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Abstract. This paper proposes a statistical model for fingerprint ridge
orientations. The active fingerprint ridge orientation model (AFROM)
iteratively deforms to fit the orientation field (OF) of a fingerprint. The
OFs are constrained by the AFROM to vary only in ways according to a
training set. The main application of the method is the OF estimation in
noisy fingerprints as well as the interpolation and extrapolation of larger
OF parts. Fingerprint OFs are represented by Legendre Polynomials.
The method does not depend on any pre-alignment or registration of
the input image itself. The training can be done fully automatic without
any user interaction. We show that the model is able to extract the
significant appearance elements of fingerprint flow patterns even from
noisy training images. Furthermore, our method does not depend on
any other computed data, except a segmentation. We evaluated both,
the generalisation as well as the prediction capability of the proposed
method. These evaluations assess our method very good results.

1 Introduction

Automatic Fingerprint Identification Systems (AFIS) have evolved to a mature
technique and are becoming part of the daily lives of millions of people all over
the world. For example, in many countries fingerprints are taken as part of the
visa application process. Therefore, in the recent years we observe a step into a
new dimension with respect to the size and complexity of automatic fingerprint
identification systems. Large attention has been paid to the emerging problems,
but still there is an ever-increasing need for better recognition rates. The latter
is especially true for fingerprint images of poor quality.

The attractiveness of fingerprints results from their uniqueness which does
not change through the life of individuals [10]. Three types of characteristic
features [7] can be extracted from a fingerprint image: a) patterns, which are the
macro details of a fingerprint such as ridge flow and pattern type. b) minutiae,
which are points where ridges bifurcate or end. c) pores, edge contours, incipient
ridges, breaks, creases and other permanent details.

The extraction of the key features (fingerprint patterns, minutiae) is highly
depending on the correct estimation of local ridge orientation. Ridge orientation
is inevitably used for detecting, describing and matching fingerprint features such



as minutiae and singular points (SPs). For minutiae detection, special filtering
schema (see references in [7]) are available to enhance fingerprint images in order
to extract the last bit of information available in the image. Note that the use
of the mentioned filtering methods can only be successful if the correct ridge
orientation is available.

Therefore, large efforts are made in order to extract reliable orientation data
from fingerprints. Many methods for ridge orientation estimation exist in the
literature (see [7]). The described methods proceed locally, and extract the ori-
entation in a given area. Typically, this is done by estimating the gradients in
the considered area. Unfortunately, determination of ridge orientation becomes
more difficult when image quality is low (typically caused by noise, smudges,
scars, weat or dry fingers, etc.). Thus even the ’best’ orientation estimation al-
gorithm will fail in regions of low image quality. The classic solution to solve this
problem, is to smooth the ridge orientation. Such filtering methods are mostly
based around an approach described by Witkin and Kass in [8]. This method
splits orientation into vectorial parts (x-part, y-part) and then smooths this
parts using low pass filtering schema. Note that this method is identical to the
method of local orientation by tensor smoothing [2]. A representative example
of a low pass filtering scheme is described by Bazen and Gerez in [1]. It is note-
worthy to mention, that using such filtering methods, only small regions can be
re-estimated successfully.

1.1 Related Work

The limitations of the above mentioned filtering schema gave rise to more sophis-
ticated, model-based methods. Model-based approaches attempt to re-estimate
OFs of larger areas in the image.

Early attempts of fingerprint ridge orientation modelling are described by
Sherlock et al. [12] who model the orientation using a so-called zero-pole model.
This orientation model is far too simple and fails describing the ridge orienta-
tion accurately. Vizcaya and Gerhardt improve on this model in [13] by using
a piecewise linear model around the SP. This model is applied for synthesis of
fingerprints as described in [7].

A combination method is described by Zhou and Gu in [16,17]. These meth-
ods first describe the global orientation field using power series and than model
SPs locally. Unfortunately, the algorithm is difficult to apply in practice, since
combining the two parts of the model involves heuristics. Furthermore, the al-
gorithm requires reliable detection of SPs.

In [9], Li et al. model the orientation of fingerprints using higher order phase
portraits. Therefore, the method divides the fingerprint into several predefined
regions and approximates them using piecewise linear phase portraits. In a fur-
ther step this method computes a global model using the piecewise linear phase
portraits. Similar problems as described above apply also to this algorithm,
namely the required separation of fingerprints into predefined regions and the
robust detection of SPs.



Wang et al. [14] present a OF model based on trigonometric polynomials.
Their approach (coined FOMFE) does not require the detection of SPs. The
application includes orientation interpolation, SP detection and database index-
ing based on the model parameters. For OF smoothing, we [11] found that this
method does not perform significantly better in comparison to classical low pass
filtering schema.

Another method is described in [11], where we propose the use of Legendre
Polynomials for modelling fingerprint OFs. We argue that SPs yield disconti-
nuities in the OF which are difficult to model using polynomials. Instead we
propose to use a fractional term, where the numerator and denominator parts
are computed from the orientation (vectorial x-part, y-part). A non-linear opti-
mization scheme enables this fractional function to approximate high curvature
areas (especially SPs) without the necessity to model discontinuities. This is
achieved by exploiting the zero-poles of the polynomials for modelling SPs and
enables the method to perform better than other methods.

Very recently, Huckemann et al. [6] proposed a global OF model-based on
quadratic differentials. This model can approximate fingerprint OFs using only
five coefficients. These coefficients are geometrically interpretable and have a
clear meaning. One drawback of this method is that it can not model every
fingerprint type. Furthermore, the model is clearly not ’flexible’ enough for a
precise approximation of fingerprint OFs.

1.2 Prior Knowledge within Fingerprint Orientation Models

All the above mentioned fingerprint OF models do not contain the possibility of
adding prior knowledge to aid the process of orientation estimation. The nomen-
clature of the term prior knowledge in this context implies that the model ’knows’
patterns of valid fingerprints. Prior knowledge of valid fingerprint patterns can
be used to provide tolerance to noisy or missing data. There are two main char-
acteristics which the model should possess. First, the model should be general,
meaning it should be capable of generating any plausible fingerprint pattern.
Second, and crucially, it should be specific, which means the model should only
be capable of generating ’naturally occurring’ fingerprint patterns.

Typical examples of active models in literature are active shape models
(ASM) used for modelling shape variations and active appearance models (AAM)
for matching a statistical model of object shape and appearance to a new image.
These models are built during a training phase. The latter method is widely
used for matching and tracking faces and for medical image interpretation. For
a more thorough overview see [3].

2 Training the Model

We use commercial fingerprint software from Siemens (Siemens IT Solutions and
Services, Biometrics Center) for local OF estimation and for the segmentation
of the image into foreground/background pixels. Note that no other processing,



i.e. registration or alignment has been employed. For the training phase, the raw
OF is smoothed using the method described in [11], this step is essential as it is
necessary to estimate the OF also in the corners of the image (background).

2.1 Representation of Fingerprint Flow Patterns

For the representation of fingerprints OFs, we use 12th order Legendre Polyno-
mials as described in [11]. Alternatively, one could also use the parametric OF
representation as described in [14] by Wang et al. In the following, we give a short
overview of the used OF approximation method. Let 2O(x, y) be the doubled ori-
entation and Φ(x) = [φ0(x) . . . φn(x)] the row vector containing the set of basis
functions φ(x) evaluated for a given coordinate x = (x, y). The system matrix is
given as V and consists of the row vectors Φ(x). fx and fy contain the vectorial
orientation data (computed using sine/cosine function from 2O(x, y)). Then one
can compute the parameter vector c = [a,b] for the vectorial approximation as
described in the following:

a = V+
wWfy b = V+

wWfx (1)

Where V+
w = (VT WV)−1VT is the pseudo-inverse of the system matrix V.

The diagonal weighting matrix W is computed using fingerprint segmentation,
where the diagonal elements are ω = 0 for background and ω = 1 for foreground
pixels. For further details regarding the construction of the system matrix V we
refer the reader to [11].

2.2 Computing a Subspace

Suppose now we have s sets of parameters ci = [ai,bi] which were generated
from s fingerprints as described above. These vectors form a distribution in the
n dimensional space. If one can model this distribution, one can generate new
examples similar to those in the original training set. Furthermore, one can decide
whether a given OF is a plausible fingerprint flow patterns. We apply Principal
Component Analysis (PCA) to the set of parameters in order to find a linear
subspace where realistic fingerprints ’reside’. Therefore, we compute the mean c
and the covariance S of the data, followed by the eigenvectors e = [e1, e2, . . . , et]
and the corresponding eigenvalues λ = [λ1, λ2, . . . , λt] of S (sorted largest first).
Let Ω be the space of all possible parameters and Ψ the linear subspace spanned
by the PCA. Then we can project parameters from Ω to Ψ using the linear
projection ϕ:

di =ϕ(ci) =eT (ci − c) projection ϕ (2)

ci =ϕ−1(di) =ci + edi inverse projection ϕ−1 (3)

here ci represents a point in the high dimensional space Ω and di the same point
projected in to the linear subspace Ψ . The number of eigenvectors t to retain
should be chosen so that the model represents a sufficiently large proportion



of the total variance. Thus, the original high dimensional data can be approx-
imated using a model with much fewer parameters. In Figure 1 the eigenvalue
spectrum of 2000 fingerprint vectors (NIST4, f-prints database) is shown. Note
that these fingerprints were not registered nor aligned in any other form. Only
image cropping according to a segmentation has been performed.
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Fig. 1. Eigenvalue spectrum of 2000 fingerprint vectors (NIST4 f-prints
database). Note how the first 40 eigenvalues correspond to more than 95% of
the data’s variance.

3 Fitting the Model to the Nearest Plausible Fingerprint
Flow Pattern

In order to only generate examples similar to the training set, we have to choose
a parameter d ∈ Ψ . Therefore, we have to minimize the following cost function:

min
d

i∑
j=1

ωi

[
sin
(
M(xj)−O(xj)

)]2
+µ
[

1
P (xj)

− P (xj)
]2

(4)

The cost function compares the model’s orientation estimation M(xj) with the
observed function value O(xj) (obtained from local image gradients). We use the
sin-function in order to resolve the discontinuity problem at zero and π. Then,
one can compute M(xj) as described in Equation 5:

M(xj) =
1
2

arctan
Φ(xj)aT

Φ(xj)bT
(5) P (xj) = (Φ(xj)aT )2 + (Φ(xj)bT )2 (6)

Note that a and b can be computed by the inverse mapping c = [a,b] = ϕ−1(d)
The second term of Equation 4 is a penalty function which regularizes the ori-
entation vector to unit length (sin2 + cos2 = 1). This regularization (given in
Equation 6 is necessary since the the training was done exactly with this con-
dition fulfilled. On the other hand, allowing a minor deviation from unit length
provides tolerance to rotation and translation.



3.1 Optimization

The minimization of the cost function in Equation 4 is done by using the
Levenberg-Marquard (LM) algorithm. Note that, as described above, each it-
eration of the LM uses the inverse mapping ci = ϕ−1(di) in order to evaluate
the cost function as given in Equation 4. The factor µ is set to 3 ∗ 10−4 in all
our experiments. The initial value d0 for the LM is set to the null vector. This
corresponds to the mean OF (c). The LM algorithm stops when a minima is
reached or when the number of iterations exceeds 40.

4 Evaluation

This section presents the experimental results. For training the model, we used
the NIST4 special database [15]. This database contains 2000 fingerprints evenly
distributed among the five Henry classes. The number of eigenmodes is limited
to 80. For evaluation of the proposed method, we used the NIST4 s-prints (all
2000 images) and the FVC2006 2a [4] (all 1680 images) database.

4.1 Generalisation Test

In this subsection we test how well the proposed model generalises to a given
test database. Therefore the model is fitted to the raw (unsmoothed) OF of the
given fingerprint. To measure the quality of the fit, we compute the absolute
mean deviation between the ground truth OF and the fitted orientation field
in degrees, where a error is only computed for foreground pixels. The ground
truth OF is computed using the mentioned fingerprint software. The figures
depicted in Figure 2(a) show cumulative distribution functions of the absolute
mean deviation in degrees summarized over all images of the database. Most of
the images show a mean deviation of smaller than five degrees. A large fraction
of this error can be adhered to the block-wise processing of the commercial
fingerprint matcher. Furthermore, we want to point out that the ground truth
OF contains errors and thus a possible improvement using the proposed method
is impossible to measure.

The reader should note that this evaluation procedure is exactly the same
as described in [6]. The experiments and datasets are identical, but the authors
of [6] deleted 20% of the images (due to missing SPs). In direct comparison our
model generalises significantly better to fingerprints than the one proposed by
Huckemann et al. [6]. We can report almost all of the images to have smaller
than 10 degrees absolute mean deviation, in comparison [6] can only report 50%.

4.2 Prediction Test

The orientation interpolation capability of the proposed algorithm is tested in
a simulated scenario where we remove 70% of the OF (see Figure 3). The OF
remains in a rectangle with 40% area size, except a smaller rectangle with 10%
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Fig. 2. Generalisation and Prediction Evaluation.

of the total image size in pixels. Both rectangles are centred in the middle of
the image and exhibit the same aspect ratio as the image. Using this scenario,
we tested the extrapolation as well as interpolation ability of the proposed al-
gorithm. The figures are computed for the predicted OF only. Additionally, the
background is removed from the input OF. This prediction evaluation is done
using the same database configuration as mentioned above. It should be noted
that not all predictions with a large absolute mean deviation are wrong in terms
of plausibility.

The only comparable work with a significant large evaluated database is
available from Hotz [5] (co-author of [6]). In his evaluation scenario the prediction
was performed for only 5% occlusion (compared to 70% of our testing scenario).
Unfortunately, this makes a possible comparison meaningless.

In Figure 6 one can see the translation and rotation invariance of the pro-
posed method. Illustration 6(c) shows a 180 degree rotated image of a loop type
fingerprint (the straight example is given in Figure 5). As can be seen, the model
corrects the OF to a whorl type fingerprint - the most plausible valid pattern.
Figure 3 shows comparisons with other methods available in literature.

4.3 Estimating the Number of Modes

In order to estimate the best number of Eigenmodes we performed the above
mentioned prediction and generalisation experiments for a varying number of
Eigenmodes. The evaluation criteria for the prediction and generalisation figures
was the relative number of fingerprints with less than eight degrees average
error. Due to the computational burden, only the first 100 images of the NIST4
database (s-prints) were used. We performed this evaluation for two scenarios.
In the first scenario (shown in Subfigure 4(a)) one can see how the number
of coefficients affects the model without regularisation. Furthermore, it shows
the trade off between generalisation and prediction capability of the method. In
general, a lower number of Eigenmodes results in good prediction figures but
bad generalisation capability of the model - and vice versa. The second scenario
(see Subfigure 4(b)) shows the model as proposed with the regularisation. It is
clearly visible that the regularisation leads to a significant improvement.



(a) input OF high-
lighted

(b) proposed (c) FOMFE, 162 pa-
rameters

(d) Legendre Poly-
nomials

Fig. 3. Prediction ability of various methods proposed in literature. Input OF
as shown in 3(a). Green color is used to display the interpolated/extrapolated
OF. Subfigure 3(b) shows the results of the proposed method. The prediction
cabability of the FOMFE approach (exactly as in [14]) is shown in image 3(c).
Subfigure 3(d) shows results of the approach described in [11] (exactly as de-
scribed in the paper). Note that the proposed method (Figure 3(b)) generates
the most plausible OF.
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Fig. 4. Regularisation. Applying a regularisation on the cost function, where
we force the orientation vectors to unit length, we can significantly improve the
results.

(a) 5 Eigenmodes (b) 80 Eigenmodes (c) 182 Eigenmodes

Fig. 5. Number of Eigenmodes. In case of to few Eigenmodes (Subfigure
5(a)) the model fails to generalize, especially visible at SPs. The application
of a higher number of Eigenmodes allows the model to fit the shown OF more
precisely.



(a) rotation (b) translation (c) upside down of 5

Fig. 6. Subfigure 6(a) shows a 45 degree rotated fingerprint image. In Subfigure
6(b) an uncentered loop type fingerprint is shown. Figure 6(c) displays an upside
down loop which has been corrected to a whorl. Predicted OF is shown in green.

4.4 Conclusion

In this paper we presented a statistical model for fingerprint ridge orientation.
The fingerprint orientation field (OF) can be constrained by the Active Finger-
print Ridge Orientation Model (AFROM) to vary only in ways seen in a training
set. The OF of fingerprints is represented by a vectorially linear regression using
Legendre Polynomials. Fitting parameters to a given fingerprint is done using
the Levenberg-Marquard (LM) algorithm. During the optimization procedure
the parameters are limited to a previously learned linear subspace, where only
’legal’ fingerprints reside. Using the proposed method, the AFROM iteratively
deforms to fit an OF of a fingerprint. Our method does not depend on any pre-
alignment or registration of the considered images. The training can be done
fully automatic without any user interaction. Furthermore, our method does not
depend on any other computed data, except a segmentation.

In the evaluation section of this paper, we perform generalisation and pre-
diction tests of the proposed method. A generalisation test is done in order to
evaluate how well the model ’fits’ to a large number of OFs. Using the presented
prediction test, we asses how specific the model is. This is the ability to con-
strain unknown or noisy regions of the OF to valid fingerprint flow patterns. All
experiments are performed on public databases (from which one is fairly differ-
ent to the learning dataset). These experiments, comparable with a very recent
paper [6], assess our method a very good performance. Furthermore, it should
be noted that our method is the first fingerprint OF model making use of prior
knowledge for OF estimation. The major conception behind existing methods
(e.g. [6]) is a hand crafted model which fits only to valid fingerprint OFs, with-
out the possibility for machine based training. Our approach can also be seen as
a method to find those elements (Eigenmodes comply to ’Eigen-Orientations’)
which, when (linear) combined, give biological valid patterns of fingerprints. We
want to point out, that we used the full NIST4 f-prints database for training,
including many noisy fingerprint images.

Future work includes the experimentation with other subspace methods than
PCA (e.g. ICA, K-PCA, etc.). Moreover, the regularization term of the cost



functional accommodates a large potential for future improvements. Another
topic is the inclusion of an image quality estimation algorithm, where the model
adjusts the amount of prior knowledge depending on the local image quality.
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