variation based image segmentation. In Proceedings British Machine

Vision Conference.

[60] Unser, M. (1999). Splines: A perfect fit for signal and image processing. Signal

Processing Magazine, IEEE, 16(6):22–38.



76

[61] Urschler, M., Leitinger, G., and Pock, T. (2014). Interactive 2d/3d image denoising

and segmentation tool for medical applications. In Proceedings MICCAI IMIC Work-

shop on Interactive Medical Image Computing.

[62] Vanne, J., Aho, E., Hamalainen, T. D., and Kuusilinna, K. (2006). A high-

performance sum of absolute difference implementation for motion estimation. IEEE

Transactions on Circuits and Systems for Video Technology, 16(7):876–883.

[63] Vassiliadis, S., Hakkennes, E. A., Wong, J., and Pechanek, G. G. (1998). The sum-

absolute-difference motion estimation accelerator. In Euromicro Conference, 1998. Pro-

ceedings. 24th, volume 2, pages 559–566. IEEE.

[64] Wolfe, J. M. and Horowitz, T. S. (2004). What attributes guide the deployment of

visual attention and how do they do it? Nature Reviews Neuroscience, 5(6):495–501.

[65] Wong, S., Vassiliadis, S., and Cotofana, S. (2002). A sum of absolute differences

implementation in fpga hardware. In Euromicro Conference, 2002. Proceedings. 28th,

pages 183–188. IEEE.

[66] Xu, C., Pham, D. L., and Prince, J. L. (2000). Medical Image Segmentation Using

Deformable Models. SPIE Press.

[67] Yan, Y., Chen, X., and Bless, D. (2006). Automatic tracing of vocal-fold motion from

high-speed digital images. IEEE Transactions on Biomedical Engineering, 53(7):1394–

1400.

[68] Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., and

Gerig, G. (2006). User-guided 3d active contour segmentation of anatomical structures:

significantly improved efficiency and reliability. Neuroimage, 31(3):1116–1128.

[69] Zhang, J. and Sclaroff, S. (2013). Saliency detection: a boolean map approach. In

2013 IEEE International Conference on Computer Vision (ICCV), pages 153–160. IEEE.

[70] Zhang, L., Tong, M., Marks, T., Shan, H., and Cottrell, G. (2008). Sun: A bayesian

framework for saliency using natural statistics. Journal of Vision, 8(7):1–20.


	Introduction
	Motivation
	Medical Image Data
	Artifacts and Obstacles

	Related Work
	Overview and Contribution
	Structure of this Thesis

	An Automated Glottis Segmentation Approach
	Overview
	Preprocessing
	Contrast Stretching
	Edge-preserving Denoising
	Image Registration

	Salient Region Detection
	Boolean Map based Saliency (BMS)

	Bounding Box and Region of Interest Detection
	Segmentation
	Seed Region Detection
	3D Geodesic Active Contours

	Manual Segmentation Refinement
	Summary

	Experiments and Results
	Implementation Details
	Configuration

	Evaluation
	Results
	Discussion of Results
	Image Segmentation Problems


	Summary and Conclusion
	Publications and Presentations
	Abbreviations and Definitions
	Configuration Files
	Software Dependencies and Libraries
	Bibliography

