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Kurzfassung

Die Magisterarbeit beschäftigt sich mit der Implementierung einer nicht-linearen

Registrierungsmethode für medizinische CT Volumendaten unter der Verwendung eines

lokal affinen Modells.

Unter dem Begriff Registrierung versteht man die Bestimmung einer geometrischen

Transformation, die ein Objekt in einem Bild auf dasselbe oder ein ähnliches Objekt in

einem anderen Bild ausrichtet. Die Dimension des Bildes und die Art der Transformation

legen die Anzahl der zu optimierenden Parameter fest. Eine nicht-lineare Registrierung von

Bildern ist ein hochdimensionales Optimierungsproblem.

Im Rahmen dieser Arbeit wird eine nicht-lineare Registrierung von 3D CT Daten von der

Lunge zu unterschiedlichen Atmungszuständen implementiert. Viele Ansätze erlauben keine

genaue Registrierung von kleinen Gefäßen, wie sie etwa in der Lunge vorhanden sind.

Ein lokal affines Registrierungsmodell berechnet in jeder Nachbarschaft eines Bildpunktes

die zugehörigen Transformationsparameter. Als Gesamtes wird eine globale Deformation

mit lokalen Verschiebungen berechnet, welche eine genaue Registrierung von kleinen

Gefäßen erlaubt. Zusätzlich ermöglicht das vorgeschlagene Modell eine Kompensation von

Intensitätswert-Variationen. Die vorgestellte Methode wird anhand von synthetischen und

realen Datensätzen evaluiert.

Stichworte. nicht-lineare Registrierung, mono-modal, optischer Fluss, lokal affines Modell,

Intensitätsvariationen, medizinische Bildanalyse
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Abstract

This master thesis deals with the implementation of a non-linear registration method for

medical CT volume data by means of a local affine model.

The term registration describes a determination of a geometrical transformation, which aligns

an object in an image with the same or a similar object in another image. The dimension

of the images and the type of the transformation specify the number of parameters to be

optimised. A non-linear registration of images is a high-dimensional optimisation problem.

In the context of this thesis a non-linear registration algorithm of three-dimensional CT

data is implemented to register the lungs at different respiratory states. Several approaches

do not obtain an exact registration of small structures, such as are for instance contained

within the lung. A local affine registration model computes the associated transformation

parameters in each neighbourhood of a voxel. A global deformation with local displacements

is computed, which makes an exact registration of small structures possible. Additionally, the

suggested model can compensate intensity variations. The presented methods are evaluated

on synthetic and real data sets.

Keywords. non-linear registration, mono-modal, optical flow, locally affine model, inten-

sity variations, medical computer vision
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Chapter 1

Introduction

1.1 Motivation

The medical and healthcare sector is a rapidly growing sector since humans are thinking about

their quality of life. Modern technologies in medicine, such as imaging based modalities make

it possible to visualise functional and anatomical information of the human body. Because of

that, radiologists and physicians are reliably supported in their diagnosis of diseases. Medical

imaging techniques also provide important data for research, science and education.

Thanks to the improvement of the information technology, medical images are available in

digital form and they can be archived in large databases. Medical imaging systems produce

a large amount of raw data. Special image processing steps are necessary to alleviate speci-

fied diagnosis and treatment of diseases from different image modalities such as CT, MRI, US,

X-ray, etc..

Depending on the modality the image processing tasks differ significantly. An important

image processing task is the extraction of relevant information from raw data. Another chal-

lenge is to bring images, generated by the same or multiple, modalities into spatial alignment,

that means that each point in an image has a known corresponding point in a second image.

These images can be taken at different times, views or modalities. In literature this is referred

to as image registration. Monitoring tissue motion or growth is one of the main applications

of image registration. Fusing information of multiple images, comparing anatomical features

to an atlas or supporting image guided surgery are other uses.

In this work we concentrate on the registration of images differing by respiratory motion.

Figure 1.1 shows a sample registration case for three dimensional data at two different respi-

ratory states. The process of registration aligns the moving image at a time t and the fixed

image at a time t − 1. This alignment represents respiratory motion, e.g. from inhalation

to exhalation. As a result, the transformation between the two images is computed. In our

case we wish to model the respiratory motion of the lungs. The diaphragm controls primarily

the respiration in the human body. During exhalation the diaphragm relaxes and when the

diaphragm contracts fresh air can stream into the lungs. To a smaller extent, the ribcage

muscles also contribute to respiration. Figure 1.2(a) shows a scheme containing the location1

of the lungs and the diaphragm. The pulmonary alveoli in the lungs are responsible for

1Image is taken from http://www.delta-education.com
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2 Chapter 1. Introduction

Image B: Fixed ImageImage A: Moving Image

Transformation

(Inhalation) (Exhalation)

?

Figure 1.1: Registration of three dimensional data sets at different respiratory states.

(a) (b)

Figure 1.2: (a) Location of the lung and diaphragm, (b) reconstructed structure within the
lung from a CT image.

the gas exchange with the blood. Due to the small size of the alveoli, the dendritic blood

vessels and the complex deformation, which is limited to the ribcage and controlled by the

diaphragm, respiratory motion cannot be modelled by a simple linear transformation. In

Figure 1.2(b) a reconstruction2 of the small structures within the lungs from CT images is

shown.

In order to perform registration in the presence of respiratory motion differences, we need a

non-linear registration approach, which handles large motion caused by the diaphragm and

2Image is taken from http://en.wikipedia.org/wiki/Lung



1.2. Problem Description and Aim of the Work 3

which can model small deformations to align capillary structures such as alveoli.

1.2 Problem Description and Aim of the Work

Non-linear registration of two images requires an optimisation procedure of the transformation

parameters in a high-dimensional search space. This search space represents the according

degrees of freedom (DoF). In the majority of cases, a high-dimensional optimisation procedure

turns out to be a difficult problem.

At the present time a general purpose, efficient and simple to set-up non-linear registration

algorithm does not exist. Due to this fact, the topic of non-linear registration is a very ac-

tive area of research. The growing interest in the development of new algorithms provided

a large amount of publications. This master thesis, therefore, reviews important non-linear

registration methods to get an overview.

Periaswamy et al. [36] proposed a promising registration method, which deals with a com-

pensation of intensity variations and gets by with few parameters to set-up. The main goal

of this work is to implement this method based on a hierarchical optical flow method.

The first task is to extend an available Matlab implementation3 of this approach to three

dimensions. Medical CT images with a dimension of 128 × 128 × 128 serve as input data.

The Matlab prototype will point out the issues of a further C++ implementation. The Insight

Segmentation and Registration Toolkit [32] makes it possible to apply already implemented

image processing units to the C++ code in a modular fashion.

The obtained results of the C++ implementation should be compared to existing non-linear

registration algorithms. Another task is to improve the runtime if necessary.

An implementation of a highly automated framework will support the comparison of the re-

sults of the algorithms. This evaluation framework generates statistical measurements on the

resulting warped images and displacement fields. A description and implementation details

regarding the evaluation framework are included in Appendix B. In this master thesis, the

algorithms are evaluated on several kinds of data, using intra-modality CT-scans of sheep and

human lungs.

1.3 Structure of the Master Thesis

The master thesis is separated into 6 chapters. This introducing chapter gives a motivation

of performing registration on medical image data sets and it describes the aims of the thesis.

Chapter 2 illustrates roughly how to generate medical images. Common used imaging tech-

niques are explained. The main components of a general registration process are also given

in this chapter. The related work section reviews important registration approaches and in-

cludes a literature survey for non-linear registration methods.

In Chapter 3 Periaswamy’s registration approach using a local affine model is outlined. It

includes details about the local affine model, intensity variations and the applied smooth-

ness constraint. A description on how to compute the spatial and temporal derivatives and

inverse computations completes the theoretical part of this chapter. A short summary and

3The code can be found on http://www.cs.dartmouth.edu/ farid/research/registration.html



4 Chapter 1. Introduction

information on implementation details round off the description of the suggested approach.

Some improvements of Periaswamy’s method are described in Chapter 4. Enhancements

for an efficient computation of the inverse of matrices and further computation time saving

methods are shown. The details of decomposing a general affine matrix in rotation, scaling,

shearing and translation components are explained in a detailed way.

Chapter 5 describes the accomplished experiments and the obtained results. Quantitative

and qualitative results are shown for synthetic and real CT datasets and for images including

intensity variations.

Chapter 6 finally discusses the results and experiments of this master thesis, summarises the

contributions and gives an outlook on further work.



Chapter 2

Medical Image Registration

2.1 Introduction

In the recent years the use of radiological images in healthcare and medicine has shown a

strong increase. The widespread development of various medical imaging techniques makes

it possible to generate images of human internals, with high resolution and accurate informa-

tion about the function and growth of organs. Several imaging modalities support physicians

in diagnosis and treatment. Besides, they provide important information for science and

research.

Section 2.2 gives a short overview of the most widespread medical imaging methods which

provide input data for image processing.

In Section 2.3 different types of registration methods are specified. Furthermore an illustra-

tion of necessary components for the medical image registration process is given.

Section 2.4 goes into the details of several approaches of non-linear registration, accompanied

by a literature survey, where fundamental registration techniques are presented.

2.2 Medical Imaging

Medical imaging makes it possible to examine diseases e.g. of human patients and supports

diagnosis. Imaging is used to explore the anatomy so that physiological and biochemical

processes can be studied. New, improved imaging techniques allow to visualise processes

in organs such as in the brain or the lungs. The following non-invasive methods produce

information in form of images of living organisms.

Radiography

Radiography is a widespread technique with a high diagnostic yield, which uses X-rays and

a photographic film to create medical images [19]. The internal structure of a subject can

be displayed by means of the effect that different organs absorb the energy of the rays dif-

ferently. The attenuated X-rays expose a film or digital receptors. Figure 2.1(b) shows a

radiograph of the thorax. In the medical field the most common usage for radiography is the

detection of fractures of bones, mammography and dental medicine. An important advantage

of radiography is its ease-of-use and its relatively low cost.

5



6 Chapter 2. Medical Image Registration

Computed Tomography

Computed Tomography (CT) is a specialised X-ray imaging technique [19]. By rotating an X-

ray source along a single axis, the X-ray detectors distributed around the patient collect raw

data from multiple angles. In this way two-dimensional (2D) X-ray images can be generated by

solving an inverse problem. Figure 2.1(a) illustrates a reconstructed slice of the human body.

A three-dimensional (3D) image can be created by taking a series of images traversing along

this axis. The CT technique avoids the major drawback of radiography, where anatomical

structures shadow themselves.

The newest CT scanner generation, multi-slice helical scanners, offers a fast imaging technique

to display organs with or without injected contrast agents. Modern scanners already include

principle methods of image processing.

In CT scans, each pixel is assigned to a numerical value, which characterises the relative density

of a substance. This number is compared to the attenuation value of water and displayed on

a scale of arbitrary units named Hounsfield units (HU) after Sir Godfrey Hounsfield. Table

2.1 (examples are taken from [19]), highlights the substance densities in HU.

Air -1000

Fat -50

Water 0

Soft Tissue +40

Calculus +100 . . . +400

Bone +1000

Table 2.1: Substance densities in HU

(a) An axial slice of a thorax CT-scan (b) A thorax radiograph

Figure 2.1: Thorax images, taken from [19].
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In this work we evaluate the implemented registration algorithm on 3D-CT scans. These CT

images display human and sheep lungs. The scans of humans consist of a native and a

contrast enhanced image, shown in Figure 2.3, which make it possible to evaluate the results

on intensity variations.

The native images showing the sheep’s lung are taken at two respiratory states. Experiments

on synthetic data are based on the sheep data. The details of the synthetic data generation

are explained in Chapter 5.

Figure 2.2 illustrates sample slices of real data of the sheep’s lung at the two respiratory

states in axial, sagittal and coronal view.

(a) Axial view (b) Sagittal view (c) Coronal view

(d) Axial view (e) Sagittal view (f) Coronal view

Figure 2.2: Sample slices of real CT-scan of sheep lungs at different views and respiratory
states: (a)-(c) inhalation and (d)-(f) exhalation.

Magnetic Resonance Imaging

Instead of X-rays magnetic resonance imaging (MRI) [19], also referred to as nuclear mag-

netic resonance (NMR) or magnetic resonance tomography (MRT), uses a strong magnetic field

to generate medical images. The magnetic field causes the protons to align in one direc-

tion. Another high frequency electro-magnetic field deranges the alignment. This alternating

process produces a resonance signal which is used to generate a 2D or 3D image.

The images visualise pathological or physiological alterations of tissues. MRI is a very expen-

sive modality. However, an important advantage is, that the MRI operates on electro-magnetic
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(a) (b)

Figure 2.3: Sample slices of real CT-scans of the humans lungs in sagittal view: (a) A native
scan and (b) a scan including contrast agents.

waves, which are harmless for the human body as opposed to X-ray used in radiography or

CT. Only for humans with cardiac pacemaker or a metal joint it is obviously a dangerous

modality due to the high magnetic field.

Figure 2.4 illustrates two MRI images of the upper part of the author’s body.

(a) MRT-Image of the authors
lung

(b) MRT-Image of the authors
heart

Figure 2.4: Various MRT Images of the authors inside.

Functional Magnet Resonance Tomography

Functional MRI (fMRI) measures signal changes in the brain. Increased neural activity

causes an increased demand for oxygen. The proportion of oxygenated and de-oxygenated

hemoglobin in the brain vessels makes it possible to generate high resolution 3D images by

means of the blood oxygen level-dependent (BOLD) effect. Details of this technique are given

in [19]. Figure 2.5(a) shows a series of fMRI images taken during a study of learning ability

and its relation to short-term memory activity.
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(a) Different fMRI images during a
study, taken from [19]

(b) Sonogram of a baby in its
mother’s womb

Figure 2.5: (a) fMRI images and (b) a sonogram.

Sonography

Sonography [19] is an ultra sound (US) based diagnostic imaging technique used to visualise

muscles and internal organs. It examines their size, structure and any pathological lesions.

Sonography is real-time suitable, completely harmless to the patient and therefore commonly

used during pregnancy. A US signal is emitted and the reflected signals are measured and

used to reconstruct an image. Recent techniques provide 3D volume information or image

blood flows using the Doppler effect. A sonogram1 of a baby in its mother’s womb is shown

in Figure 2.5(b).

Positron Emission Tomography

Positron emission tomography (PET) [19] is a nuclear medical imaging technique that produces

a 3D image or map of functional processes in the human body.

Single Photon Emission Computed Tomography

The radioactive gamma rays are responsible for the image generation in Single Photon Emis-

sion CT (SPECT) [19]. This diagnostic technique takes images of living organisms. It demands

an injection of a small dose rate of radionuclides before an image acquisition and can visualise

the function of organs. SPECT provides 2D or 3D images by using gamma cameras.

2.3 Image Registration

As mentioned in the introduction of Chapter 1, registration is the process of determining the

correspondence between all points in two or more images. In our case we use two images,

where image A denotes the fixed image and image B is the moving image, respectively.

Depending on the various imaging techniques and their characteristics, different registration

approaches are obviously needed. The most general application of image registration is the

alignment of medical images. Aligning medical images of the brain or the bones allows to

1taken from http://de.wikipedia.org/wiki/Sonografie
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model e.g. growth over time. Periodic deformations of tissue, resulting from cardiac or

respiratory cycles, can be modelled as well. Changes in the position of the subject, while

taking images of the same modality at particular times or with different modalities, can

be determined with registration methods. For all types of medical image registration the

accuracy of the results is an important factor.

The following sections give an overview of general terms and components used in medical

image registration. Details can be found in [29], [55] and [9].

2.3.1 Types of Image Registration

There exist several types of image registration methods. An image-to-image alignment such

as intra-subject and inter-subject registration, determines a one-to-one mapping between

the images in a way that identical anatomical points are mapped together. Intra-subject

registration is used to match medical images taken at different times to monitor the growth

of e.g. the bones or the brain and changes in tissues. In general, intra-subject registration

allows to align multi-modal images to correct spatial distortions from one subject.

Inter-subject registration captures anatomical shapes, provides correspondences for statistical

shape models or makes it possible to align an image with a detailed anatomical atlas. The

removal of individual anatomical features from volume data is a challenge in inter-subject

registration.

A determination of an one-to-one mapping between e.g. images stored on a computer and

the patient in a real operating room is called image-to-physical-space registration, where

identical anatomical features are mapped together. Correspondences between images and

physical landmarks are identified with 3D tracking techniques. A combination of image-to-

image and image-to-physical-space registration methods is also possible.

2.3.2 Modalities

When images are acquired by different medical imaging techniques, the registration process

is called multi-modal as opposed to mono-modal, where the images have the same modality.

Examples of mono-modality are e.g. CT-CT, MRI-MRI, . . ..

If the images modalities of the registration are e.g. MRI-CT, MRI-PET, SPECT-CT the task is

multi-modal. The complex relation between the different unknown intensity distributions of

the input images forms a problem in multi-modal registration. In that case, the similarity

measurements are often based on statistical approaches or information theoretical techniques.

A dynamic modality denotes a recording of MRI or CT perfusion series. Cine modality describes

temporal MRI sequences as an example. The image dimension has a large influence on the

computation time of the registration process. Common dimensions of modalities are 2D, 3D

or 4D, which use a 3D modality with a decoupled temporal component.

In general, an alignment is performed for images of equal dimension, but there also exist

approaches to align 2D to 3D and 3D to 4D images or vice versa.

In this work we concentrate on the mono-modal registration of 3D-CT to 3D-CT data.
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2.3.3 Components of Image Registration

A registration process consists of several principle parts. The following sections highlight

commonly used transformations, interpolation methods, registration bases and optimisations

strategies. Figure 2.6 illustrates the interaction of these components. The re-sampling com-

ponent represents the warping of the moving image with the estimated transformation para-

meters.

Metric
Resampling

Moving Image

Fixed Image

Transformation Parameters

Interpolation

OptimiserSimilarity

Transformation

Registration Process

Image
Resampled

Figure 2.6: Components of a registration process.

Transformation

A transformation T is defined to transform points from one image space to another. The

transformation implies the nature of expected motion that has to be modelled. The transfor-

mation models global, local motion or growing. Here, global motion denotes a transformation

that is applied to the entire image domain, while local means that for determined sub-sections

of the image space the applied transformations are varying. The following points give a review

of the natures of transformations.

• Rigid Body Transformation

A rigid body transformation compensates global patient repositioning. It is used for

simple tasks such as brain and bone registration. Six DoF describe a rotation R and

a translation t = (tx, ty, tz). Three parameters define the rotation, which can be rep-

resented by e.g. Quaternions, Euler angles or a general rotation matrix. Equation 2.1

shows a transformation of the point p(x, y, z) to p(x′, y′, z′). Rigid body transforma-

tion preserves distances, straightness of lines, planarity of surfaces and non-zero angles

between straight lines. 


x′

y′

z′



 = R




x

y

z



+ t (2.1)
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• Affine Transformation

The affine transformation preserves lines and parallelism and includes rotation, trans-

lation, shearing and scaling. In homogeneous coordinates the affine transformation can

be expressed as a composition of rigid, scaling and shearing parameters. In Equation

2.2 the parameters m1 to m9 represent the affine and m10, m11 and m12 the translation

parameters. The affine transformation has an overall number of 12 DoF.

Taffine = Tshear · Tscale · Trotation · Ttranslation =





m1 m2 m3 m10

m4 m5 m6 m11

m7 m8 m9 m12

0 0 0 1




(2.2)

• Projective and Perspective Transformation

The projective transformation extends the affine transformation matrix with additional

parameters p1,p2 and p3. This transformation preserves straightness of lines, but no

parallelism. The homogeneous transformation matrix is given in Equation 2.3.

Tprojective = Tshear · Tscale · Trotation · Ttranslation =





m1 m2 m3 m10

m4 m5 m6 m11

m7 m8 m9 m12

p1 p2 p3 α




(2.3)

The perspective transform consists of a subset of projective transformations and de-

scribes the image formation for many modalities like photography, X-ray projection,

microscopy or endoscopy.

• Non-linear or Curved Transformation

An accurate modelling of complex tissue deformations requires a high number of DoF.

Non-linear transformation compensates additional local transformations and does not

preserve straightness of lines nor parallelism. The literature survey in Section 2.4 high-

lights the most common registration approaches using non-linear transformations based

on polynomials, splines and physics-derived models.

Figure 2.7 demonstrates the results of applying different transformations to a 2D square.

Registration Basis

The registration methods can be classified by their basis. Extrinsic methods are based on

objects (fiducial markers) attached to the subject, while intrinsic methods use only image

information of the subject. Non-image based registration, as a third registration basis,

uses a calibrated coordinate system of the involved imaging systems and suffers under the

assumption that the subject remains motionless between the imaging phases.

In the extrinsic case the objects are well recognisable in all modalities so that a fast

registration without the need for optimisation methods is possible. Invasive marker objects,

such as screws, allow a highly accurate registration result, but there is a need of placing the
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Figure 2.7: Examples of different types of transformations in 2D case: (a) identity transfor-
mation, (b) rigid transformation, (c) affine transformation and (d) non-linear transformation,
taken from [18].

markers inside the body before image acquisition. In contrast, non-invasive skin mounted

markers can also reach a fast alignment of images without an invasion.

An intrinsic method uses an alignment based on the image content. The intrinsic approaches

can be divided into landmark-, segmentation- and voxel-property based registration

methods. Landmarks are extracted from geometrical or anatomical features. Features

can be found in a segmentation process by user interaction or automatic identification.

In contrast to landmark based registration, segmentation based methods use high-order

segmented structures such as curves, surfaces or volumes.

Voxel-property based methods work directly on the image intensity values. These methods

are also called intensity-based. Methods working on the complete image content are of great

interest, because of their flexibility and capability to automate the registration process.

In opposition to voxel-property based measurement, which allows non-linear transformations,

the extrinsic-, landmark- and segmentation based methods are often limited to rigid or

affine transformations.

In literature a various number of suggested approaches exists. In [28] a survey of proposed

approaches based on the mentioned registration bases is given.

Similarity Metrics

To compare intensity differences, Fourier domain computations, cross-correlation calculations

or methods based on information theoretical background are common important similarity

measurements. In this thesis, only the voxel-based similarity measurements are outlined.

Depending on the type of modalities, which are used, different approaches are adopted to the

registration process. In case of mono-modality the voxel information is compared directly

between the two images, while a multi-modal registration process has to cope with the in-

volved relationship of intensity values between these images.

The next sections describe the most common similarity measurements used in image reg-

istration such as intensity differences, correlation techniques, ratio image uniformity and

information theoretic approaches.
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• Intensity Difference

Commonly used, simple approaches measuring the similarity are the sum of squared

difference (SSD) and the sum of absolute difference (SAD). In an overlapping domain

Ω in image A and image B, the sum of squared or absolute differences is computed

and normalised by the number of voxels. Equations 2.4 and 2.5 show the formulas to

compute the SSD and the SAD.

SSD =
1

N

∑

x∈Ω

(A(x) − T (B(x)))2 (2.4)

SAD =
1

N

∑

x∈Ω

|A(x) − T (B(x))| (2.5)

The sum of squared differences is very sensitive to a small domain Ω with large intensity

differences between the two images A and B. This sensitivity must be considered for

images with contrast agents. This measurements assume that after alignment, the

images differ only by Gaussian distributed noise. If the difference between the images

is Gaussian noise, the SSD gives the optimal measurement. By using the sum of absolute

differences the effect of outlier differences can be reduced.

• Correlation Coefficient

If there exists a linear relationship between the voxel intensity values, the correlation

coefficient (CC) gives the optimal measurement for similarity:

CC =

∑
x∈Ω

(
A(x) − A

) (
T (B(x)) − B

)
√∑

x∈Ω

(
A(x) − A

)2∑
x∈Ω

(
T (B(x)) − B

)2 (2.6)

where A and B represent the mean intensity values computed over the overlapping

domain Ω in the images A and B, respectively. The normalized cross correlation (nCC)

can be computed using Equation 2.7. These similarity measurements are applied to

inter-modality registration [28]. The normalized correlation value always ranges be-

tween −1 and +1. If the two sub-images in the spatial neighbourhood Ω are identical

representing maximal alignment, the value of nCC is +1.

nCC =
∑

x∈Ω

A(x)T (B(x)) (2.7)

• Ratio Image Uniformity

The ratio image uniformity (RIU) approach, suggested by Woods [53] derives a ratio

image computed from image A and B. This idea is also referred to as the method of

variance of intensity ratio. The transformation parameters are iteratively determined

by maximising the uniformity of the derived ratio image, which is quantified as the

normalised standard deviation of the voxel values in the ratio image. By using Equa-

tion 2.8 the ratio image can be computed, R is determined by Equation 2.9 and 2.10
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calculates the resulting RIU of the images A and B for one iteration.

R(x) =
A(x)

T (B(x))
∀x ∈ Ω (2.8)

R =
1

N

∑

x∈Ω

R(x) (2.9)

RIU =

√
1
N

∑
x∈Ω

(
R(x) − R

)2

R
(2.10)

The RIU approach is applied to inter-modality registration processes such as MRI-PET

image alignment.

• Information Theoretical Approaches

These approaches are based on the the Shannon-Wiener Entropy, which has been sug-

gested in the 1940s for the first time. It was used for information measurements in

communication theory. In the one-dimensional (1D) case Equation 2.11 can be used to

compute the entropy H, which gives a number of average information content, covered

by the set of i symbols, whose probabilities are given by pi.

H =
∑

i

pi log pi (2.11)

In our case, we have two images to be aligned. The joint entropy measures the amount

of shared information in the images A and B. By maximising the amount of this shared

information between image A and B over a space of suitable transformations, the images

can be aligned. At each voxel position there are two symbols for an estimate of the

transformation. If the two images are unrelated, the joint entropy results from the sum

of entropies of the images A and B like H(A, B) ≤ H(A) + H(B). In [44], the joint

entropy is derived from a normalised 2D histogram, which describes the probability

density function (PDF) of the intensity values of image A against the values of image B.

The joint entropy is given in Equation 2.12, where p(a, b) describes the value at location

(a, b) in the histogram.

H(A, B) =
∑

a

∑

b

p(a, b) log p(a, b) (2.12)

The accuracy of quantification of the PDF is given by the bin number. This number tiles

the intensity value space into bins. Studholme [44] and Collignon [10] proposed joint

entropy similarity measurements in multi-modal image registration, where the joint

entropy gets iteratively minimized in the registration process to align the two images.

The mutual information (MI) was simultaneously proposed by Viola and Wells [50] and

Collignon and Maes [27], where the overlap problem is dealt with. Details on the overlap
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problem can be found in the referred papers. The MI is defined as:

I(A, B) = H(A) + H(B) − H(A, B) =
∑

a

∑

b

p(a, b) log
p(a, b)

pa(a)pb(a)
(2.13)

where pa(a) and pb(b) represent the marginal probability distributions, respectively.

The MI is maximized by optimal alignment, if the joint entropy H(A, B) is minimized

and the marginal entropies H(A) and H(B) are maximized. MI improves the overlap

problem, but does not solve it. Studholme et al. [45] proposed a normalised mutual

information (NMI) to overcome the sensitivity of mutual information to change in image

overlap (Equation 2.14). The NMI is more robust for inter-modality registration in which

the overlap volume changes substantially.

I(A, B) =
H(A) + H(B)

H(A, B)
(2.14)

By computing the similarity measures directly from intensity values of the voxels, the trans-

formation parameters can be estimated. This may be performed either in a direct or an

iterative fashion, where the latter way leads to the necessity for using elaborate optimisation

algorithms.

Optimisation

The optimisation process tries to find the optimal transformation parameters, which max-

imises the alignment with respect to the similarity measure of the images A and B. This

similarity measure is defined by a function, which depends on the two images. The dimen-

sion of the function is given by the DoF of the transformation. As mentioned in [28] the

transformation parameters can either be computed directly i.e. determined in an explicit

fashion from available data or searched for i.e. determined by finding an optimum of some

objective function defined on the parameter space.

In non-linear registration the parameter search space is almost always very high dimensional.

The following sections give an overview of optimisation strategies to find the optimal trans-

formation parameters, which register two images in a best way, such as closed form solutions,

iterative search methods and hierarchical approaches.

• Closed Form Solution

Referring to [18], only two suggested algorithms use closed form solutions to determine

the transformation parameters. The first algorithm is the Procrustes method, which is

based on point correspondences. The extracted corresponding set of 3D points of two

images, so called fiducial markers, allows to compute a rigid body or affine transforma-

tion that aligns the sets of points. In practise the singular value decomposition (SVD)

[38] is used to compute the transformation matrix. This matrix is applied to any point

in the moving image.

A second method proposed by Friston et al. [17] uses statistical parametric maps (SPM)

and assumes that the image A and B have nearly same intensity value ranges and the
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transformation to establish the correspondences is small. This method minimises the

sum of squares between the two images following non-linear spatial deformations and

transformations of the voxel intensity values. The spatial and intensity transformations

are obtained by using the least squares method. Direct methods only provide a solution

for simple rigid cases.

• Iterative Search

Voxel-based registration algorithms require an iterative strategy to find optimal

transformation parameters. An initial estimate of transformation parameters is refined

by trial and error. Through the iteration process and by computing the similarity

between the images A and B in each iteration, the transformation parameters get

estimated and refined. As long as the similarity measurement improves, i.e. the

optimisation process has not yet converged or a stopping condition such as e.g. a

maximum number of iterations or maximum optimisation time has been met, the

process searches for improved transformation parameters. To find optimal parameters

an objective function has to be defined.

The main goal of optimisation is to find an optimum in a fast and accurate way,

consuming as few memory as possible. However, in practice, these three tasks can not

all be fulfilled simultaneously, so a trade-off between the three mentioned criteria has

to be found.

In literature there exists a large number of different multi-dimensional optimisation

approaches, which makes it possible to search for the best aligning parameters.

Pluim’s survey [37] outlines various optimisation strategies in voxel-based registration.

Frequently used deterministic optimisation techniques [38] range from Powell’s

method to approaches that are time and memory efficient, such as the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimiser [24]. Fundamental gradient

descent and quasi-Newton methods are based on the computation of derivatives of

the objective function, whereas Powell’s method goes without this. Powell’s method

estimates a single parameter in each turn. In contrast the downhill-simplex method

optimises all parameters simultaneously.

Stochastic techniques like Genetic Algorithms (GA) and Simulated Annealing (SA)

are only used in combination with deterministic methods, which tend to get stuck

in local extrema. The stochastic approaches avoid local extrema and support the

optimisation process in finding a more global solution of the parameters, however they

are computationally much more expensive. In [38] an outline of the implementation of

these techniques is given.

• Hierarchical Multi-resolution Approach

As mentioned above, the parameter space is very high dimensional in non-linear reg-

istration. Besides getting stuck in a local extrema, optimisation strategies sometimes

converge to an undesired optimum. To overcome this problem, a multi-resolution ap-

proach is frequently used in practice, where the images are down-sampled to coarser

resolutions. Figure 2.8 shows the principle of a multi-resolution approach.

In [37], several references are given, that take use of a multi-resolution approach.
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Gaussian pyramids are widespread in its application to build levels of different res-

olutions. For each level of resolution from coarse up to the finest level, the registration

process is repeated. The estimated transformation parameters in a coarse level pro-

vide the input for the next level. The hierarchical multi-resolution approach speeds up

the optimisation process by fast computation of initial solutions at coarse levels. The

estimated parameters support the search direction in finer resolution levels. A coarse-

to-fine strategy makes it possible to model large motions, if the resulting parameters of

the coarse level are up-sampled to the finer level.

Fixed Image Moving Image

Level 0

Level 1

Level 2
Level 3

Figure 2.8: The principle of a hierarchical multi-scale approach.

Interpolation

Through an estimated transformation T , a new point given by the coordinates x′, y′, z′ can

be computed from the point x, y, z. The obtained positions are mostly not integer numbers,

which fit into the discrete raster of an image. An interpolation method maps intensity values

that are given in the sub-pixel area to the integer raster. Figure 2.9 illustrates the integer

raster (black lines) and the blue sub-pixel grid.

Commonly used interpolation methods such as nearest neighbour (NN), linear and bi-cubic

methods are explained in [43]. In Figure 2.10(a) the principle of NN interpolation is shown.

Figure 2.9: Integer raster (black lines) and sub-pixel raster (blue lines).

The value of the nearest neighbour point in the sub-pixel grid (blue lines) is assigned to the

according intersected grid point into the integer raster (black lines). In contrast, the linear

interpolation sets a linear weighted intensity value of the 4 surrounding points of the sub-pixel

raster (shown in Figure 2.10(b)).
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Several voxel-based registration algorithms transform the moving image iteratively to reach

an overall alignment with the fixed image. During the registration process, interpolation

is frequently performed. Therefore, interpolation is an important issue for efficiency and

accuracy. The survey [37] also refers to more complex interpolation approaches that are

used in image registration. However in practise due to runtime constraints mainly linear

interpolation is performed.

(a) (b)

Figure 2.10: Two important interpolation methods: (a) nearest neighbour and (b) linear
interpolation.

2.4 Related Work

The previous sections have given an overview on components that are important to set-up

a general registration process. In medical image registration current research is very active.

The diversity of complex motions in the human body needs different methods to achieve

practical results.

In practice e.g. rigid registration methods are only appropriate for bone and brain alignment.

Particularly, the number of approaches for an alignment using transformations that are de-

scribed by a large number of DoF is rapidly increasing.

The transformation T can be regarded as a deformation field that records the 3D displacement

vector at each voxel in image B needed to align it with the corresponding position in image

A.

In [18] rigid registration algorithms are also referred to. A point based method such as the

Procrustes analysis aligns two given sets of extracted corresponding points.

Surface fitting approaches, such as the “head-hat” algorithm, was proposed by Pelizzari et

al. [34]. This algorithm is applied to align MRI and PET images of the brain.

Besl and McKay [4] proposed the iterative closest point (ICP) algorithm for the registration

of 3D shapes. ICP is widely used to align surfaces extracted from medical images.

3D rigid registration is based on a transformation including 6 DoF. In each case three parame-

ters describe rotation and translation to describe the transformation between corresponding

points in image A and B. The affine transformation is an extension to the rigid model with

the 6 DoF. By adding additional DoF this linear model can be extended to a non-linear trans-
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formation model.

However, rigid registration methods cannot handle complex tissue deformation such as e.g.

in lungs, breast and liver. Consequently, there is a need for non-linear methods to achieve

good results in e.g. modelling respiratory and cardiac motion.

The following part of the thesis gives a review of fundamental approaches in non-linear reg-

istration. Non-linear registration methods consist of a transformation, a similarity measure

and an optimisation process, which provides the optimal set of transformation parameters

with respect to the similarity measure. Non-linear registration can be formulated in a math-

ematical way as

argmaxd ( d ( A(x), T (B(x)) )) ,

where the optimiser maximises the similarity criterion d between the image A and the moving

image B, which is deformed by the currently estimated transformation.

The transformation T is given as T : (x, y, z) → (x′, y′, z′), where the location (x′, y′, z′) in

image B represents the corresponding location (x, y, z) in image A.

In [52] non-linear transformations are represented by high-order polynomials with third,

fourth and fifth order, leading to 60, 105 and 168 DoF, respectively. In the image regis-

tration survey of Zitova [55], global and local mapping models are distinguished. Global

transformation models with low order polynomials cannot align local deformations. Second

or third order polynomials are used for satellite image alignment in combination with a least

square fit. In the medical area, the modelling of local deformations is essential. The idea of

increasing the polynomials order of the transformation model introduces artefacts [18] instead

of a more local alignment. As mentioned in [18], i.a. Goshtasby proposed a method based

on high-order polynomials, but these models are rarely adopted to non-linear medical image

registration.

2.4.1 Spline-based Registration

This type of non-linear registration employs the concept of splines to model a deformation.

Originally, splines are long flexible strips of wood or metal and they were used to model the

surfaces of ships and planes. These splines were bent by attaching different weights along its

length.

This technique is used for interpolation or approximation of scattered image data. A smooth

transformation is obtained from a set of points in image B and the corresponding points in

image A. These points can be either manually or automatically determined landmarks or

selected control points.

Rohr et al. [39] suggested an elastic image registration method based on a set of corresponding

anatomical landmarks and approximating thin-plate splines (TPS) [7]. This approach extracts

several types of landmarks in a semi-automatic manner by means of a 3D differential operator.

They extended the TPS approach [7] to an approximation scheme to incorporate isotropic

as well as anisotropic landmark errors. TPS are defined as a linear combination of radial

basis functions (RBF). By means of the landmarks or control points and the RBF, the TPS

interpolation estimates a dense and a globally smoothed deformation field. The disadvantage

of a TPS interpolation is, that the arbitrary distribution of the control points perform a global

influence on the deformation, since the RBF have infinite support.
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By using intensity-based techniques, Rueckert et al. presented in [40] another approach for

non-linear registration which was applied to contrast enhanced breast MRI. The registration

method is based on a global and a local motion model. The global model describes the

overall rigid motion of the breast, whereas the local model specifies local deformations. Local

deformations are modelled by free form deformations (FFD) which are estimated over a defined

regular grid of control points. Rueckert et al. have shown that their algorithm achieves

better results on breast MRI than simple rigid or affine registration methods. This algorithm

is outlined in more detail in Appendix C.

In [16] a locally affine registration approach is proposed, that matches two surfaces described

by points. Each point of the first surface is deformed by a local affine transformation. An

additional constraint arranges for smoothness of the deformation along the 3D surface.

In 2004, Xie et al. [54] proposed a multi-level non-linear registration approach based on

hierarchical B-splines. A major problem of traditional B-spline registration is the choice of the

number of control points. Few control points achieves only a rough global registration result.

Using a large number of control points, the deformation may exhibit local oscillations and

it significantly increases computation time. An adaptive local refinement of the hierarchical

B-splines overcomes this problem.

Similar to [54], Schnabel et al. presented an approach based on B-splines, that uses a non-

uniform grid to control the FFD deformations. They introduced a status of each control point

in a dense grid. Active control points are allowed to move during the registration process,

whereas passive control points remain fixed. A segmentation step before registration provides

the information for assigning the status to each control point.

Mattes et al. [30] proposed an algorithm for PET-CT registration of the chest by using a

rigid body transformation in combination with localized cubic B-splines to model the motion

between the two image. A mutual information based similarity criterion is applied to this

inter-modality registration process. The deformation is defined on a regular grid and is

parameterised by several coefficients. Together with a spline-based representation of images

and a histogram estimate, the deformation model results in a closed-form expressions for the

similarity criterion and gradient calculations.

2.4.2 Optical Flow Based Registration

The optical flow (OF) approach is based on the work of Horn and Schunk [21] and originates

from physics. In computer vision OF approaches estimate the motion between two frames that

are taken at time t and t + ∆t. In the case of image registration we can use this approach

to model tissue motion and deformation. Assuming intensity value constancy of particular

points in two frames f(x, y, z, t) and f(x + dx, y + dy, z + dz, t + dt), the objective of OF is to

determine dx, dy and dz such that

f(x, y, z, t) = f(x + dx, y + dy, z + dz, t + dt). (2.15)

By means of Taylor series expansion and ignoring high order terms the fundamental optical

flow equation is denoted as:

∇f~v + ∆f = 0 (2.16)
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∆f describes the temporal difference between the two frames, ∇f describes the spatial deriv-

atives of the moving image and ~v is the motion between the two frames.

To use OF in practice a smoothness regularisation must be applied to the motion field v. In

the survey of Beuchemin et al. [5] different OF techniques are explained. In our case only

the differential optical flow method is of importance. Mentioned approaches like frequency

based, correlation based, multiple motion and temporal refinement methods are referred to

for the sake of completeness.

The introductory section of Chapter 3 covers the details of the differential optical flow in

conjunction with the approach of Periaswamy [36].

The differential method computes a motion from spatial and temporal derivatives of images.

The assumption of continuity of the image in time and space domain allows to compute a

global or a local model. The global method needs the mentioned smoothness constraint to

get a dense, smooth motion field over the complete image region. The local methods find the

best fit for ~v by means of simple optimisation in their local neighbourhood. In Barron et al.

[3] a quantitative evaluation of several OF methods is given.

2.4.3 Elastic Registration

In elastic registration the estimation of the deformation field is reduced to a search for optimal

parameters, instead of using a parametric mapping function such as in spline- and polynomial-

based registration. In 1989, Bajcsy et al. [2] proposed the idea of elastic registration. The

moving image B can be viewed as being composed of an elastic material, such as rubber.

Through the physical process of stretching and bending, the image B gets aligned with

image A. Two forces guide the registration process. The external force takes effect on the

elastic material from outside and the counteracting internal force controls not to loose the

equilibrium state of the material’s shape. The Navier linear elastic partial differential equation

(PDE) (Equation 2.17) describes the procedure of finding a solution at equilibrium with a

minimum energy state. The deformation field is represented by u, ∇ denotes the gradient

operator and ∇2 the Laplace operator. λ and µ are elasticity constants. The external force f ,

which may be based on distances or voxel similarity measurements governs the registration

process.

µ∇2u(x, y, z) + (λ + µ)∇(∇u(x, y, z)) + f(x, y, z) = 0 (2.17)

In [47] the external force depends on the distance between surfaces of anatomical structures.

Davatzikos et al. [12] used curved boundary structures for similarity measurements and op-

timisation.

In contrast, Peckar et al. [33] suggested an incorporation of elastic deformation and the pre-

scribed deformation field instead of the external force.

Large localised deformations can not be estimated since the deformation energy caused by

stress increases proportionally with the strength of the deformation. Fluid registration han-

dles this problem by relaxing this constraint over time.
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2.4.4 Fluid- and Diffusion-Based Registration

The concept of a viscous fluid model controls the image deformation in this type of registration

method. The moving image B is modelled as a thick fluid that flows out to match image

A. Fluid registration is mainly used in areas such as inter-subject registration, where large

deformations and large degrees of variability occur. A comparison of fluid based methods is

given in [51], where numerical experiments highlight the results in computational effort and

accuracy for several PDE solvers. The fluid registration model is based on the Navier-Stokes

PDE (Equation 2.18), which is similar to the elastic registration approach. In contrast, the

velocity field v is used instead of the displacement field u. The mathematical relationship

between u and v is given in Equation 2.19.

µ∇2v(x, y, z) + (λ + µ)∇(∇v(x, y, z)) + f(x, y, z) = 0 (2.18)

v(x, y, z, t) =
∂u(x, y, z, t)

∂t
+ v(x, y, z, t)∇u(x, y, z, t) (2.19)

Bro-Nielsen et al. [8] proposed a fast implementation for solving the PDE in Equation 2.18.

Before that, solving this equation with a conventional numerical method such as successive

over-relaxation (SOR) [38] lead to long computation times.

In [8] the PDE is solved by deriving a convolution filter from the eigenfunctions of the linear

elasticity operator under the assumption that the viscosity of the fluid is nearly constant. In

their work it has also been shown that this solution is similar to a regularisation by convolution

with a Gaussian kernel as in the diffusion based registration technique proposed by Thirion

[46]. This work presents the concept of diffusing models to perform image registration. The

main idea of this algorithm (in literature known as Demons algorithm) is to consider the

objects boundaries in the images as membranes.

The Demons algorithm, included in the ITK [32], is based on a normalised optical flow

concept. In a first step, forces are computed through OF. These forces then produce an overall

deformation field. A Gaussian filtering step provides the regularisation of the deformation

field. Pennec et al. [35] applied the Demons algorithm to non-linear 3D ultra-sound image

registration.

2.4.5 Biomechanical Registration

Edwards et al. [14] proposed a three-component registration model to simulate the properties

of rigid structures such as a bone, elastic structures such as the white, gray matter or other

soft tissue and fluid structures such as the cerebrospinal fluid. This approach uses a simple

finite elements method (FEM) to model deformations. FEM is an analysis technique that solves

partial differential equations, which describe complex systems and processes that are spatially

distributed. In [14] a triangulation of the images allows a labelling of each node to one of

the three physical properties. By deforming the mesh, an energy objective function can

be optimised. Several energy terms for constraining the deformations were suggested. The

distances between selected landmarks provide a basis for the energy objective function. Severe

disadvantages of FEM based registration are its high computation times and the need for prior

segmentation.





Chapter 3

Elastic Registration in the Presence

of Intensity Variations

3.1 Introduction

In [36], Periaswamy et al. suggested a general purpose registration approach. This algorithm

models a deformation in a locally affine and globally smooth fashion. In our case, we need

a registration technique, that copes with small, local deformations, like in the case of the

lung’s alveolus, and that can model large deformations caused by respiration. The presented

non-feature based registration approach affords an alignment of images with intensity varia-

tion, which is relevant if images are taken with contrast agents. The algorithm is intended

for the alignment of mono-modal images. This Chapter presents the details of Periaswamy’s

registration approach. At first, Section 3.2 outlines the principle of the OF approach. The

following sections provide information on how to compute a locally affine model (3.3) with

intensity variations (3.4) and on how to gain a globally smooth deformation field (3.5). Fur-

ther sections provide details on computing the derivatives (3.7), computing the inverse of a

matrix (3.8) and additional details (3.9). A summary concludes this chapter giving informa-

tion about observed advantages and disadvantages of the implementation and it presents an

outlook on further improvements.

3.2 Optical Flow

Periaswamy’s suggested registration approach is based on a differential optical flow method.

Horn and Schunk [21] presented global techniques to determine motion from OF, while the

work of Lucas and Kanade [26] deals with a local method. Global methods estimate a dense

motion field and local methods provide robustness under noise [3].

Referring to the previous chapter, an OF estimate assumes an intensity constancy in the

concerned frames t and t + dt. A second assumption, the velocity smoothness constraint,

signifies that nearby points move in a similar direction.

There exist several techniques to solve the OF problem dealing with these two assumptions.

Details of these methods can be found in the specified papers [21], [26] and [3].

A differential flow or motion estimate is based on the computation of the spatial and temporal

25
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derivatives directly from the intensity values of the images. The following equation assumes

the two continuous images f(x, y, z, t) and f(x̂, ŷ, ẑ, t̂) as identical, if

f(x, y, z, t) = f(x̂, ŷ, ẑ, t̂) (3.1)

where f(x, y, z, t) represents the fixed image and f(x̂, ŷ, ẑ, t̂) stands for the moving image.

We can denote the term f(x̂, ŷ, ẑ, t̂) as f(x + dx, y + dy, z + dz, t + dt) by introducing the

following definitions: x̂ = x + dx, ŷ = y + dy, ẑ = z + dz and t̂ = t + dt.

Using a Taylor series expansion, f(x+dx, y+dy, z+dz, t+dt) can be expressed as a function

of location and time:

f(x + dx, y + dy, z + dz, t+dt) =

f(x, y, z, t) +
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz +

∂f

∂t
dt + O(∂2)

(3.2)

Ignoring the high order terms O(∂2) of the series expansion, applying it to Equation 3.2 and

simplifying the result leads to

∂f

∂x
· dx

dt
+

∂f

∂y
· dy

dt
+

∂f

∂z
· dz

dt
+

∂f

∂t
= 0. (3.3)

By multiplying with dt and performing further simplification, the previous equation can be

written as

(∇f)T ~v + ft = 0, (3.4)

where ~v = (dx, dy, dz)T denotes the motion or velocity vector and ∇f = (fx, fy, fz)
T stands

for the spatial derivatives of the image f(x, y, z, t) in each of the x, y and z directions.

The variable ft is the temporal derivative. The derived result 3.4 is called the optical flow

constraint equation or gradient constraint equation. Following the paper [3] there exist three

main approaches to solve the OF constraint equation. In [21], they defined the dissimilarity

between two frames as a combination of the gradient constraint and a smoothness term. The

additional global smoothness term constrains the velocity or motion field. Over a domain V

the function ǫ1 can be minimized to estimate the motion field ~v = (v1, v2, v3)
T . The variable

λ reflects the influence of the additional smoothness term.

ǫ1 =

∫

V

(
(∇f)T · ~v + ft

)2
+ λ2

(
‖∇v1‖2 + ‖∇v2‖2 + ‖∇v3‖2

)2
dxdydz (3.5)

In the work of Barron [3], they also give a description of Uras’s et al. method, where the

solution is based on a second order technique. The images are divided into smaller sub-

images. For each sub-image the best estimate for the local velocity field is chosen considering

the Hessian matrix.

The third approach is based on the work of Lucas and Kanade [26]. They suggested to

minimise a locally defined error function. (Equation 3.6). In each local region Ω a closed
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form solution produces the velocity field ~v, analytically.

ǫ2 =
∑

x,y,z∈Ω

W (x, y, z)2
(
(∇f)T · ~v + ft

)2
(3.6)

The variable W (x, y, z) denotes a windowing function, which controls the influence of the

constraint depending on the location in this region Ω.

In the following paragraphs, we concentrate on the derivation of this error function ǫ2 to

implicate Periaswamy’s idea.

Starting from the papers [48] and [41], the time term is skipped for convenience and a for-

mal redefinition of the image notation is established with fmoving(α) = f(x̂, ŷ, ẑ, t + 1) and

ffixed(α) = f(x, y, z, t). The vector ~v defines the correspondences as a displacement at each

location of the fmoving(α + v) and the fixed image ffixed(α).

An error function ǫ in a squared difference fashion can be expressed as

ǫ =
∑

x,y,z∈Ω

W (x, y, z)2 (fmoving(α + v) − ffixed(α))2 (3.7)

Truncating the high order terms in Equation 3.2 and using the new formal definition yields

the following approximation in a compact manner

fmoving(α + v) = fmoving(α) + ∇f · ~v (3.8)

Certainly, ∇f denotes the spatial derivatives of the moving image. Employing the previous

equation to the error function given in Equation 3.7 results in

ǫ =
∑

x,y,z∈Ω

W (x, y, z)2 (fmoving(α) + ∇f · ~v − ffixed(α))2 (3.9)

Comparing Equation 3.9 to Equation 3.6, it is obvious that the temporal derivative ft is

the difference of fmoving(α) and ffixed(α). This quadratic error function can be minimised

analytically with respect to ~v. Differentiating this error function in Equation 3.9 with respect

to ~v and setting the result equal to zero produces

∑

x,y,z∈Ω

W 2 (fmoving(α) − ffixed(α) + ∇f · ~v)∇f = 0 (3.10)

Assuming a constant motion within the domain Ω the following equation can be written




∑

x,y,z∈Ω

W 2∇f∇fT



~v =
∑

x,y,z∈Ω

W 2 (fmoving(α) − ffixed(α))∇f (3.11)

by using (∇f · ~v)∇f =
(
∇f∇fT

)
~v.

A simplification with

G =
∑

x,y,z∈Ω

W 2∇f∇fT (3.12)
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and

~w =
∑

x,y,z∈Ω

W 2 (fmoving(α) − ffixed(α))∇f (3.13)

offers a linear equation system (Equation 3.14), which can easily be solved for ~v by computing

the inverse of G and a multiplication with the right hand-side term ~w. In the 3D case the

solution of this linear system gives a 1 × 3 displacement vector as a result.

G~v = ~w (3.14)

The outer product of ∇f∇fT results in a symmetric matrix with a dimension of 3 × 3.

Sampling all locations in x,y and z directions within the region Ω and the element-wise

summation of the resulting matrices, the matrix G can be computed as follows

G =





∑
fxfx

∑
fxfy

∑
fxfz∑

fyfx

∑
fyfy

∑
fyfz∑

fzIx

∑
fzfy

∑
fzfz



 (3.15)

The matrix G is also known as the structure tensor [22]. The previous description has given

an outline on how to compute a displacement vector in a small region Ω. The optical flow

technique based on Lucas and Kanade was suggested for tracking feature points in images.

Applying this technique to image registration, a 3D sliding mask makes it possible to compute

a displacement vector for each traversed voxel. At each location in the moving image the

corresponding region in the fixed image is tracked. The size of the sliding mask represents

the spatial neighbourhood region Ω. The following sections explain the ideas of Periaswamy’s

approach utilising the preceding solution in a similar way.

3.3 Local Affine Model

As mentioned before, registration is the process of aligning two images. As a result a defor-

mation field representing the transformation T is computed. In this work we adopt the same

notation as in [36]. The principle of the algorithm is a modelling of the motion between a

fixed and a moving image by means of a locally applied affine transformation. As defined in

the previous section, f(x, y, z, t) represents the fixed image and f(x̂, ŷ, ẑ, t̂) the moving image.

Periaswamy et al. introduced a local affine model in their work. The relation of x̂ to x, ŷ to

y and ẑ to z can be described by the affine transformation.

Assuming that the intensity values are nearly constant in a small spatial neighbourhood,

Equation 3.16 explains the transformation model. Within the differential notation the vari-

able t denotes the temporal parameter. The parameters x,y and z cover all voxel locations

of the corresponding image.

f(x, y, z, t) = f(m1x + m2y + m3z + m10,

m4x + m5y + m6z + m11,

m7x + m8y + m9z + m12, t − 1)

(3.16)
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In Equation 3.16, the variables m1 . . .m9 represent the affine parameters, while m10, m11 and

m12 are the translation parameters. The affine transformation with 12 DoF allows shearing,

scaling, translation, and rotation in any direction. For each small spatial neighbourhood Ω

of traversed voxels the appropriate parameters can be estimated by minimizing a quadratic

error function.

E(~m) =
∑

x,y,z∈Ω

[f(x, y, z, t) − f(m1x + m2y + m3z + m10,

m4x + m5y + m6z + m11,

m7x + m8y + m9z + m12, t − 1)]2

(3.17)

This error function, given in Equation 3.17, is based on the similarity measure SSD presented

in Chapter 2.

Computing the unknown parameters for all locations x, y and z in the images yields a non-

linear deformation model. Because of the non-linearity in its unknowns ~m = (m1 . . .m12)

the equation can not be minimized analytically. By means of the Taylor series expansion

and truncating after the first order term the non-linear quadratic error function can be

approximated through a linear error function

E(~m) ≈
∑

x,y,z∈Ω

[f(x, y, z, t) − (f(x, y, z, t)+

+ (m1x + m2y + m3z + m10 − x)fx(x, y, z, t)

+ (m4x + m5y + m6z + m11 − y)fy(x, y, z, t)

+ (m7x + m8y + m9z + m12 − z)fz(x, y, z, t)

− ft(x, y, z, t))]2

(3.18)

where now fx, fy, fz and ft represent the derivatives of the moving image f(x, y, z, t), as

mentioned in the paper [36]. In Section 3.7 it is explained how to compute the spatial

and the temporal gradients from a combination of moving and fixed images. To make the

derivation convenient we first assume the computation of the gradients of the moving image.

Further simplification of Equation 3.18 reduces the error function to Equation 3.19. This

approximation results in a quadratic function with linear unknowns ~m.

E(~m) ≈
∑

x,y,z∈Ω

[ft(x, y, z, t)

− (m1x + m2y + m3z + m10 − x)fx(x, y, z, t)

− (m4x + m5y + m6z + m11 − y)fy(x, y, z, t)

− (m7x + m8y + m9z + m12 − z)fz(x, y, z, t))]2

(3.19)

If a vector form notation is introduced, Equation 3.19 can be compactly written as

E(~m) =
∑

x,y,z∈Ω

[k − ~cT ~m]2 (3.20)
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where the scalar k denotes

k = ft + xfx + yfy + zfz (3.21)

and the vector ~c expresses

~c = (xfx yfx zfx xfy yfy zfy xfz yfz zfz fx fy fz)
T . (3.22)

Due to linearity of the equation in its unknown parameters ~m = (m1 . . .m12), the parameters

can be estimated from an analytic minimization by differentiation with respect to them and

setting this error function equal to zero:

dE(~m)

d~m
=

∑

x,y,z∈Ω

−2~c
[
k − ~cT ~m

] !
= 0. (3.23)

Solving for the parameters ~m results in

~m =




∑

x,y,z∈Ω

~c~cT




−1 


∑

x,y,z∈Ω

~ck



 (3.24)

As a result of this derivation we use the compact Equation 3.24 to calculate the locally affine

model analytically from a small spatial neighbourhood. The estimated parameters ~m for

each location x, y and z and their corresponding neighbourhood Ω allow a dense mapping

between moving and fixed image. Mathematically, the term
[∑

x,y,z∈Ω ~c~cT
]

forms a 12 × 12

matrix. This matrix is usually invertible assuming that the spatial neighbourhood is large

enough and includes sufficient image content. The second term
[∑

x,y,z∈Ω ~ck
]

results in a

column vector with a dimension of 1 × 12.

3.4 Intensity Variations

Only if a brightness constancy constraint is fulfilled, the derivation of the model, given in the

previous section 3.3 is valid. If the intensity values of the images change between different

images, Periaswamy suggests to introduce two additional parameters m13 and m14, that

compensate local contrast and brightness changes [31]. The extended form of Equation 3.16,

including the varying spatial parameters yields

m13f(x, y, z, t) + m14 = f(m1x + m2y + m3z + m10,

m4x + m5y + m6z + m11,

m7x + m8y + m9z + m12, t − 1)

(3.25)

Due to the linearity of the additional parameters the derivation is similar to the one given in

Section 3.3. Using the Taylor series expansion and ignoring higher order terms, the approxi-
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mated error function results in

E(~m) =
∑

x,y,z∈Ω

[k − ~cT ~m]2 (3.26)

The scalar k given in 3.27 and the vector ~c given in 3.28 extend the definitions of k and ~c of

the pure affine model presented in the Equations 3.21 and 3.22, respectively. f describes the

intensity value of the moving image at location (x, y, z).

k = ft − f + xfx + yfy + zfz (3.27)

~c = (xfx yfx zfx xfy yfy zfy xfz yfz zfz fx fy fz − f − 1)T (3.28)

Minimization of this error function is accomplished, as before, by differentiating, setting the

result equal to zero and solving for the parameters ~m. The solution takes the same form as in

3.24, with k and ~c defined as above. Intensity variations are typically a significant source of

error in differential motion estimation. The addition of contrast and brightness terms allows

to accurately register images in the presence of local intensity variations.

An intensity modulation is one way to explain the mapping between the two grey-value ranges

of the images. The next section highlights an alternative method.

3.5 Smoothness

The derivation in Section 3.4 assumes that the affine, brightness and contrast parameters do

not change within the spatial neighbourhood. There is a natural trade-off in choosing the size

of this neighbourhood Ω. A larger area makes it more likely that the term
[∑

x,y,z∈Ω ~c~cT
]

in

Equation 3.24 will be invertible. A small neighbourhood preserves the assumption of constant

parameters in this area. To avoid finding the trade-off between the parameters constancy

assumption and the ability to invert the term, a smoothness constraint is introduced [21].

The error function, given in Equation 3.26, is extended with an additional term Es(~m), which

denotes this constraint. The term Eb(~m) = [k − ~cT ~m]2 now represents the part of Equation

3.26 without the summation. The vectors ~m and ~c have the same form as described in the

Equations 3.27 and 3.28, respectively. The resulting error function is given as follows in

Equation 3.29.

E(~m) = Eb(~m) + Es(~m) (3.29)

The introduction of a smoothness constraint term Es(~m) leads to a quadratic equation given

in 3.30, where λi represents a positive constant value, that controls the relative weight given

to the smoothness constraint on each element of the parameter vector ~m.

Es(~m) =
14∑

i=1

λi

[(
∂mi

∂x

)2

+

(
∂mi

∂y

)2

+

(
∂mi

∂z

)2
]

(3.30)

The complete error function, given in Equation 3.29, is solved for the minimising parameters

~m = (m1 . . .m14). Differentiation with respect to the parameters ~m and setting the error
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function equal to zero leads to:

dE(~m)

d~m
=

dEb(~m)

d~m
+

dEs(~m)

d~m

!
= 0 (3.31)

In Equation 3.32, the derivative of the first term Eb(~m) leads to a similar result as given in

3.23.
dEb(~m)

d~m
= −2~c[k − ~cT ~m] (3.32)

The derivative of Es(~m) is computed by expressing the partial derivatives, ∂mi

∂x
, ∂mi

∂y
and ∂mi

∂z

with discrete approximations [21]. The differentiation results in

dEs(~m)

d~m
= 2L

(
~m − ~m

)
(3.33)

where ~m represents the mean values of each parameter over a small spatial neighbourhood.

In case of a full affine model with a contrast and a brightness parameter estimate, the variable

L denotes a 14 × 14 identity matrix multiplied with the positive constant value vector ~λ =

(λ1 . . . λ14)
T . Applying the Equations 3.32 and 3.33 to 3.31, setting this equation equal to

zero and solving for the parameters ~m for each location in x, y and z direction, yields a linear

system, which is intractable to solve. As mentioned in [36] an iterative scheme is employed

to solve the resulting Equation 3.34 for the parameters ~m.

~m(j+1) =
(
~c~cT + L

)−1
(
~ck + L~m

(j)
)

(3.34)

For each iteration j, ~m(j+1) is estimated from the current ~m(j). The initial estimate for the

parameters ~m(0) is computed from the closed-form solution explained in Section 3.4.

Applying the proposed smoothness constraint to the algorithm results in a dense locally

affine but globally smooth deformation field. The drawback is that the minimization is no

longer analytic, but the iterative minimization scheme converges relatively quick and stable

as referred to in the paper.

3.6 Choosing the Model of Transformation

The previous derivation of the fully local affine model estimates the parameters for scaling,

shearing, rotation, translation, contrast and brightness. As mentioned before, this model

demands an inversion of a 14 × 14 matrix at each voxel location. A simplification done by

restricting the complete vector ~c, given in 3.28, and an accordant computation of the scalar

k, denoted in 3.27, leads to a less complex model of transformation. We reproduced these

models from the given Matlab implementation, because the theory is unquoted in the paper

of Periaswamy.

The basic model, which includes only translation, can be derived from the theory as stated

in Section 3.2. The complete vector ~c simplifies to:

~c = (fx fy fz)
T (3.35)
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and the scalar k (given in Equation 3.27) is now computed as follows:

k = ft (3.36)

Hence, the computation of the parameters, using Equation 3.26, results in the 1×3 translation

vector. This model equals to the standard local approach presented in 1981 by Lucas and

Kanade [26]. In the course of this work we call this simple model as Model 1.

An introduction of the contrast and brightness parameters expresses an initial model

m13f(x, y, z, t) + m14 = f(x + m10,

y + m11,

z + m12, t − 1)

(3.37)

Further derivation also results in Equation 3.26, where this time ~c and k are denoted as

k = ft − f (3.38)

and

~c = (fx fy fz − f − 1)T . (3.39)

This restricted form of a transformation model is named Model 2. This model uses translation

as transformation and handles intensity variations in the images.

Model 3 omits the contrast and brightness parameter estimation. The following ~c and k,

denoted in Equation 3.41 and 3.40 result in the parameter vector ~m by inverting a 9 × 9

matrix.

k = ft + xfx + yfy + zfz (3.40)

~c = (xfx yfx zfx xfy yfy zfy xfz yfz zfz fx fy fz)
T (3.41)

The resulting parameters ~m with a dimension of 1×9 describes a pure affine transformation.

The complete model, including the 14 estimated affine, contrast and brightness parameters is

called Model 4. The influence of the restriction on the computation time and the registration

results are described in Section 3.10. Chapter 5 illustrates quantitative results comparing

these models on image data.

3.7 Computation of the Derivatives

In Periaswamy [36] the computation of the spatial and temporal derivatives is characterised

as a critical step. These derivatives of discretely sampled images are often computed as differ-

ences between neighbouring intensity values, which lead to substantial errors in the gradient

approximations. These errors arise if continuously defined derivatives are applied to discrete

images. Periaswamy et al. suggest specifically designed filters for multi-dimensional differen-

tiation for computation of the derivatives [15].

According to this paper, there exists a fair amount of work on the design of discrete differ-

entiators in literature. Many approaches base on an approximation of the derivative of a

continuous sinc function. These methods suffer from the need of large filter sizes to achieve
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accurate results.

Another adequate approach is the sampling of the Gaussian derivatives. This provides good

approximations of the gradients and is less computationally expensive than sinc functions.

These two primary methods are not well suited for the computation of derivatives of multi-

dimensional images. The proposed, so-called Simoncelli-filters feature the property of sepa-

rability, which allows differentiation in arbitrary directions by means of linear combinations

of axis derivatives. In addition filters are optimally equivariant to rotations, thereby reducing

the rotation dependent approximation error.

1D separable filters efficiently convolve the 3D image in each according dimension.

The computation of the derivatives of a discretely sampled signal requires an interpolation

step to approximate continuity. The derivative of this continuous signal is then re-sampled

at the points of the original sampling lattice. Details on the interpolation methods, needed

to design these filters can be found in [15].

Table 3.1 gives a set of first-order derivative kernels of various taps. d0 represents the values

of the interpolator and d1 denotes the derivatives of the interpolator values.

3-tap d0 0.223755 0.552490 0.223755

d1 -0.453014 0 0.453014

4-tap d0 0.092645 0.407355 0.407355 0.092645

d1 -0.236506 -0.267576 0.267576 0.236506

5-tap d0 0.036420 0.248972 0.429217 0.248972 0.036420

d1 -0.108415 -0.280353 0 0.280353 0.108415

6-tap d0 0.013846 0.135816 0.350337 0.350337 0.135816 0.013846

d1 -0.046266 -0.203121 -0.158152 0.158152 0.203121 0.046266

Table 3.1: First-order derivative kernels of various taps given in pairs of the interpolator d0

and its derivatives d1. Taken from [15].

Periaswamy suggests a 2-tap filter to smooth the temporal derivative ft. In our implemen-

tation we subtract the fixed image from the moving image and convolve the result with an

efficient 1D Gaussian filtering method in each direction. The Gaussian filter mask is expressed

in Equation 3.42, where β represents the location in the corresponding dimension. The filter

mask gets normalised to a maximal value of 1 by dividing through the term 1/
(√

2πσ
)
. Fig-

ure 3.1 illustrates the normalised 1D Gaussian distribution with σ = 1. The filtering causes

a smooth and a continuous change of the intensity values over the complete image domain.

G(β) =
1√
2πσ

e
−β2

2σ2 (3.42)

As proposed in Periaswamy’s work [36], we also apply the Simoncelli-filters to our imple-

mentation. The spatial derivatives fx, fy and fz are approximated using a 3-tap filter. As

described in the previous optical flow section (3.2), the spatial derivatives are approximated

directly from the moving image.

Periswamy et al. used a symmetric definition of the error function E(~m) (Equation 3.17)

in their Matlab code. We adopt this method for our implementation. Following the unpub-

lished paper of Birchfield [6] in conjunction with Kanade-Lucas-Tomasi tracking [48],[41],
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Figure 3.1: The normalised 1D Gaussian distribution with σ = 1.

the derivatives are now computed including both images. The detailed derivation of this

approximation can be found in [6]. The symmetric error function is redefined as follows

E(~m) =
∑

x,y,z∈Ω

[f(x−m10, y −m11, z −m12, t)− f(x + m10, y + m11, z + m12, t− 1)]2 (3.43)

The error function, expressed in Equation 3.43, is made symmetrical with respect to the

two input windows, but it equals to Equation 3.17. The redefinition of the computation

of spatial derivatives ∇f results in Equation 3.44. In constrast to the paper, the provided

implementation ∇f involves the constant factor 1/2 directly.

∇f =




fx

fy

fz



 =





∂
∂x

1
2 (fmoving + ffixed)

∂
∂y

1
2 (fmoving + ffixed)

∂
∂z

1
2 (fmoving + ffixed)



 (3.44)

This method of computing the derivatives with a symmetrical definition promises a more

accurate estimate of the translation parameters m10, m11 and m12. This symmetric scheme

is also used for the more complex models Model 2-4.

3.8 Computing the Inverse

Starting from Equation 3.24, it is obvious that a matrix inversion is needed to compute a

closed form solution for the parameter vector ~m. This section explains a robust attempt of

computing the matrix inverse and verifying its invertibility. Checking the singularity of the

matrix is important, because the intensity constancy assumption holding.

Equation 3.24 computes the initial estimate for the parameters ~m = (m1 . . .m14). This

equation consists of a simple matrix multiplication with a vector. For the sake of convenience

a short notation is introduced, which is shown in Equation 3.45.

~m =




∑

x,y,z∈Ω

~c~cT




−1 


∑

x,y,z∈Ω

~ck



 = G−1 · ~w (3.45)

As noted previously, the inverse computation of the matrix G =
[∑

x,y,z∈Ω ~c~cT
]

is needed.

The vector ~b represents the second term ~w =
[∑

x,y,z∈Ω ~ck
]
. The resulting parameter vector

~m has a dimension of 1×14 in the case of the fully affine model with brightness and contrast
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estimation.

In numerics literature [38],[20] there exist various methods to solve linear equation systems

or inverse computations. Periaswamy et al. applied the SVD [38] to invert the matrix G in

their Matlab implementation. We adopt this robust technique to our implementation.

As a simple starting position we suppose the matrix G to be a square matrix and Equation

3.45 to be a linear system.

The SVD offers a powerful technique for dealing with matrices that are either singular or else

numerically very close to singular. If the determinant det (G) of a matrix G equals to 0, G is

called singular. A singular matrix is not invertible.

In the following, a brief outline of the mathematically background of the SVD approach is

given, details can be found in [38].

As illustrated in Equation 3.46, the SVD decomposes the matrix G into three matrices U , W

and V T . We introduce a variable N , which denotes the dimension of the matrix G. In the

case of a square matrix G, the three decomposed matrices have the same dimension (N ×N).

G = U · W · V T (3.46)

The matrices U and V are orthogonal (Equation 3.47), which imposes that their inverses are

equal to their transposes.

UT U = V T V = I (3.47)

where I denotes the identity matrix.

The matrix W is a diagonal matrix, which contains the singular values ωj of G:

W =





ω1

ω2

. . .

ωN




(3.48)

So its inverse is the diagonal matrix whose elements are the reciprocals of the elements ωj .

Note that the inversion of the matrix G can therefore easily be written as

G−1 = V ·
[
diag

(
1

ωj

)]
· UT . (3.49)

The SVD offers a simple technique to invert square matrices. There is only a problem, if one of

the diagonal elements ωj equals to zero or is so small that its value is dominated by round-off

error. If more than one of the diagonal elements have this problem, then the matrix G has a

higher degree of singularity.

In [20] the degree of singularity is referred to as the condition number κ(G) of a matrix G.

This condition number is defined as the ratio of the largest diagonal element in the matrix

W to the smallest. A matrix G is singular (not invertible), if its condition number is infinite.

The condition number can be expressed as

κ(G) =
∥∥G−1

∥∥ · ‖G‖ . (3.50)
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If the l2-Norm is used, κ(G) can be computed as follows:

κ(G) =
max (ωj)

min (ωj)
(3.51)

where max and min of ωj with j = 1 . . . N denote the largest and smallest singular values of

G, respectively.

We use the built-in function of the numerics library VNL1 to compute the SVD. The im-

plementation of the SVD is based on Fortran routines. The SVD method makes it possible

to compute the exact value of the condition number of the matrix G. If the matrix G is

invertible, which is the case if the condition number exceeds a given precision threshold, the

linear equation system (Equation 3.45) is solved for the parameters ~m.

3.9 Implementation Details

The previous section explained the theory for the implementation of the proposed registration

approach. In their work Periaswamy et al. suggested a multi-resolution technique to han-

dle large motions. They applied a 5-tap Simoncelli-filter to construct a four-level Gaussian

pyramid. In our implementation we use recursive Gaussian filters [13] to perform the coarse-

to-fine strategy for the two images A and B. This method reduces the computational effort of

building the pyramids. The smoothing, the computation of the derivatives and the filtering

using Gaussian filters are performed with a constant number of operations per output point,

independent of the filter size.

In opposition to this, the computational effort of constructing the pyramids by convolving

with normal Gaussian filters is directly proportional to the filter mask size. The method

approximates the Gaussian kernel with a filter bank depending on the scale of the Gaussian

kernel.

Going from fine to coarse levels of the pyramid, the resolution is halved in three dimensions.

Figure 3.2 illustrates extracted slices from an exhalation and an inhalation image in each level

of the down-sampled resolution. These samples have an original dimension of 256× 256 in x

and y direction. We apply the down-sampling until a given minimal image size minSize at

coarsest level is reached. In this case we get four levels, with a minimal dimension of 32× 32.

Starting from the original and the minimal image resolution the number of levels NbLevels

can be calculated by using Equation 3.52. We choose the minimum of three resolution values

of the images in each direction as the original size minOriginalSize to compute the number

of levels.

NbLevels =

⌊
lg

minOriginalSize

minSize
+ 1

⌋
(3.52)

Before generating the levels of different resolutions for the image A and B, a padding is

applied to both images to overcome the problem of boundary effects. We assume a minimal

padding size in each direction, so that a convolution at the boundaries of the original sized

images is possible. In the implementation the size for the spatial neighbourhood is chosen

as Ω = 5 × 5 × 5. Periaswamy determined this neighbourhood size empirically and it is a

1
VNL is included in the ITK package [32]
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: (a)-(e) Different resolutions of an image at inhalation state, (f)-(j) Different
resolutions of an image at exhalation state.

trade-off between holding the estimated parameters constancy and the feasibility of inverting

the resulting term
∑

x,y,z∈Ω ~c~cT within Ω.

Therefore a padding of more than 2 voxels on each boundary of the images is necessary to

compute the parameters ~m in the coarsest level. The padded areas are filled with constant

intensity values. In our case the filling with intensity value equals to zero, representing a

content of no information in these areas.

Figure 3.3 illustrates the principle of convolution with and without a padding. The illustration

is simplified to the 2D case. Considering the unpadded case, the convolution of the original

image grid (blue grid) with the filter mask (red grid box) leads to undefined areas. An

additional padding (green grid) makes it possible to compute the appropriate filtered values

at the boundaries of the original images.

The padded moving and fixed images act as input with the increased image resolution.

Skipping the details, the presented method can be briefly summarised in Algorithm 1.

Starting at the coarsest level of the pyramid, the parameters for each location in the images

are estimated from the fixed and moving image using the proposed algorithm. Extracting

the translation parameters m10, m11 and m12 yields a deformation field, which represents the

overall motion between the two images.
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(a) (b)

Figure 3.3: A convolution (a) with padding and (b) without padding.

The remaining affine parameters are not applied to the moving image, because the indices

equal to zero in the center of each spatial neighbourhood. The contrast and brightness para-

meters are skipped as well.

A warping, which includes these two parameters m13 and m14, obviously performs like an

intensity transformation. However, the interest lies on modelling a deformation.

Using this deformation field for warping leads to a new resulting moving image, which is

more similar to the fixed image. Periaswamy et al. recommended a four times repetition,

the so called outer loops, at each level of the multi-resolution approach to improve the final

deformation field.

The computed deformations at each level and each iteration are accumulated yielding a single

field of transformations. As mentioned in the previous chapter, the coarse-to-fine strategy

allows to register images with large motions. Going up to the next finer resolution level, the

intermediate deformation field is up-sampled to the appropriate image size and applied to

the moving image as a pre-warping.

As mentioned in [36], the smoothness constraint converges relatively fast after 10 iterations

(inner loops).

In each inner loop a given filter mask averages the parameters in the small spatial neigh-

bourhood. In the paper, a 3× 3 kernel is suggested to compute ~m in the 2D case. The given

kernel (see 3.53) increases the influence of the 4-connected neighbourhood voxels. In our case,

we simplify the averaging for the reason of efficiency to a simple mean computation of all

surrounding neighbours. Hence, in 3D we compute the mean over 26 neighbourhood voxels.

kernel =
1

20




1 4 1

4 0 4

1 4 1



 (3.53)

If Model 4 is used, the values for ~λ = (λ1 . . . λ14)
T in the matrix L are set to a value of 1011

as given in the paper. Considering the Models 1-3, the dimension of L is reduced, following
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the dimension of the vector ~c and the scalar k. The matrix L controls the influence of the

global smoothness constraint on the locally computed parameters.

Initial experiments with the Matlab code have confirmed, that the choice of the parameters
~λ and the kernel is not critical. In this work, the parameters of L are not changed for the

presented experiments in Chapter 5.

Algorithm 1 Outline of Periaswamy’s algorithm

1. Load the two input images
Image A: fixed Image
Image B: moving Image

2. Choose one of the transformation models
Model 1 : Translation
Model 2 : Translation and Brightness/Contrast Estimation
Model 3 : Affine Transformation
Model 4 : Affine Transformation and Brightness/Contrast Estimation

3. Apply a padding to the two input images according to spatial neighbourhood size

4. Compute the levels of the pyramid for the coarse-to-fine strategy

5. For each level of the pyramid

• Compute the raw transformation parameters ~m according to Equation 3.24

• Iteratively smooth the transformation parameters ~m by using Equation 3.34

• Extract the deformation field from the computed parameters

• Up-sample the deformation field

• Warp the moving image according to the deformation field and store the warped
image as new moving image

3.10 Summary

Periaswamy et al. presented in their work an optical flow based registration algorithm, which

makes it possible to register medical images using a locally affine, but globally smooth trans-

formation model.

As a first step, we have executed the existing Matlab code using 2D images as input, which

produces slightly faster results than the presented values in the paper. Obviously, this is

caused by the constant improvements in computer hardware.

Furthermore, we tried to extend the provided Matlab implementation to three dimensions.

The extension of the code to three dimensions is straight forward. As input, we used a pair

of 128 × 128 × 128 images of sheep lungs. The various parameters are set as given in the

paper.

The executions of the extended implementation lead to an enormous time and memory con-

sumption. The resulting warped moving image is achieved after approximately 15 hours,
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where the memory consumption increased to more than 16 GByte.

As a result, the time and memory consumption of the Matlab execution are not feasible in

practise.

Our next attempt was to implement the proposed algorithm in C++ to speed-up the regis-

tration process. The reduction of computation time and improved memory management take

effect on the implementation. Concrete results are given in Chapter 5.

As mentioned previously, the test runs are accomplished with a pair of 128×128×128 images

to achieve a relatively fast qualitative measurement on how the algorithm behaves.

In practice, a registration of an image dimension larger than 256 × 256 × 256 is of interest.

The large number of inverse computations and the extremely high memory consumption as-

sert that the proposed algorithm is not applicable in real-world registration problems. We

need at least one computation of an inverse matrix for each voxel in the image by means of

the SVD depending on the number of iterations and levels. A matrix inversion precedes the

estimate of the condition number κ(G).

Another major problem of the algorithm is the high memory consumption, which arises from

the smoothing iterations. In an inner loop, all estimated parameters are needed to average

the parameters. The obtained result of each voxel requires a second identical structure to

store the smoothed parameters. These two structures necessitate memory consumption of

2 × 1283 × 4 Byte × 14 ≈ 230 MByte, using 128 × 128 × 128 images, single precision with

float-type variables and Model 4 with 14 parameters. Providing images with a dimension

of 256 × 256 × 256 to the algorithm, this value increases to approximately 1.8 GByte and

that is beyond the requirements of a currently configured personal computer. The following

Chapter 4 addresses some algorithm improvements in order to deal with these problems.





Chapter 4

Improvements

4.1 Introduction

Concluding the previous chapter, the proposed registration algorithm is inefficient in time

and memory consumption. These drawbacks prevent an application in practical image regis-

tration.

Periaswamy provided a Matlab implementation, which uses the SVD for inverse computations.

The necessity to estimate the condition number for all voxels increases the computation time

dramatically. Computing the inverse of the matrices with a dimension of 12 × 12 or 14 × 14

is computationally expensive.

The suggested iterative smoothing demands high memory requirements, since the inverses of

all voxels have to be stored in an additional data structure to conserve computation time. As

mentioned, the smoothing is an iterative approach, there is the need of setting up a sensitive

number of iterations.

The following sections give an overview on how to reduce computation time by speeding up

the estimation of the condition number and the inverse computation (4.2). In Section 4.3 a

sub-sampling method is suggested to decrease the number of inverse computations. Atten-

tion is given to the interpolation of parameters in an affine matrix. Section 4.4 describes a

replacement of the iterative smoothing by a simple Gaussian regularisation.

4.2 Improving the Inverse Computations

Computing the outer product of two vectors with the same dimension yields a quadratic

matrix. In numerics literature, e.g. [20], there exist various approaches to invert quadratic

matrices. If the matrix G fulfils appropriate conditions, the computation of the inverse can

be accomplished in a reduced effort of mathematical operations. Therefore, the following

sections give an idea on how to replace the SVD under these circumstances with the LU- and

Cholesky decomposition.

4.2.1 Computing the Inverse with LU Decomposition

In linear numerics, the LU factorisation decomposes a given matrix G into a product of a

lower and an upper triangular matrix of the same dimension. The details are given in [20].

43
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The decomposition can be expressed as

G = LU (4.1)

where L is the lower and U is the upper triangular matrix. For example, a 4 × 4 matrix G,

L and U are expressed as

L =





l11 0 0 0

l21 l22 0 0

l31 l32 l33 0

l41 l42 l43 l44




U =





u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44




. (4.2)

If we have to solve a linear equation system of the form Gx = b, this equation can be denoted

as

Ax = (LU)x = L (Ux) = b (4.3)

Resulting from this consideration, the system can easily be solved by using a forward and a

backward substitution step. The decomposition of G into L and U is performed by Crout’s

algorithm, which uses a row-wise permutation of the matrix G to compute an unit upper

triangular matrix.

Performing Crout’s method the elements get stored in one matrix, which makes it possible

to decompose in-line and efficiently.

U =





u11 u12 u13 u14

l21 u22 u23 u24

l31 l32 u33 u34

l41 l42 l43 u44




(4.4)

We employ an implementation of the LU decomposition given in [38] to our algorithm. The

following section describes how to benefit from the factorisation for estimating the condition

number.

4.2.2 Estimating the Condition Number

As mentioned in the previous chapter, the condition number can be estimated from a matrix

G. It gives a measurement of how close a matrix is to being rank deficient. The condition

number κ(G) is the product of the norm of the matrix G and the norm of its inverse. Equa-

tion 4.5 shows how to compute the exact value of the condition number. A high condition

number results from an ill-conditioned matrix, while a number near to one results from a

well-conditioned matrix.

κ(G) = ||G||
∣∣∣∣G−1

∣∣∣∣ (4.5)

The condition number can also be considered as the ratio of the largest to the smallest

singular value of the matrix [20]. The SVD makes it possible to compute the exact value of

the condition number. In our case, it is sufficient to approximate this value.

Following [20], an estimate of the condition for the term
∣∣∣∣G−1

∣∣∣∣ can be computed by using

the LU decomposition. In general, an ill-conditioned matrix G reflects its condition in the
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factorised upper and lower triangular matrix.

If another given matrix H is triangular and the max-norm is used, the condition number can

be estimated as denoted in Equation 4.6. We use the diagonal elements ujj where j = 1 . . . N

of H to estimate a condition number of it. N × N represents the dimension of H.

κ(H) ≥ maxj (ujj)

minj (ujj)
(4.6)

We assume that the LU decomposition of an invertible matrix G yields two non-singular

matrices L and U . Considering the condition number of the upper triangular matrix, we

decide whether the matrix is singular or not. If the reciprocal value of the computed condition

number is used, a well-conditioned matrix has a condition number near to 1. Ill-conditioned

matrices give a reciprocal κ(H) near to zero. This estimate may fail in some special cases,

but we can verify the invertibility in a few computation steps.

4.2.3 Computing the Inverse with Cholesky Decomposition

If the square matrix G is symmetric and additionally positive definite, G has a more efficient,

triangular decomposition. The positive definite property denotes that all eigenvalues of G

are positive, while symmetric means that gij = gji for i, j = 1, . . . , N . Considering the term(
~c~cT + L

)
in the iterative smoothing scheme (Equation 4.7), L denotes a strictly diagonally

dominant matrix.

~m(j+1) =
(
~c~cT + L

)−1
(
~ck + L~m

(j)
)

(4.7)

A strictly diagonally dominant matrix H fulfils the condition ‖hii‖ >
∑

i6=j hij . We can con-

sequently assume that the term
(
~c~cT + L

)
results in a symmetric and diagonally dominant

matrix. As shown in [20], these two properties enforce positive definiteness.

Both, symmetry and positive definiteness, make it possible to apply the Cholesky factorisa-

tion. In theory, this decomposition is about a factor of 2 faster than alternative methods

solving linear equation systems. In LU decomposition the symmetry property is ignored.

Instead of a LU-decomposition in a lower and an upper triangular matrix L and U , the

Cholesky method constructs just a lower triangular matrix L. The relation between L and

LT is given as LT
ij = Lji. The decomposition can be written as

A = L · LT . (4.8)

A straightforward implementation [38] uses

Lii =

√√√√
(

aii −
i−1∑

k=1

L2
ik

)
and Lji =

1

Lii

(
aij −

i−1∑

k=1

LikLjk

)
(4.9)

where j = i+1, i+2, . . . , N , to decompose the matrix G into the Cholesky factor L. Once the

matrix is decomposed, a back-substitution step makes it possible to solve a linear equation

system.

We apply the Cholesky decomposition to the iterative smoothing for solving the Equation

4.7 with respect to the smoothed parameters ~m.
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Experiments on using SVD, LU- and Cholesky decomposition are given in Chaper 5.

4.3 Reducing the number of Inverse Computations

The application of LU- and Cholesky decomposition instead of SVD and the approximation

of the reciprocal condition number, give an appreciable speed-up. However, the problem is

still the large number of inverse computations, which keeps the registration time high. The

following section outlines the main idea on how to apply a sub-sampling scheme to get a

further speed-up of Periaswamy’s approach.

4.3.1 A Sub-Sampling Scheme

In general, the idea is to reduce the number of voxels to be traversed. The ability of the

suggested Periaswamy approach to register local details must not suffer from the sub-sampling

scheme.

Liu et al. [25] addressed the problem of finding the trade-off between the accuracy and

efficiency, respectively. They presented different approaches towards the goal of experimental

studies on accuracy vs. efficiency trade-offs. The computational complexity of an optical flow

algorithm is proportional to the according image size.

An intuitive idea improving the speed is to sub-sample the images. A sub-sampling runs the

risk of under-sampling below the Nyquist frequency, resulting in aliasing effects. In our case,

we use a low-pass filtering in each level of the multi-resolution approach, anyway.

By visiting only every second voxel in each dimension, the number of inverse computations

can theoretically be reduced to an eighth of the overall number of voxels. If we use a spatial

neighbourhood with a size of 5 × 5 × 5, we still have an overlap between two proximate

neighbourhoods.

Figure 4.1 explains the idea of the sub-sampling scheme. In the first iteration (4.1(a)),

we start to estimate the parameters at position (0, 0, 0). In an important second iteration

(4.1(b)), this starting position is increased by an offset of 1 in each dimension. Displacing

the position of the image iterator is necessary to avoid an overall systematic error. By means

Startposition (0,0,0)

(a)

Startposition (1,1,1)

(b)

Figure 4.1: Sub-sampling the image in 3 dimensions: (a) first iteration without an offset, (b)
second iteration with an offset of 1 in each dimension.
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of this scheme, we can reduce the number of matrix inversions to 1
8 . In a second step, we

need to estimate the missing parameters to preserve the originally presented transformation

model in Chapter 3. Therefore, the next sub-section outlines an idea on how to interpolate

the missing parameters.

4.3.2 Interpolation of Missing Parameters

The remaining, not traversed voxels have to be interpolated in its parameters. This interpola-

tion can be performed by involving the computed parameters of the proximate neighbourhood.

In case of Model 1 and Model 2, which use only translation with and without intensity vari-

ation, it is intuitive how to interpolate these values. A simple translation can be linearly

interpolated. The contrast and the brightness parameters represent a continuous intensity

variation over the complete image. Additionally, these two values are independent of the

affine transformation parameters. We apply a separate linear interpolation to achieve the

missing brightness and contrast parameters, under the assumption of a continuous change of

these two parameters.

From these ideas, we introduce an interpolation scheme. In each level of the pyramid, the

sub-sampling method is executed on the according full image size. We apply an in-line inter-

polation scheme, that does not require additional memory.

Figure 4.2(a) illustrates the first step of the interpolation. The figure shows a 3 × 3 × 3

extracted neighbourhood of the image structure. The blue cubes represent the locations of

current computed parameters. The parameters of the red cube are interpolated from the

parameters of the eight surrounding blue cubes.

In a second step, we interpolate the missing parameters of the green cubes consulting the

appropriate four blue cubes in the next neighbourhood. The principle is shown in Figure

4.2(b). For the y-direction we apply an interpolation step given in Figure 4.2(c). The re-

quired values of the magenta cube are computed by an interpolation of the parameters of

two blue cubes. The remaining x and z directions are proceeded in an according way. This

(a) (b) (c)

Figure 4.2: Interpolation scheme: (a) interpolation in the first iteration and (b)-(c) the
according interpolation of the second step.

interpolation scheme can be performed in two steps with no additional memory requirements.

The aim of this interpolation is to reduce the high time consumption of the proposed regis-

tration approach in Chapter 3.



48 Chapter 4. Improvements

So far, we have only highlighted the interpolation in case of Model 1 and Model 2. The more

complex Model 3 and Model 4 include affine transformations. As mentioned in the previous

chapter, a raw affine matrix in 3D is defined by 9 DoF, which include parameters for shearing,

scaling and rotation in any direction. For further explanations, we introduce a 3 × 3 matrix

Pk, which includes the estimated parameters m1 . . .m9. The index k of P denotes the k-th

neighbour of the current visited voxel. The matrix Pinterpolated includes the resulting inter-

polated affine parameters.

The interpolation of rotations is a commonly known problem in computer graphics. The

decomposition of an affine transformation into scaling, shearing and rotation is outlined in

Section 4.3.3. We want to decompose an affine matrix to interpolate the rotation correctly

in its involved parameters. This decomposition makes it possible to compare the effect of

linearly interpolated affine parameters to correct rotation-interpolated matrices.

4.3.3 Decomposing the Affine Matrix

A correct estimate of a mean orientation from a set of orientations needs a decomposition

of the 3 × 3 matrix Pk into scaling, shearing and rotation. We use an algorithm given in

[1] for the decomposition. The algorithm produces a sequence of transformations, so that

a concatenation will result into the matrix G. This method is constrained to a non-zero

determinant of the original matrix Pk.

Pk is decomposed by first extracting the scaling factors and then the shearing parameters,

leaving a raw rotation matrix. The rotation matrix is broken down into 3 components repre-

senting the rotation in each dimension. Furthermore, we get the 3 scaling factors sx, sy and

sz. The shearing component consists of shearxy, shearxz and shearyz. The decomposition is

outlined in Algorithm 2, where P ′
i represents the i-th row and P ′

ik the element at the position

(i, k) of the matrix P ′.

After pure decomposition, we can apply a linear interpolation to the scaling factors. If there

are e.g. k = 8 surrounding voxels in the 3 × 3 × 3 neighbourhood, we can compute a linear

interpolation using Equation 4.10.

Psc =




sxr 0 0

0 syr 0

0 0 szr





︸ ︷︷ ︸
resulting scaling matrix

=
1

8








sx1 0 0

0 sy1 0

0 0 sz1





︸ ︷︷ ︸
scaling matrix k=1

+ . . . +




sx8 0 0

0 sy8 0

0 0 sz8





︸ ︷︷ ︸
scaling matrix k=8




(4.10)

The shearing matrices Psh1 =




1 0 0

sxy 1 0

0 0 1



, Psh2 =




1 0 0

0 1 0

sxz 0 1



 and

Psh3 =




1 0 0

0 1 0

0 syz 1



 are interpolated in a similar way. The idea of a linear interpolation

of translation, shearing and scale is plausible, while the interpolation of rotation is more

complex. A pure rotation matrix includes parameters that are not independent. In a final



4.3. Reducing the number of Inverse Computations 49

Algorithm 2 Outline of the Matrix Decomposition

For each neighbourhood voxel of current location

1. Define a matrix P ′ = Pk

2. Compute sx = ‖P ′
1‖2 and normalise P ′

1 by sx

3. shearxy = P ′
1 · P ′

2

4. Orthogonalise P ′
2 by computing P ′

2 = P ′
2 − shearxyP

′
1

5. Compute sy = ‖P ′
2‖2 and normalise P ′

2, shearxy by sy

6. shearxz = P ′
1 · P ′

3

7. Orthogonalise P ′
3 by computing P ′

3 = P ′
3 − shearxzP

′
1

8. shearyz = P ′
2 · P ′

3

9. Orthogonalise P ′
3 by computing P ′

3 = P ′
3 − shearyzP

′
2

10. Compute sz = ‖P ′
3‖2 and normalise P ′

3 by sz

11. Normalise shearyz and shearxz by sz

12. Compute the determinate det(P ′) of P ′

13. If det(P ′) = -1, negate the matrix P ′ and sx, sy, sz

14. Compute the rotation angle β about the y-axis by arcsin(−P ′
13)

15. If cos(β) 6= 0, compute α = atan2(P ′
23, P

′
33) and γ = atan2(P ′

12, P
′
11)

else compute α = atan2(−P ′
31, P

′
22) and γ = 0

End for
Interpolate the decomposed parameters

step, we have to estimate an interpolated rotation matrix from the neighbouring matrices.

Interpolation of rotations is often referred to as a problem in computer graphics. In

animation there is a need for finding a smooth in-between of animation sequences [42]. In

the early days of computer graphics, there were few publications concerning the topic of

interpolating rotations.

In Shoemake’s work [42], the Euler angle coordinates are described as an approach to

achieve interpolation. Euler angles coordinates specify orientation of three independent

rotations about the x, y and z axis. In computer graphics, these orientations are often

noted as “yaw”, “pitch” and “roll” factors. The application of Euler angles must follow a

pre-defined order, depending on the coordinate system. As a consequence, rotation in space

is not commutative. For each of the Euler angles a corresponding 3 × 3 rotation matrix is

defined. The rotation ProtX about the x-axis is given by the angle α. β defines the rotation

about the y-axis (ProtY )and γ expresses the rotation about the z-axis (ProtZ). In matrix
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notation these matrices are constructed as follows:

ProtX =




1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)



 , ProtY =




cos(β) 0 sin(β)

0 1

−sin(β) 0 cos(β)



 (4.11)

ProtZ =




cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1



 (4.12)

The overall rotation Prot is obtained by multiplying the three individual matrices in a given

order. In our case we define an order for the coordinate system as x-y-z. Following this

definition, we can compute Prot by Prot = ProtXProtY ProtZ .

In Dam et al. [11], approaches of interpolation based on quaternions, Euler angles or rotation

matrices are reviewed. Quaternions use generalised complex numbers to represent rotations.

The theory of quaternions is discussed in [11].

The mentioned work refers to the problem of the gimbal lock, where a specific sequence of

rotations causes a loss of one degree of freedom in rotations. In the case of our work, we

assume only small angle differences between the surrounding neighbour matrices, so that the

occurrence of gimbal locks can be avoided.

After we have found a method to extract Euler angles, we estimate the mean angles α, β

and γ each in a linear way from the neighbour angles. From this, we construct the rotation

matrices by inserting the interpolated corresponding Euler angles into 4.11 and 4.12. The

following section illustrates the construction of a resulting matrix including the interpolated

parameters.

4.3.4 Composing the Resulting Affine Matrix

Following the description in [1], the decomposition is done in a certain sequence. The resulting

interpolated affine matrix Pinterpolated is composed according to the decomposition order.

Multiplying the individual matrices which represent rotations, shearings and scale leads to a

combined matrix as shown in Equation 4.13.

Pinterpolated = PscPsh1Psh2Psh3ProtXProtY ProtZ (4.13)

The new affine matrix Pinterpolated includes the new interpolated parameters m1 to m9. Be-

sides, the 3 translation and brightness/contrast parameters are set into the associated voxel

location of the data structure.

In this section we have presented a simple method for Euler angle interpolation by decompos-

ing and composing affine matrices. Interpolation based on Euler angles may not be definitively

correct but due to assuming small rotations, we have found a comparable method to achieve

a linear interpolation of affine parameters. In Chapter 5, a comparison of results on direct

and decomposed linear interpolation is given.
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4.4 Replacing the Iterative Smoothing

As mentioned in Chapter 2, Bro-Nielson et al. [8] proposed a method to solve the linear PDE

by convolving with a specific derived filter. Applying this linear elastic filter gives a stable

way of modelling fluid deformation. Thirion [46] proposed an approximated solution of this

method to perform the regularisation. The determined displacements are low-pass filtered

by convolving with a Gaussian filter mask.

Because of high time and memory consumption, the idea is to replace the iterative smoothing

with a Gaussian filtering. Periaswamy [36] suggested a globally smooth displacement field

through the combination of local deformations and a global smoothing.

The local deformations with no regularisation, result from the raw parameter computation.

From this, we can extract all raw translation parameters. These parameters construct an

overall deformation field, which includes a 3D displacement vector for each voxel in each di-

mension. We decompose the overall deformation field into three components, representing the

translation in x, y and z direction. Then, a Gaussian kernel convolves the three separated

fields, independently. After convolution, the smoothed translations in each dimension are

combined to form one resulting deformation field. Figure 4.3 illustrates the principle of this

smoothing scheme. In each dimension, the convolution is performed with a constant standard

Z

X

Y

Z

X

Y

Decomposition

Z

Y

X

Convolution

Composition

smoothed deformationfieldraw deformationfield

Figure 4.3: The principle of the smoothing scheme.

deviation σ, controlling the variability of the Gaussian distribution. This way of regulari-

sation avoids the tuning of the number of iterative smoothing steps. Instead, the standard

deviation of the Gaussian filter controls the global influence on the local deformations. This

parameter is obviously of great importance concerning the global smoothness and accurate

local registration. Chapter 5 investigates the influence of σ on the registration results.

In this section, an idea has been given on how to replace the iterative smoothing proposed

in [36]. Applying a similar regularisation as presented in [46] and [8], reduces the problem of

extensive time and memory consumption. The convolution with a Gaussian filter mask can

be performed fast and efficiently. An additionally introduced parameter replaces the choice

of the number of iterative steps.





Chapter 5

Experiments and Results

5.1 Introduction

This chapter presents the performed experiments and results. Section 5.2 gives an overview

of the provided data. A description of a synthetic transformation on original data is also

given in this section. In Section 5.3, the methods of evaluation are explained. The following

sections illustrate the performed experiments and obtained evaluation results.

First, we compare the results of the suggested algorithm in [36] to the results of our improve-

ments. These experiments are performed on synthetically transformed images. In Section

5.4, the results are also given for different transformation models and varying numbers of

iterations. Section 5.6.2 shows the ability of aligning real data sets. Results of our implemen-

tation are compared to standard registration algorithms such as the Demons algorithm [46]

and a B-spline based method [40], as well. Registration results on real CT images including

intensity variations are given in Section 5.6.3. All experiments in this chapter are performed

on a 64 bit AMD OpteronTM with 8 GByte RAM. For visualisation of difference images,

we use a colour fusion representation. The colour coding is similar to the colour spectrum.

Magenta to blue represents small intensity differences, whereas orange to red colours indicate

large differences.

5.2 Data

In this thesis, the provided data sets are 3D and intra-modal images of soft tissue organs like

lung and liver. Mainly, we evaluate our implementation on a pair of CT sheep images. These

images, including the thorax, were acquired at two respiratory states. The provided raw

images have a dimension of 256× 256× 256 with a voxel dimension of 1.12 mm× 1.12 mm×
1.2 mm.

Figure 5.2 includes sample slices of real 3D data sets in different views for the two states of

inhalation and exhalation. To reduce computation and memory consumption, these data sets

are down-sampled to a dimension of 128 × 128 × 128 with a voxel dimension of 2.34 mm ×
2.34 mm × 2.4 mm. We show experimental results on both dimensions if computation is

possible.

In case of real data, the evaluation of the registration can only be done on intensity difference

53
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measurements. To get accurate information on the performance, we need a comparison of a

a priori known displacement to the computed. For this reason, we generate synthetic data

sets with known displacement fields.

The synthetic data sets are produced by deforming the original inhalation image related to a

real respiration. A non-linear transformation [49] T : P (x, y, z) = Q(T (x, y, z)) approximates

the respiration. The movement of the diaphragm is simulated by a transformation in vertical

direction, described by tvertical. Values of 35 mm, 25 mm and 10 mm are used in this

work for tvertical. A 2D Gaussian distribution depending on x and y position determines

the translation in negative z-direction. The resulting displacement vector maps each point

(x, y, z)T to (x, y, z′)T . µx and µy correspond to the centre of gravity of the diaphragm.

z′ = z − tverticale
−

(x−µx)2+(y−µy)2

2σ2 (5.1)

The simulation of rib cage behaviour during respiration is performed by a radial, centre

directed translation tinward that maps each point (x, y, z)T to (x′, y′, z)T .

(
x′

y′

)
=

(
µx

µy

)
+ t′ ·

→
c∣∣∣
→
c
∣∣∣

(5.2)

where

→
c =

(
x − µx

y − µy

)
and t′ =

∣∣∣
→
c
∣∣∣− tinward ·

(
1 − e−

(x−µx)2+(y−µy)2

2σ2

)
(5.3)

The combination of vertical and inward transformation leads to a resulting displacement

field T , which makes a qualitative comparison of the different registration results possible.

We apply this synthetic transformation on the image representing the inhalation. Due to

transformation, the resulting image shows a simulated exhalation.

Figure 5.2 displays axial sample slices of real inhalation, real exhalation and synthetically

produced exhalation in case of 25 mm vertical, 10 mm inward and 35 mm vertical, 10 mm

inward transformation, respectively. For convenience of further experiments, we define the

names of the most often used data sets as follows:

• Data set S10 includes a real inhalation image as moving image and the synthetic trans-

formed inhalation image with tvertical = 10 mm, tinward = 10 mm as fixed image.

• Data set S25 includes a real inhalation image as moving image and the synthetic trans-

formed inhalation image with tvertical = 25 mm, tinward = 10 mm as fixed image.

• Data set S35 includes a real inhalation image as moving image and the synthetic trans-

formed inhalation image with tvertical = 35 mm, tinward = 10 mm as fixed image.

• Data set Real includes a real inhalation image as moving image and a real exhalation

as fixed image.

In Figure 5.2, various difference fusion images restricted to the range of −1000 HU . . . 100 HU

are shown. Several synthetic displacement fields are displayed in Figure 5.2. These displace-
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(a) (b) (c) (d)

Figure 5.1: Examples of input images (sagittal view slice 128): (a) Real inhalation, (b) Real
exhalation, (c) Synthetic exhalation, tvertical = 25 mm, tinward = 10 mm and (d) Synthetic
exhalation, tvertical = 35 mm, tinward = 10 mm.

ment fields are presented in a magnitude colour fashion, where the colour represents the

magnitude of each displacement vector.

5.3 Evaluation Methods

This section describes the methods of evaluation. In this thesis the quality of registration

is measured by means of intensity and displacement differences and normalised mutual in-

formation. Of course, we also use visual examinations as an important measurement. A

comparison of the time consumption supports the evaluation of the algorithms in their reg-

istration quality.

5.3.1 Intensity Differences

A common used measurement for determining the quality of the results is the comparison of

difference intensity values. This measurement is based on root mean squared error (RMSE)

computations between the pair of images before and after the registration process. Addi-

tionally, we compute the standard deviation (STD) and the maximum value of the intensity

differences. If f1 and f2 denote the two images of a data set we can compute the RMSE as

follows

RMSEintensity =

√
1

n

∑

n

(f1 − f2)2 (5.4)

where n represents the number of traversed voxels. The STD of the intensity differences can

be expressed as

STDintensity =
1

n − 1




∑

n

(f1 − f2)
2 − 1

n

(
∑

n

(f1 − f2)

)2


 (5.5)

We adopt the RMSEintensity computations as a common measurement to compare the pair

of images before and after registration. A registration process decreases both, the value of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Difference fusion images: (a) real images axial, (b) real images coronal, (c) real
images sagittal, (d) synthetic data set S25 axial, (e) synthetic data set S25 coronal, (f)
synthetic data set S25 sagittal and (d) synthetic data set S35 axial, (e) synthetic data set
S35 coronal, (f) Synthetic data set S35 sagittal.
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(a) (b) (c)

Figure 5.3: Synthetic displacement fields (a) tvertical = 10 mm, tinward = 10 mm , (b)
tvertical = 25 mm, tinward = 10 mm and (c) tvertical = 35 mm, tinward = 10 mm.

the RMSE and the STD.

5.3.2 Displacement Vector Differences

By using synthetic data, it is possible to measure the RMSE of the displacement field differences.

For each voxel in the synthetic data, there exists a corresponding 3D displacement vector in

the displacement field. The RMSE is calculated between the known deformation field and the

resulting deformation field of registration. The RMSE is defined as

RMSEdf =

√
1

n

∑

n

‖
→

DF synthetic −
→

DF calculated ‖2 (5.6)

where
→

DF synthetic= (dx1, dy1, dz1)
T and

→

DF calculated= (dx2, dy2, dz2)
T describe the directions

of motion for each voxel and n the total number of image voxels.

5.3.3 Normalised Mutual Information

As described in Chapter 2, NMI provides an important basis for similarity measurements. We

apply the NMI computation to a pair of images. Besides, this information theoretic approach

can handle the evaluation of the registration results on images including intensity variations.

In case of the evaluation in this work, we take 255 bins for the NMI computation. Starting from

this number, the according histogram is generated by using the overall images information.

The joint entropy and the two independent marginal entropies compose the NMI. In case of

our evaluations, a rising of the similarity results in an ascending value of the NMI. If two

image are equal, the value of the NMI is one.

5.4 Experiments on Improvements

In this section, the aim is to evaluate the suggested algorithm and our improved methods.

First of all, we show the influence on time consumption by applying the LU and the Cholesky
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decomposition instead of the SVD. The results on the sub-sampling method are evaluated

by means of the synthetic transformation. As mentioned before, this makes it possible to

compare the computed displacement vectors to the synthetic ones. Experiments on various

data sets show the significant influence of decomposing the parameters in contrast to direct

linear interpolation. As a last step, we give qualitative results for the replaced iterative

smoothing.

5.4.1 SVD vs. LU and Cholesky decomposition

The evaluation of the time consumption using SVD or LU/Cholesky decompositon turns up

to be sophisticated. Considering the algorithm as a black box leads to a poor conclusion of

the resulting time consumption, because is is not possible to determine the real number of

inverse computations. Therefore, we attach an additionally independent condition number

check before estimating the raw parameters. Assuming that both methods provide an iden-

tical number of computed inverses, these methods can be compared directly in their time

consumption.

We investigate the time consumption on data set S25. Both images have the dimension of

128 × 128 × 128.

The first experiment is accomplished with a standard set of parameters: The multi-resolution

approach consists of four levels, where the coarsest level (Level 3 ) has a dimension of

16 × 16 × 16. The number of outer loops in each level is determined by using Equation

5.7 in our implementation.

NoOfOuterLoop = current Level × Parameter 1 + Parameter 2 (5.7)

Parameter 1 and Parameter 2 are set equal to 1. At finest level (Level 0 ), the algorithm

performs 1 iteration for transformation parameter estimation. The number of smoothing

steps is set to a constant value of 10.

In Table 5.1, the obtained values of time consumption are given using the SVD and

LU/Cholesky decomposition for different transformation models. The significant evaluation

Model Time [s] Time [s]
SVD LU/Cholesky

Model 1 740.46 615.95
Model 2 1283.79 1159.41
Model 3 1875.18 1290.60
Model 4 2245.01 1542.67

Table 5.1: Evaluation of the time consumption using LU/Cholesky decomposition and SVD

on 128 × 128 × 128 images for different transformation models.

results of the time consumption are illustrated in Figure 5.4.1. This experiment shows the

obtained speed-up, if the SVD is replaced by a combination of LU/Cholesky decomposition.

As described in Chapter 4, we apply the LU decomposition to estimate the raw parameters

~m. The method of Cholesky decomposition is introduced to solve the inverse in case of the
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Figure 5.4: Evaluation of the time consumption using LU/Cholesky decomposition and SVD

on 128 × 128 × 128 images for different transformation models.

smoothing iterations.

However, this experiment shows only an improvement of time. It is not representative for

the real time consumption in practise, because it is not necessary to calculate the condition

number in an additionally step.

In a second experiment we compare the algorithms in their time consumption as a black

box on the basis of achieved results. The results are compared by RMSE and NMI evaluations.

Table 5.2 summarises the achieved computation times and gives a comparison of the

similarity measurements. Figure 5.5 illustrates these evaluation values in a diagram. The

Model Time [s] RMSE [HU] NMI Time [s] RMSE [HU] NMI
SVD SVD LU/Chol. LU/Chol.

before - 55.224 0.243 - 55.224 0.243

Model 1 714.28 42.889 0.473 657.59 42.888 0.473
Model 2 1187.20 26.024 0.669 1141.99 25.999 0.669
Model 3 1605.43 43.215 0.465 1042.72 43.214 0.465
Model 4 1911.83 23.382 0.714 1228.49 23.380 0.714

Table 5.2: Black box evaluation of the time consumption, RMSE and NMI using LU/Cholesky
decomposition and SVD on 128 × 128 × 128 images for different transformation models.

Figures 5.4.1 and 5.7 display axial sample slices (slice 80) of data sets before and after

registration using the transformation model Model 1 and Model 4, respectively.

These experiments have shown that we obtain an acceptable speed-up in computation time

with a constant quality of registration results. Considering the different models, we conclude

that the models including brightness and contrast estimation, yield more accurate registration

results. Furthermore, the costly matrix inversions in case of Model 3 and Model 4 produce a
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Figure 5.5: Black box evaluation of the time consumption, RMSE and NMI using LU/Cholesky
decomposition and SVD on 128 × 128 × 128 images for different transformation models.

(a) (b) (c)

Figure 5.6: Axial sample slices of difference fusion images: (a) before Registration, (b) after
Registration using Model 1 with SVD, (c) after Registration using Model 1 with LU/Cholesky
decomposition.

strong increase of computation time.

5.4.2 Experiments on Sub-Sampling

As illustrated in the previous chapter, we apply a sub-sampling to the proposed algorithm.

This time reducing improvement is evaluated on data set S35.

First we have to investigate the influence of correct interpolation of the parameters. We

assume an Euler angle interpolation as sufficient, because there are only small angle changes

in the 3×3×3 neighbourhood. Then we illustrate that direct linear interpolation between the

parameters will achieve similar results. Table 5.3 summarises the time consumption of the

algorithms using no, decomposed and direct interpolation. The direct interpolation denotes
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(a) (b) (c)

Figure 5.7: Axial sample slices of difference fusion images: (a) before Registration, (b) after
Registration using Model 4 with SVD, (c) after Registration using Model 4 with LU/Cholesky
decomposition.

an interpolation of the parameters in the neighbourhood without decomposition. To avoid

a systematic error, we set Parameter 2 to two iterations at finest level of resolution. Again,

we perform all experiments using a four-level multi-resolution strategy.

Model Time [s] Time [s] Time [s]
no decomposed direct

interpolation interpolation interpolation

Model 1 626.76 662.86 320.04
Model 2 1117.75 876.97 437.76
Model 3 1028.09 1005.24 377.45
Model 4 1235.06 922.00 387.70

Table 5.3: Evaluation of the time consumption of no, decomposed and direct interpolation
on 128 × 128 × 128 images for different transformation models.

Considering the plots (Figure 5.8) of the values given in Table 5.3, the time consumption of no

interpolation is similar to the decomposed interpolation. Assessing the performed similarity

measurements for RMSE and NMI shown in Table 5.4, we conclude that direct interpolation

gives an acceptable speed-up for all transformation models without a significant loss of reg-

istration quality. The plot shown in Figure 5.9, represents the direct comparison of the

computed similarity measurements. Figure 5.10 illustrates the visual registration results for

Model 2 using no, decomposed and direct interpolation. The performed experiments in this

section have shown that we can reduce computation time by applying a direct interpolation

of transformation parameter. An Euler angle interpolation by a decomposition achieves sim-

ilar results as direct interpolation. This sub-sampling scheme introduces a negligible loss of

quality in the registration results.
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Figure 5.8: Diagram of the time consumption of no, decomposed and direct interpolation on
128 × 128 × 128 images for different transformation models.

Model RMSE [HU] NMI RMSE [HU] NMI RMSE [HU] NMI

no decomposed direct
interpolation interpolation interpolation

before 56.719 0.222 56.719 0.222 56.719 0.222

Model 1 43.245 0.473 42.132 0.479 42.132 0.479
Model 2 26.881 0.658 28.358 0.639 28.358 0.639
Model 3 43.627 0.464 42.213 0.475 42.213 0.475
Model 4 24.317 0.701 27.020 0.664 27.009 0.664

Table 5.4: RMSE and NMI similarity measurements of no, decomposed and direct interpolation
on 128 × 128 × 128 images for different transformation models.

5.4.3 Experiments on Replacing the Iterative Smoothing

This section highlights the results on replacing the iterative smoothing. Concluding the pre-

vious sections, the iterative smoothing suffers from high computation time and requires a

large amount of memory. As explained in Chapter 4, this smoothing is replaced by a simple

Gaussian smoothing procedure.

The first experiment compares the obtained computation times of the iterative smoothing

to the results of using a Gaussian smoothing instead. Additionally, the times are given with

and without our presented sub-sampling method. In case of replacing the iterative smooth-

ing by Gaussian convolution, it is sufficient to interpolate only the translation values in each

dimension, which involves an additional speed-up.

For this experiment we apply a σ = 2.5 to the Gaussian smoothing procedure. All experi-

ments in this section are performed on data set S35. The number of outer loops in each level

is computed according to Equation 5.7 with Parameter 1 = 1 and Parameter 2 = 2.
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Figure 5.9: Diagram of the computed RMSE and NMI similarity measurements of no, decom-
posed and direct interpolation on 128×128×128 images for different transformation models.

(a) (b) (c) (d)

Figure 5.10: Sagittal sample slices of difference fusion images: (a) before Registration, (b)
after Registration using Model 2 without interpolation, (c) after Registration using Model 2

with decomposed interpolation and (d) after Registration using Model 2 with direct interpo-
lation.

The results of the time measurement are given in Table 5.5. Table 5.6 expresses the according

similarity measurements before and after registration in terms of RMSE. In Figure 5.11 these

values are shown in demonstrative charts. In a second experiment, we study the influence

of varying Gaussian distributions on the results. These results are compared to registra-

tion results using an iterative smoothing without interpolation by means of RMSE and NMI.

Considering Model 2, the result on RMSE of intensity differences and respectively the RMSE of

displacement differences are illustrated in Figure 5.12. The according values altogether are

given in Table 5.7 for Model 2.

A visualisation of sample slices of the different resulting displacement fields for Model 2 us-

ing various σ in comparison to the synthetic displacement field are displayed in Figure 5.13.
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Model Time [s] Time [s] Time [s] Time [s]

iterative iterative Gaussian Gaussian
smoothing, smoothing, smoothing, smoothing,

no direct no direct
interpolation interpolation interpolation interpolation

Model 1 626.76 662.86 174.47 108.27
Model 2 1117.75 876.97 215.394 122.13
Model 3 1028.09 1005.24 456.405 142.79
Model 4 1235.06 922.00 555.597 155.529

Table 5.5: Evaluation of the time consumption of iterative and Gaussian smoothing on 128×
128 × 128 images for different transformation models.

Model RMSE [HU] RMSE [HU] RMSE [HU] RMSE [HU]

iterative iterative Gaussian Gaussian
smoothing, smoothing, smoothing, smoothing,

no direct no direct
interpolation interpolation interpolation interpolation

before 56.719 56.719 56.719 56.719

Model 1 43.245 42.132 45.738 45.444
Model 2 26.881 28.358 35.473 33.703
Model 3 43.627 42.213 46.107 46.013
Model 4 24.317 27.020 34.480 32.575

Table 5.6: RMSE similarity measurements of iterative and Gaussian smoothing on 128×128×
128 images for different transformation models.

Figure 5.14 shows resulting sample slices before and after registration using Model 2. To

summarise these experiments, we can say that we achieve an enormous speed-up in compu-

tation time by replacing the iterative smoothing. A choice of σ = 3 . . . 5 achieves acceptable

registration results. The simple Gaussian smoothing introduces an observable smearing effect

at intensity gradients, because all locations of the deformation field are smoothed equally.

5.5 Experiments on Number of Iterations

Intuitively, the choice of number of iterations affects the computation time and the quality

of registration. In this section we therefore perform several experiments varying the number

of iterations.

The experiments are performed on synthetic data using data set S35 with a four level

multi-resolution strategy. The first experiment demonstrates the influence on computation

time and RMSE for different numbers of smoothing iterations. Additionally, the RMSE between

a synthetic and a resulting displacement field is computed. In this experiment we use the

transformation model Model 3 and one iteration at finest level of resolution. Additionally,

we apply our suggested sub-sampling scheme. Table 5.8 includes the results of this

experiment. Figure 5.15(a) illustrates a graphical data interpretation. The first experiment
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Figure 5.11: Time consumption of iterative and Gaussian smoothing on 128 × 128 × 128
images for different transformation models.
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Figure 5.12: RMSE similarity measurements of iterative and Gaussian smoothing on 128 ×
128×128 images with varying σ (a) RMSE of intensity differences and (b) RMSE of displacement
differences.

exemplifies that the number of smoothing iterations does not increase the computation time

dramatically, because there is no need to compute inverses in each smoothing iteration. On

the other hand, the prior computed inverses have to be stored in a data structure, which

demands high memory requirements. This experiment illustrates that 10 to 20 smoothing

iterations give the best registration results. We have to chose a trade-off between the

accuracy and time consumption of the registration process.

The second experiment compares the results of different numbers of iterations at the finest

level of resolution provided by the multi-resolution approach. Following Equation 5.7, the
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Sample slices of resulting displacement fields for Model 2 using various σ, (a)
synthetic, (b) original Periaswamy, and Gaussian smoothing with (c) σ = 1.0, (d) σ = 2.0,
(e) σ = 3.0 and (f) σ = 4.0.

(a) (b) (c)

Figure 5.14: Axial sample slices of resulting difference images using Model 2 : (a) before
registration, (b) after registration with original Periaswamy and (c) a method using the
Gaussian smoothing (σ = 3.0).



5.5. Experiments on Number of Iterations 67

Model RMSE RMSE σ RMSE RMSE RMSE RMSE
[HU] [mm] [HU] [HU] [mm] [mm]

it. sg., G. sg., G. sg. G. sg. G. sg
no int. no int. dir. int. no int. dir. int.

before 56.719 11.785 56.719 56.719 11.785 11.785

Model 2 26.881 4.443 1.0 46.928 45.979 10.689 10.621
26.881 4.443 1.5 42.136 41.181 8.424 8.355
26.881 4.443 2.0 37.919 36.440 6.834 6.718
26.881 4.443 2.5 35.473 33.703 5.647 5.532
26.881 4.443 3.0 34.919 32.755 4.834 4.835
26.881 4.443 3.5 33.826 32.169 4.466 4.347
26.881 4.443 4.0 33.533 31.940 4.146 4.020
26.881 4.443 4.5 33.425 31.857 3.933 3.811
26.881 4.443 5.0 33.010 31.570 3.773 3.658
26.881 4.443 5.5 32.995 31.609 3.658 3.538
26.881 4.443 6.0 33.445 32.066 3.568 3.440
26.881 4.443 6.5 34.072 32.614 3.512 3.371
26.881 4.443 7.0 34.681 33.196 3.481 3.326
26.881 4.443 7.5 35.455 34.023 3.481 3.314

Table 5.7: RMSE similarity measurements of iterative and Gaussian smoothing on 128×128×
128 images with varying σ for Model 2.

Number of Time RMSE RMSE
smoothing [s] [HU] [mm]
Iterations

before 0 56.719 11.785

1 191.82 53.918 11.482
5 264.32 46.191 6.798
10 361.17 42.213 4.931
15 460.04 39.760 4.098
20 563.44 38.193 3.340
25 656.51 37.598 3.632

Table 5.8: Evaluation of time consumption depending on the number of smoothing iterations.

algorithm performs the number of iterations given by Parameter 2 at finest Level 0. We use

10 smoothing iterations for the transformation model Model 2 and the direct interpolation

sub-sampling scheme. The values of the resulting computation times, the RMSE for intensity

and displacement difference computation are given in Table 5.9. The chart, shown in Figure

5.15(b), depicts the computed values. The second experiment shows, that the number of

outer loops accounts for high computation time. A choice of 3 or 4 loops reduces the RMSE

of the intensity differences in fact, nevertheless the error of the displacement differences

increases which results from the warping of the displacement field after each outer loop with

a fast linear interpolation.
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Figure 5.15: Computation times, RMSE and NMI similarity measurements on experiments (a)
using Model 3 on 128× 128× 128 images for varying the number of smoothing iterations and
(b) using Model 2 on 128 × 128 × 128 images for varying the number of outer loops.

Number of Time RMSE RMSE
Outer Loops [s] [HU] [mm]
in finest Level

before - 56.718 11.785

1 424.51 28.358 4.374
2 750.85 26.396 4.577
3 1085.84 26.022 4.892
4 1379.83 25.752 5.246

Table 5.9: Computation times, RMSE and NMI similarity measurements on experiments using
Model 2 on 128 × 128 × 128 images for varying the number of outer loops.

In a third experiment, the convergence behaviour of the proposed algorithm is

illustrated. Therefore, we compute on each iteration and level a normalised sum

of the estimated displacements vectors of the current displacement field. Equation

5.7 yields the number of iterations in each according level. The computation of

this measurement is expressed in Equation 5.8, where n denotes the number of vis-

ited voxels according to the current level and DFi is the displacing vector in each 3D direction.

sumcurrent =
1

n

n∑

i=1

‖DFi‖2 (5.8)

Again, 10 smoothing iterations are used for regularisation. Table 5.10 contains the resulting

values of the convergence behaviour for two and four iterations at finest level of resolution.

The number of corresponding iterations of coarser level are determined using Equation 5.7.

Figure 5.16 shows these values in a plot.

The third experiment demonstrates the convergence behaviour of the displacement fields. In

the optimal case, the values converge to zero in each level, while in the real case the boundary

effects avoid the decrease to zero.
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Iterations 2 iterations at finest Level 0 4 iterations at finest Level 0

Level Level Level Level Level Level Level Level
3 2 1 0 3 2 1 0

1 5.637 1.937 0.514 0.151 5.637 2.034 0.503 0.141
2 1.867 0.895 0.367 0.084 1.867 0.944 0.385 0.084
3 1.035 0.758 0.266 - 1.035 0.776 0.294 0.056
4 0.848 0.701 - - 0.848 0.707 0.271 0.043
5 0.746 - - - 0.746 0.672 0.220 -
6 - - - - 0.673 0.648 - -
7 - - - - 0.620 - - -

Table 5.10: Convergence behaviour of the sum of displacements in each iteration and level of
the registration process.
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Figure 5.16: Convergence behaviour of the sum of displacements in each iteration and level
of the registration process.

5.6 The Comparison

So far, the evaluations have demonstrated how to improve the Periaswamy approach. In this

section we compare the suggested approach to our improvements by using various data sets

and different set-ups of parameters. The performance evaluation includes time, NMI, inten-

sity and displacement difference measurements. In order to get a feeling of the behaviour

compared to standard registration algorithms, we include the described B-Spline registration

method (Appendix C) and the standard Demons algorithm in the comparison. To addition-

ally reduce computation time and to avoid re-sampling interpolation effects, we assume that

it is sufficient to perform a constant number of outer loops at each level. We evaluate the

results on the following methods and parameters as given in 5.11. The following sections

describe the results on synthetic and real data for these methods.
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Name Method Model Number Number of Number
of outer smoothing of
loops iterations levels

PO1 original Periaswamy 4 2 15 4
PO2 original Periaswamy 2 2 15 3
PI1 with sub-sampling 2 2 15 3
PI2 with sub-sampling 4 2 10 4
PG1 with Gaussian smoothing 2 1 σ = 3.0 3
PG2 with Gaussian smoothing 2 1 σ = 4.5 4
BS1 6591 parameters - - - 2
BS2 10125 parameters - - - 3

Demons1 50/20 iterations - - - 4
Demons2 80/30 iterations - - - 4

Table 5.11: Methods and their parameters of comparison.

5.6.1 Results on Synthetic Data

The first experiments evaluate the various methods (given in Table 5.11) on S10 with a di-

mension of 128× 128× 128. Table 5.12 includes the achieved evaluation results. Figure 5.17

shows plots for a variety of these results. Figure 5.18 compares the visually obtained results

Method Time RMSE STD max. RMSE max. NMI
Int. DF-Vec.

[s] [HU] [HU] [HU] [mm] [mm]

before 52.133 40.604 4095 4.505 10.000 0.284

P01 2618.67 14.276 13.787 3902 2.023 17.568 0.802
P02 1160.83 19.188 18.302 2257 1.704 10.500 0.750
PI1 655.02 19.215 18.229 2320 1.610 9.787 0.739
PI2 615.00 16.961 16.268 2730 2.497 25.172 0.780
PG1 64.75 21.852 20.546 1965 2.194 16.571 0.706
PG2 167.89 20.558 19.497 2566 2.673 20.978 0.743
BS1 785.00 31.624 27.857 2678 2.668 9.946 0.616
BS2 2638.00 33.762 29.450 2831 2.766 9.946 0.600

Demons1 52.07 9.558 9.231 1686 1.707 15.100 0.873
Demons2 79.00 8.970 8.694 1807 1.385 10.617 0.889

Table 5.12: A comparison of different registration methods by time consumption and simi-
larity measurements on data set S10 with a dimension of 128 × 128 × 128.

before and after registration. The displacement fields are shown in a magnitude representa-

tion. By means of the top command, we observe the memory consumption during runtime.

The original Periaswamy’s approach (PO1 and PO2 ) reaches a memory consumption of more

than 5 GByte. Therefore, we abstain from an evaluation of 256×256×256 data sets for these

two methods. The memory consumptions of the remaining methods are below 2 GByte.

In a second experiment, the methods, denoted in Table 5.11, are evaluated on the S25 data
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Figure 5.17: Evaluation results on 128 × 128 × 128 S10 data set: (a) time consumption, (b)
RMSE of intensity differences, (c) STD of intensity differences and (d) RMSE of displacement
field differences.

set, again the images have a dimension of 128 × 128 × 128. Table 5.13 contains the achieved

values. The representative results, such as time consumption, intensity and displacement

field difference measurements are summarised in Figure 5.19. Figure 5.20 illustrates the vi-

sual results before and after registration by means of axial viewed difference fusion images

and sample slices of the displacement fields in magnitude representation. Considering the

similarity measurements before and after registration, the experimental results on synthetic

data have shown the ability to register the synthetic data sets. The Demons algorithm per-

forms an accurate and fast registration. The locally affine based methods with and without

improvements reach similar acceptable results with an increased time consumption. The reg-

istration technique using FFD with a different number of parameters for optimisation needs a

high computation time and yields a less accurate registration result.
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(a) (b) (c)

(d) (e) (f)

Figure 5.18: Visual results on 128 × 128 × 128 S10 data set: coronal sample slices of the
difference fusion images (a) before registration, (b) after registration with method P01, (c)
after registration with method Demons1 and according slices of (d) the synthetic, (e) the
computed P01 and (f) the Demons1 displacement field.

5.6.2 Results on Real Data

The previous section has given several results on data sets including a synthetic transforma-

tion. In the following section, we demonstrate the performance of several methods on real

data sets. The data set Real with the dimensions 128 × 128 × 128 and 256 × 256 × 256 is

applied to the registration process.

Table 5.14 displays the evaluation results on the 128 × 128 × 128 data set, while Table 5.15

gives the values for the images with a dimension of 256 × 256 × 256. In Figure 5.21, the

computation times are given in a combined plot. Comparisons on RMSE of intensity differ-

ence and NMI computations for a choice of algorithms are given in Figure 5.22. In Figure

5.23 the moving, the fixed and the warped images in axial, coronal and sagittal views with

the according sample slice of the displacement are illustrated. Figure 5.24 shows a resulting

displacement field computed with method PI1. Sagittal sample slices are shown in Figure

5.25. This figure illustrates the visual registration results before and after registration for
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Method Time RMSE STD max RMSE max. NMI
Int. DF-Vec.

[s] [HU] [HU] [HU] [mm] [mm]

before - 55.223 42.242 4095 8.718 25.000 0.242

P01 2263.66 16.795 16.114 3674 2.430 23.986 0.774
P02 1326.90 20.933 19.750 2647 2.276 23.978 0.707
PI1 529.66 21.526 20.175 2797 2.149 23.080 0.695
PI2 530.37 19.336 18.407 2985 2.864 24.877 0.750
PG1 61.16 26.444 24.054 2451 3.096 24.033 0.613
PG2 146.61 22.612 21.301 3239 3.052 22.221 0.719
BS1 799.00 32.259 28.245 2556 3.652 27.251 0.608
BS2 2506.00 34.097 29.753 2556 3.538 27.251 0.617

Demons1 52.39 13.835 13.347 2985 2.813 13.927 0.855
Demons2 81.12 13.954 13.497 2984 2.685 12.431 0.865

Table 5.13: A comparison of different registration methods by time consumption and simi-
larity measurements on data set S25 with a dimension of 128 × 128 × 128.

Method Time RMSE STD max Int. NMI
[s] [HU] [HU] [HU]

before - 48.967 39.526 3085 0.360

PO1 2655.84 44.823 36.543 2467 0.451
PO2 1917.57 44.588 36.403 2390 0.446
PI1 642.03 44.898 36.636 2428 0.437
PI2 606.60 44.776 36.510 2356 0.447
PG1 66.53 46.184 37.483 4195 0.424
PG2 167.18 45.753 37.155 4195 0.437
BS1 1134.00 52.066 40.208 4195 0.385
BS2 3266.00 54.741 41.364 4195 0.376

Demons1 52.75 46.972 38.542 4195 0.473
Demons2 80.75 47.106 38.623 4195 0.474

Table 5.14: A comparison of different registration methods by time consumption and simi-
larity measurements on data set Real with a dimension of 128 × 128 × 128.

different methods on the 256 × 256 × 256 data set. These experiments have compared the

accuracy and time consumption of registration on real sheep data sets. Disregarding the time

consumption, the various methods decrease the RMSE and the STD of the intensity differences.

The B-spline approach performs slightly worse. Considering the NMI measurement, the reg-

istration processes obtain an expected increase of these values. Due to the high memory

consumption, the methods PO1 and PO2 are not computed on the 256 × 256 × 256 data

set. We estimate the memory consumption on more than 30 GByte. The estimated time

consumption lies within the range of BS2.
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Figure 5.19: Evaluation results on 128 × 128 × 128 S25 data set: (a) time consumption, (b)
RMSE of intensity differences, (c) STD of intensity differences and (d) RMSE of displacement
field differences.

5.6.3 Results on Real Data including Intensity Variations

In this section, real data sets with intensity variations are used as input for the various

methods defined in Table 5.11. The images including contrast agents are used as fixed

image, the native scan as moving image, respectively. We perform the evaluations on two

data sets (data sets Intensity5 and Intensity2 ). The provided raw images have a dimension of

256×256×256 with a voxel dimension of 1.25 mm×1.25 mm×1.29 mm and 1.1 mm×1.1 mm×
1.2 mm, respectively. Both data sets are down-sampled to a dimension of 128 × 128 × 128.

The difference fusion images in the first row of Figure 5.26 illustrate the data set Intensity5

before registration in axial, coronal and sagittal views with a dimension of 128 × 128 × 128.

This data set includes a large complex deformation.

The remaining difference images present the registration result after the registration process

using the methods PI1 and Demons1. Figure 5.27 contains the time consumption and NMI

chart comparison for a choice of several methods. Table 5.16 summarises the evaluation
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(a) (b) (c)

(d) (e) (f)

Figure 5.20: Visual results on 128 × 128 × 128 S25 data set: axial sample slices of the
difference fusion images (a) before registration, (b) after registration with method P01, (c)
after registration with method BS1 and according slices of (d) the synthetic, (e) the computed
P01 and (f) the BS1 displacement field.

results for all given methods in Table 5.11.

The second experiment evaluates the given methods on data set Intensity2 with a dimension

of 128×128×128 and 256×256×256. The first column in Figure 5.28 presents sample slices

in coronal and sagittal view of this data set in image fusion difference representation before

registration. Again, the contrast enhanced image serves as fixed image. The images in the

second and third row represent the registration results using the methods PI1 and Demons1

on the 256×256×256 data set. Table 5.17 includes the evaluation results on data set Intensity2

for a dimension 128× 128× 128 and 256× 256× 256. Figure 5.29 directly compares the time

consumption and NMI measurements for the choice of several methods on both dimensions.

Figure 5.30 presents two computed displacement fields with the provided data sets Intensity2

and Intensity5, respectively. In this section, the experiments have highlighted the registration

of images including intensity variations. We achieve an acceptable decrease of the RMSE and

an increase of NMI on both data sets. The visual results show the ability of registration of

the rib cage motion. After registration, the structures within the lungs still include high
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Figure 5.21: Time consumption on the 128 × 128 × 128 and the 256 × 256 × 256 Real data
set.
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Figure 5.22: Evaluation results based on RMSE and NMI computations for a choice of algorithms
with applied 256 × 256 × 256 Real data set.

intensity differences in case of data set Intensity5. A registration of data set Intensity2 using

the improved implementations of the Periaswamy’s approach gives suitable visual results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.23: Sample slices of axial (first column), coronal (second column) and sagittal (third
column) views of (a)-(c) the moving image, (d)-(f) the fixed image, (g)-(i) the warped image
and (j)-(l) the according displacement field slices using method PI1.
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Figure 5.24: Computed displacement field in vector representation using method PI1 applied
on the 128 × 128 × 128 Real data set.

(a) (b) (c) (d)

Figure 5.25: Sagittal sample slices of difference fusion images on real 256 × 256 × 256 data
sets: (a) before Registration, (b) after Registration using PI2, (c) after Registration using
PG2 and (d) after Registration using BS2
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.26: Visual image fusion difference images before and after registration of data set
Intensity5 : (a)-(c) axial, coronal and sagittal view before registration, (d)-(f) views after
registration using method PO1 and (g)-(i) views after registration using Demons1.
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Method Time RMSE STD NMI
[s] [HU] [HU]

before 50.435 40.162 0.338

PI1 4635.76 38.849 32.590 0.500
PI2 5142.83 39.973 33.431 0.484
PG1 521.87 38.838 32.506 0.486
PG2 1315.87 40.891 33.932 0.480
BS1 7695.00 47.535 37.843 0.423
BS2 23990.00 48.197 38.792 0.402

Demons1 379.89 42.059 35.515 0.516
Demons2 574.35 41.900 35.422 0.518

Table 5.15: A comparison of different registration methods by time consumption and simi-
larity measurements on data set Real with a dimension of 256 × 256 × 256.

Method Time RMSE STD NMI

[s] [HU] [HU]

before 66.912 43.453 0.190

PO1 1640.87 49.048 37.585 0.384
PO2 2257.58 47.031 36.536 0.411
PI1 527.87 48.221 37.140 0.399
PI2 522.37 51.530 38.822 0.361
PG1 62.97 50.116 37.909 0.378
PG2 149.76 49.039 37.506 0.391
BS1 535.00 65.374 42.834 0.299
BS2 2951.00 70.779 43.085 0.290

Demons1 53.05 49.247 39.340 0.449
Demons2 80.60 47.966 38.715 0.463

Table 5.16: Evaluation results of various methods performed on data set Intensity5 with a
dimension of 128 × 128 × 128.
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Figure 5.27: Graphical evaluation results of various methods performed on data set Intensity5

with a dimension of 128 × 128 × 128 for (a) time consumption and (b) NMI measurements.

Method Time RMSE STD NMI Time RMSE STD NMI

[s] [HU] [HU] [s] [HU] [HU]

128 × 128 × 128 256 × 256 × 256

before 45.494 35.780 0.408 47.635 35.726 0.363

PO1 1906.18 33.733 27.955 0.552 - - - -
PO2 2532.78 32.778 27.301 0.557 - - - -
PI1 602.02 33.158 27.562 0.552 4640.54 31.265 25.106 0.531
PI2 642.56 34.510 28.480 0.540 4289.88 32.041 25.647 0.520
PG1 70.97 34.649 28.567 0.545 538.17 31.506 25.273 0.530
PG2 169.52 33.782 27.922 0.544 1377.38 31.684 25.368 0.522
BS1 1342.00 44.319 34.365 0.460 7561.00 42.462 32.565 0.441
BS2 2772.00 44.852 34.580 0.462 22210.00 41.988 32.211 0.449

Demons1 54.27 27.449 24.848 0.666 397.51 26.634 23.490 0.627
Demons2 83.83 27.381 24.798 0.667 627.43 26.567 23.454 0.632

Table 5.17: Evaluation results of various methods performed on data set Intensity2 with a
dimension of 128 × 128 × 128 and 256 × 256 × 256.
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(a) (b) (c)

(d) (e) (f)

Figure 5.28: Visual image fusion difference images before and after registration of data set In-

tensity2 : (a) coronal and (d) sagittal view before registration, (b),(e) views after registration
using method PI1 and (c),(f) views after registration using Demons1.
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Figure 5.29: Direct comparison of the time consumption and the NMI measurements on data
set Intensity2 with a dimension of 128 × 128 × 128 and 256 × 256 × 256.

(a) (b)

Figure 5.30: An illustration of the computed displacement fields for data set (a) Intensity5

using method PO1 and (b) Intensity2 using method PI1.





Chapter 6

Summary and Discussion

6.1 Conclusion

This thesis has presented a non-linear registration approach for medical images. According

to Periaswamy’s approach, the essential implementation details have been highlighted. As

proposed, this method makes it possible to generate a local affine, but globally smooth de-

formation.

We have found out, that this originally suggested approach is not applicable in practice for

medical images. This approach suffers from high time and large memory consumption. Mod-

ern imaging techniques provide data with resolutions such as 512 × 512 × 512 and higher.

Inherently, the experimental results on 256 × 256 × 256 images are conditionally acceptable.

On the one hand, the number of smoothing iterations increases the computation time of the

registration process, on the other hand the outer loops in each level introduce an error if

interpolation in the re-sampling procedure is inaccurate.

The closed-form solutions for each spatial neighbourhood avoids an elaborate set-up of an it-

erative optimisation strategy. Otherwise the proposed algorithm gets by on a few parameters

to tune. Furthermore, we have shown experiments on different transformation models. The

models, including the brightness and contrast parameter estimates, achieve more accurate

results.

To reduce the high computation time, we have realised a sub-sampling scheme. The inter-

polation between an affine matrix is complex, therefore a method of decomposition in its

components, such as rotation, scaling, shearing and translation has been described. Com-

paring the methods of direct and decomposed interpolation, we have pointed out in our

experiments that both methods perform equally. The sub-sampling scheme using direct in-

terpolation obtains a significant speed-up. As a second improvement, we have replaced the

intense memory consuming iterative smoothing, which performs the regularisation, by an

efficient Gaussian smoothing. In general the choice of the parameter σ is intractable. By

applying the sub-sampling scheme and the Gaussian smoothing with a σ = 3 . . . 5 to the al-

gorithm, the method yields acceptable registration results in time consumption and accuracy.

Additionally, numerical techniques for faster inverse matrix computation have been adapted

to the given matrix properties. Comparing our algorithm to the Demons approach, we pre-

sented a reasonable and plausible registration method, because Demons fails under certain
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conditions. However, Demons performs much better in terms of computation spedd. In

contrast to the B-spline approach, which suffers from an elongate computation time and a

complex optimiser set-up, our improved method yields a constantly acceptable result with

unchanged parameter settings on images with a dimension up to 256×256×256. The imple-

mented algorithm also obtains suitable results on data sets containing a moderate deformation

with intensity variations.

6.2 Future Work

Some ideas for future work are:

• The idea of closed-form solutions in a spatial neighbourhood for a local displacement

can be used to prior set-up another optimising strategy. To reduce the number of inverse

computation, this idea can only be applied to specified location. One possibility is to

perform displacement computation on a discrete grid or on extracted feature points.

An interpolation technique, using B-Splines, would generate a dense deformation field

between these grid points. A TPS interpolation can cope the interpolation of the non-

uniform distributed feature points.

• Our presented Gaussian smoothing suffers from the problem of smearing edges. An

edge-conserving method would avoid these effects. Diffusion based filtering techniques

would prevent edge artefacts in our applied regularisation.

• Since we have used an Euler interpolation scheme, a further consideration of affine

parameter interpolation would prove our experimental results.

• A masking of the images into fore- and background would give a reduction of the number

of voxels to traverse. A smoothing routine and a subsequent region growing method

with seed points may provide this mask in general.



Appendix A

Acronyms and Symbols

List of Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

4D four-dimensional

BFGS Broyden-Fletcher-Goldfarb-Shanno

BOLD blood oxygen level-dependent

CT Computed Tomography

CC correlation coefficient

DoF degrees of freedom

FFD free form deformations

FEM finite elements method

fMRI Functional MRI

GA Genetic Algorithms

HU Hounsfield units

ICP iterative closest point

MI mutual information

MRI magnetic resonance imaging

MRT magnetic resonance tomography

MSE mean squared error

nCC normalized cross correlation

NMI normalised mutual information

NMR nuclear magnetic resonance

NN nearest neighbour

OF optical flow

PDE partial differential equation

PDF probability density function

PET Positron emission tomography

RBF radial basis functions

RIU ratio image uniformity
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RMSE root mean squared error

SA Simulated Annealing

SAD sum of absolute difference

SOR successive over-relaxation

SPECT Single Photon Emission CT

SPM statistical parametric maps

SSD sum of squared difference

STD standard deviation

SVD singular value decomposition

TPS thin-plate splines

US ultra sound



Appendix B

Evaluation Framework

The idea of an evaluation framework is intended to evaluate various registration algorithms

automatically. Starting from a given pair of input images, the evaluation of different sets of

parameters offers a direct comparison of several statistical measurements.

The framework is easy to handle, freely configurable and extensible.

B.1 Implementation

The evaluation framework is developed in Python, a powerful script programming language.

The specified evaluation and execution parameters are summarised in separated configuration

files. We specify the requirements as follows:

Data Sets

To investigate the results on synthetic and real data, the evaluation framework handles both

kind of data. If synthetic data is employed, the second image is generated by using a given

synthetic transformation. The type of transformation and its parameters are configurable.

File Names and Paths

The file names and their location on the system are specified in the configuration file. This

file includes both, file names of the input images and the execution names of transformation,

registration and evaluation routines. The names of resulting evaluation files are also declared.

Processing List

A processing list is given in the configuration file. An unique name identifies each execution of

the registration process. Additionally, the type of registration and its parameters are given.

Registration Parameters

A second configuration file includes the representing parameters of the various registration

types. This file gives the standard parameter values for orientation. The order of the specified

parameters determines the sequence of parameters, which are set-up in the processing list.
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Evaluation Methods

In our case, there exist three different evaluation methods. The first method is based on

intensity difference computation. Second, the time consumption is written in a separated

result file. If the registration is performed on synthetic data, the output data is evaluated on

displacement difference measurements as a third method.

B.2 Configuration Files

As mentioned before, the implementation of the evaluation framework takes two separate

configuration files as input. The first configuration file includes the essential parameters of

each type of registration method. This file has to be modified, if new types of registration

are added.

The organisation of this file is illustrated in Figure B.1. The processing list configuration

Figure B.1: The organisation of the parameters configuration file of the evaluation framework.

file includes the input image, the type of synthetic transformation and its parameters. Fur-
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thermore, the execution names and their directory paths on the system are specified. The

processing list defines the type of registration and the values for the set-up of the parameters.

Figure B.2 shows the bodywork of this file.

Figure B.2: The organisation of the processing list configuration file of the evaluation frame-
work.

B.3 Result Files

The evaluation framework produces CSV result files as an output. The specified result

files include information about computation time and intensity similarity measurements. If
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synthetic data is used, a third evaluation on displacement difference is performed. Depending

on the implementation, the time consumption results are directly generated from the C++

code or by means of the Python implementation.

The similarity measurement result files are produced from the implemented evaluation tools.

These tools take the images and displacements, before and after registration, as input. The

CSV format files can easily be processed in Matlab or Microsoft Excel for further graphical

interpretation.

B.4 Extension

To extend this evaluation frame with additional registration algorithms, the parameter con-

figuration file has to be modified. As a second step, the common C++ interface, which

implements the various registration algorithm, must be adapted.



Appendix C

Outline of the B-Spline Deformable

Registration Algorithm

Rueckert et al. presented in [40] a new approach for non-linear registration of contrast en-

hanced breast MRI. The registration method is based on a global and a local motion model.

The global model describes the overall rigid motion of the breast, whereas the local model

specifies local deformations. Local deformations are modelled by FFD. The overall transfor-

mation T , which relates fixed and moving images is defined as

T (x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z). (C.1)

This combined transformation consists of a global model and a local model.

Global Model

Rueckert suggested an affine registration model with 12 DoF for three dimensional data sets.

Tglobal(x, y, z) =




Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33








x

y

z



+




Θ14

Θ24

Θ34



 (C.2)

Local Model

The local motion model is described by means of a free form deformation model based on

cubic B-Splines. An underlying mesh of uniformly-arranged control points allows to deform

the object. Definition of a free form deformation:

Image Domain Ω = {(x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}
Grid Resolution nx × ny × ny

Uniform Grid Spacing δ

Control Points φi,j,k
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Tlocal(x, y, z) =

3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (C.3)

where
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⌊

x
nx
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− 1,
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⌋

and where Bl(u), Bm(v), Bn(u) represent the {l,m,n}-th basis functions of the B-Splines [23]

B0(u) = (1−u)3

6

B1(u) = 3u3−6u2+4
6

B2(u) = −3u3+3u2+3u+1
6

B3(u) = u3

6

In order to make the optimization process more robust and efficient in time, a multi-resolution

approach is used. The resolution of control points is increased in each multi-resolution step.

Optimization starts with a low resolution to rapidly obtain a rough estimate of the overall

local deformation. For each resolution an increasing number of control points is defined to

refine the estimated deformation from the previous level. The resulting additional transfor-

mation parameters are calculated by a B-Spline subdivision algorithm.

For each resolution a new T l
local is calculated. The overall local transformation is defined as

Tlocal(x, y, z) =

L∑

l=1

T l
local(x, y, z) (C.4)

Rueckert et al. proposed NMI to measure the degree of similarity in each registration step.

They suggested a simple gradient descent techniques for the optimization of the similarity cost

functions for the local and global transformation models, respectively. Both the global and

the local transformation model are optimized by a regular step gradient descent optimization

strategy.
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