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Abstract

Smoothing fingerprint ridge orientation involves a prin-

cipal discrepancy. Too little smoothing can result in noisy

orientation fields (OF), too much smoothing will harm high

curvature areas, especially singular points (SP). In this pa-

per we present a fingerprint ridge orientation model based

on Legendre polynomials. The motivation for the proposed

method can be found by analysing the almost exclusively

used method in literature for orientation smoothing, pro-

posed by Witkin and Kass [5] more than two decades ago.

The main contribution of this paper argues that the vectorial

data (sine and cosine data) should be smoothed in a cou-

pled way and the approximation error should not be evalu-

ated employing vectorial data. For evaluating the proposed

method we use a Poincáre-Index based SP detection algo-

rithm. The experiments show, that in comparison to compet-

ing methods the proposed method has improved orientation

smoothing capabilities, especially in high curvature areas.

1. Introduction

Fingerprint-based authentication is one of the most

widely applied biometric modalities. The existence of a

large number of commercial fingerprint verification systems

emphasizes the effectiveness of this type of biometrics. Fin-

gerprints are attractive for identification because they can

characterize a person uniquely and their configuration does

not change through the life of individuals.

As described in [4], three types of characteristic fea-

tures can be extracted from a Fingerprint image: a) patterns,

which are the macro details of a fingerprint such as ridge

flow and pattern type. b) minutiae, which are points where

ridges bifurcate or end. c) pores, edge contours, incipient

ridges, breaks, creases and other permanent details.

While the third mentioned feature type, such as pores,

are difficult to apply in an Automatic Identification Sys-

tem (AFIS), minutiae represent the back end of these sys-

tems. Additionally, fingerprint patterns are used to assist the

matching procedure. Automatic fingerprint recognition re-

quires that the input image is matched with a large number

of fingerprints stored in a database. Using flow patterns one

can categorize a fingerprint into a number of classes. The

need for this classification results from the fact that large

volumes of fingerprints can be partitioned into smaller sub-

sets and thus a search can be made faster.

Despite decades of research, fingerprint matching is still

considered to be a difficult problem, mainly due to the large

variability in different impressions of the same finger (i.e.

displacement, rotation, distortion, noise, etc.). One way to

relax the problem in terms of performance and runtime is to

use certain ’landmarks’ in the image in order to align two

fingerprints on each other. Such landmarks can be extracted

from fingerprint patterns in form of singular points (SPs).

SPs occur at positions where the ridge flow is discontinues.

Usually, these points can be categorized into core and delta

type singularities.

Ridge orientation is inevitably used for detecting, de-

scribing and matching fingerprint features such as minu-

tiae and SPs. Large efforts are made in order to extract

reliable orientation data from fingerprints. Many methods

for ridge orientation estimation exist in the literature [1].

Unfortunately, determination of ridge orientation becomes

more difficult when image quality is low. Thus even the

’best’ orientation estimation algorithm will fail in regions

of low image quality. To encounter this problem, the ridge

orientation is smoothed. It is noteworthy to mention, that

only small regions can be smoothed successfully.
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The almost exclusively used method in literature as well

as in commercial fingerprint matching modules for smooth-

ing orientation has been brought up by Witkin and Kass [5]

more than 20 years ago. Their paper describes a solution for

the problem of discontinuities which occur at angles of 180

and 0 degrees. In this paper we explain one of the limiting

problems of this method, namely smoothing high curvature

areas. Furthermore, we discuss why this issue limits the

orientation smoothing capability of numerically averaging

methods as well as of the more sophisticated mathematical

fingerprint ridge orientation models. We present a model

based method which allows higher smoothing levels with-

out degrading the existing orientation information in high

curvature areas. The rest of the paper is organised as de-

scribed in the following. In Section 2 we discuss related

work. Section 3 summarises the problem of ridge orien-

tation smoothing in high curvature areas and the resulting

trade offs. In Section 4 our proposed method is described.

Experiments, showing the ridge orientation smoothing ca-

pability of the proposed method are given in Section 5. Fi-

nally, the summary of this paper can be found in Section

6.

2. Related Work

In digital images, the gradients direction can be extracted

for the full 360 degree range. Ridge orientation, which is or-

thogonal to these image gradients, can be determined only

up to 180 degrees. Smoothing orientation is not straightfor-

ward. Orientation vectors cannot be averaged in their lo-

cal neighbourhood since opposite orientation vectors would

cancel each other, even if they correspond to the same ori-

entation. This is caused by the fact that local orientations

remain unchanged when rotated for 180 degrees. Witkin

and Kass [5] proposed the doubling of the orientation angle

(sometimes also denoted as squaring the orientation vector,

see [1]). After doubling the angles, opposite gradient vec-

tors will point in the same direction and therefore will rein-

force each other, while perpendicular gradients will cancel.

This procedure guarantees an continues occurrence of sine

and cosine data and thus enables standard filtering proce-

dures (e.g. low pass filter) to be applied on orientation data.

After averaging, the gradient vectors have to be converted

back to their single angle representation. All currently avail-

able fingerprint ridge orientation models proceed by fitting

vectorially models to the doubled angle orientation data.

A combination method is described by Zhou and Gu in

[16, 15]. This method first describes the global orienta-

tion field using power series and than locally models sin-

gularities. Unfortunately, the algorithm is difficult to ap-

ply in practice, since combining the two parts of the model

is cumbersome. The latter is especially true for noisy in-

put images, which is the main motivation for modelling

ridge orientation. Furthermore, the algorithm requires re-

liable detection of SPs. In [7], Li et al. model the ori-

entation of fingerprints using higher order phase portraits.

Therefore, the method divides the fingerprint into several

predefined regions and approximates them using piecewise

linear phase portraits. In a further step this method com-

putes a global model using the piecewise linear phase por-

traits. Similar problems as describe above apply also to this

algorithm, namely the required separation of fingerprints

into predefined regions and the robust detection of SPs.

Recently Wang et al. [14] presented a Fingerprint Ori-

entation Model based on trigonometric polynomials. Their

approach (named FOMFE) does not require prior knowl-

edge of SPs. The application includes orientation interpola-

tion, SP detection and database indexing based on the model

parameters. One of the authors claims, namely detection of

SPs in low quality fingerprints, has not been tested using

manually labelled data.

3. A survey of the smoothing problem

Every orientation smoothing approach which is based on

the above mentioned approach of Witkin and Kass [5], will

have a poor smoothing capability in high curvature areas.

(see Figure 1 for an example). An explanation for the oc-

currence of this smoothing problem is given in Figure 2,

where the vectorial orientation data of a loop type finger-

print is given. In the centre, these two surfaces contain a

discontinuity, a jump from -1 to 1. The presence of this

discontinuity is important, because the SP is defined by the

root of this discontinuity. This fact can be easily verified

by back conversion of the vectorial data using the formula

O = 1
2 (arctan sin(2O)

cos(2O) ). Smoothing the vectorial data re-

sults in shifting the roots of the sine and cosine data and

hence in shifting of the SP. Furthermore, smoothing the dis-

continuity results in false orientation around the SP (see

Figure 1). This problem plaques not only standard numeri-

cal methods but also every potential ridge orientation mod-

elling approach. It is not important to precisely approximate

the individual discontinuities. The reason therefore is that

the appearance of a SP is strictly defined by the roots and

the ratio of the two shown surfaces. Existing approaches put

high emphasize on the exact and separate approximation of

the vectorial data. In this paper, we show that the approxi-

mation should be done in a coupled way and that the above

mentioned roots can be shifted back to the correct position,

which leads to precise modelling of SPs.

4. Fingerprint Ridge Orientation Modelling

using Legendre Polynomials

For ridge orientation estimation, we adapt a gradient

based approach (Rao and Schunk [13]). The OF extraction

is done pixel wise and is not averaged using any numerical



(a) before smoothing (b) after smoothing

Figure 1. In 1(a) the orientation field of a loop type fingerprint

image can be seen. This image has been synthetically generated.

In 1(b) the orientation field after vectorial smoothing (using the

approach of Witkin and Kass [5]) can be seen. The image size

is 30x30 pixels. Smoothing is done using a 9x9 averaging filter.

Note how the SP is shifted away from the low curvature area.

(a) sin 2O(x, y) (b) smoothed sine data

(c) cos 2O(x, y) (d) smoothed cosine data

Figure 2. In 2(a) and 2(c) the vectorial data of a loop type finger-

print can be seen (as shown in Figure 1). In 2(b) and 2(d) these

surfaces have been smoothed using an averaging filter of 9x9 pix-

els. An explanation why the SP shifts after smoothing can be given

by looking at the cosine data. The root of the surface, which de-

fines the position of the SP, has been shifted.

method. In the following, the doubled orientation is denoted

with 2O(x, y).

4.1. Weighted Pseudoinverse Technique for Least
Squares Approximation

For the approximation of a discrete two dimensional

function f(x, y) we propose to use a linear combination of

n basis functions. Then for every point xi = (xi, yi) the

following equation can be evaluated:

f(x, y) ≈

n
∑

j=0

ajφj(x, y) (1)

Let

Φ(xi) = [φ0(x) φ1(x) . . . φn(x)] (2)

be the row vector containing the set of basis functions

[φ0(x) φ1(x) . . . φn(x)] evaluated for a given coor-

dinate x = (x, y). Using this expression, we can define the

system matrix V:

V =











Φ(x1)
Φ(x2)

...

Φ(xi)











=











φ0(x1) φ1(x1) . . . φn(x1)
φ0(x2) φ1(x2) . . . φn(x2)

...
...

. . .
...

φ0(xi) φ1(xi) . . . φn(xi)











(3)

Where the size of the system matrix V is determined by

the number of coordinate points i and the number of basis

functions n. Further, we can give the parameter vector as:

a = [a1, a2, . . . , an]T (4)

and the vector of function values f as:

f = [f(x1), f(x2), . . . , f(xi)]
T (5)

Where f(xk) is the observed function value at the coordi-

nate xk = (xk, yk). We use the method of least squares

to model the numerical data f . The best fit is characterized

by the least value of the sum of squared residuals F . Fur-

thermore, a weight ω to every pixel x = (x, y) is assigned

because not all points are of equal value in determining a

solution. Using this convention, we can write:

F =
i

∑

j=1

ωj [Φ(xj)a
T
− f(xj)]

2. (6)

Since the number of data points (and thus equations) is

much larger than the number of basis functions, we use the

pseudoinverse technique to estimate a solution [3, 11]:

a = (VT
WV)−1

V
T
Wf (7)

Where W = diag(ω1, .., ωi) is the diagonal weighting ma-

trix containing the weights for every coordinate.

4.2. Generating Basis Functions

Common polynomials are not suitable as basis functions

because they result in a bad conditioned system of linear

equations. We use Legendre polynomials as basis functions

in our paper. These polynomials are orthogonal in the inter-

val [−1, 1], fast to evaluate and simple to generate. Another

important advantage in behalf of orthogonal basis functions

is that they span an Euclidean parameter space.

Each univariate Legendre polynomial Pn(x), can be

computed using Rodrigues formula [3]:

φn(x) =
1

2nn!

dn

dxn

[

(x2
− 1)n

]

(8)
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Figure 3. Function plot of some Legendre polynomial basis func-

tions as given in Equation 9.

Figure 4.2 shows a few computed basis functions (given in

Equation 9).

φ0(x) = 1 φ1(x) = x

φ2(x) =
3x2

− 1

2
φ3(x) =

5x3
− 3x

2

φ4(x) =
35x4

− 30x2 + 3

8
φ5(x) =

63x5
− 70x3 + 15x

8
(9)

Generalization to two dimensions can be done using the

method of separable variables. Consider the Legendre poly-

nomials φn−m(x) and φm(y) in the two variables x and y.

Then one can compute the set of basis functions for the kth

order Legendre polynomial expansion as:

φnm = φn−m(x)φm(y)

(

n = 0, 1, 2, . . . , k

m = 0, 1, 2, . . . , n

)

4.3. Optimization

The optimization for obtaining the final parameters for

the vectorial data is done in two steps. In a first optimization

step we roughly approximate the models parameters using

the closed form solution described in Subsection 4.1. In a

second step, a non-linear refinement delivers the accurate

parameters. Our approach is not depending on other, prior

computed data such as SPs.

Let a and b be the parameters of a Legendre expansion

of the sine and cosine data respectively. Then, the orienta-

tion field can be computed as described in the following:

O(xj) =
1

2
arctan

Φ(xj)a
T

Φ(xj)bT
(10)

From Equation 10 one can observe that a and b are coupled

and influence the orientation in a non-linear way. Thus, the

set of parameters cannot be computed independently from

each other. Furthermore, the amplitude of each polyno-

mial can be cancelled by the division - thus making smaller

amplitudes more sensitive to noise and approximation er-

rors. Moreover, the highly non-linear arctan function fur-

ther propagates a possible error. The real measure for fitting

a ridge orientation model to a fingerprints orientation should

be directly computed by using the orientation angle as op-

posed to its sine or cosine. This optimization can only be

carried out using a non-linear technique. On the other hand,

a single non-linear optimization would consume too much

time for optimization. Furthermore, such a method needs a

special treatment for local minima. This is the reason why

we propose a hybrid optimization method which delivers

accurate parameters and is still reasonable fast.

In order to minimize the least square error, the following

non-linear function must be minimized:

min
a,b

i
∑

j=1

ωi

[

arctan
Φ(xj)a

T

Φ(xj)bT
− 2O(xj)

]2

(11)

Where a and b are the desired parameter vectors for the

Legendre approximation. The coordinates are beeing xj,

the weight ωi and i the number of points. As already dis-

cussed, handling orientation data needs special attention. In

an early paper Rao and R. Jain [12] proposed the sine as a

distance measure for non-linear parameter estimation in lin-

ear phase portraits. In their optimization routine, they min-

imize the absolute values of this measure. Later, Ford and

Strickland [2] suggested that the sum of squares of these

distances should be minimized. One should note that in

these references the authors intention is to use directly the

orientation to obtain the models parameters. As we carry

out our optimization already in the doubled angle space, we

have to half the angle for correct determination of the error

functional. Then, rewriting the cost function results in:

min
a,b

i
∑

j=1

ωi

[

sin

(

1

2
arctan

Φ(xj)a
T

Φ(xj)bT
− O(xj)

)]2

(12)

4.3.1 First Step

In the first optimization step, we propose to independently

model the sine and cosine data of the given orientation

field O(x, y). The parameter estimation proceeds as de-

scribed in Subsection 4.1. Therefore it is necessary to

compute the weighted pseudo inverse of the system matrix

V
+
w = (VT

WV)−1
V

T . Note that the coordinates x and

y need to be normalised to the range [−1, 1]. The system

matrix V is only depending on the x and y coordinates and

can be precomputed for a given image size. The weight-

ing matrix W is computed using fingerprint segmentation,

ω = 0 for background and ω = 1 for foreground pixels. The

parameter vector a and b for the sine and cosine approxi-

mation can be computed as described in the following:

a0 = V
+
wWf1 (13)

b0 = V
+
wWf2



f1 and f2 contain the sine and cosine data.

f1 = [sin 2O(x1), sin 2O(x2), . . . , sin 2O(xi)]
T

f2 = [cos 2O(x1), cos 2O(x2), . . . , cos 2O(xi)]
T

4.3.2 Second Step

The cost function in Equation 12 is minimized in a simple

non-linear optimization algorithms. Therefore, a line search

based algorithm proceeds by computing a search direction

diter followed by the decision how far to move along that

directions.

citer+1 = citer + αiterditer (14)

Where c consists of the concatenated parameter vectors

c = [a,b] and αiter is the estimated search step size. We

use numerical evaluations of the cost function in order to

compute the derivatives which are necessary to compute the

search direction αiter. The iterative, quasi-newton based

approach always tries the step length diter = 1 and will

accept this value if the Wolfe conditions [10] are satisfied.

The initial parameters a0 and b0 are computed using the

closed form solution and provide a good starting position.

Therefore the maximum number of iterations is set to 100.

If the minima is detected before the maximum number of

iterations has been exceeded, the algorithms quits and re-

turns the current parameters. This process uses typically

5 seconds (3 to 10 seconds, depending on the image) on a

state of the art computer (Intel Core Duo 2.4 GHz, Mat-

lab 7.2) for typical image sizes of 388x374. It should be

mentioned that the computation could be carried out much

faster using more sophisticated optimization methods. Fur-

thermore, using a lower resolution OF can massively speed

up the computation process.

5. Evaluation

For evaluation of the ridge orientation model, we con-

duct SP detection on a publicly available database. Note,

that here the task of singular point detection is used as a

benchmark for evaluating the quality of the proposed ridge

orientation model. This becomes evident as all existing SP

detection algorithms depend on a correctly estimated OF,

including robust methods (eg. [9]) which tolerate noise to

some extent. Algorithms for SP detection are described in

[4, 1, 9].

The used database (FVC2004 DB3A [8], 800 images)

includes images of low quality, thus it represents a good

subject for testing the ridge orientation smoothing ability.

For the detection of SPs, we use the Poincáre-Index based

approach described by Kawagoe and Tojo [6]. The method

proceeds by numerical integration of the angle along a given

curve. The performance of this method is affected by noise

in the orientation field. Thus it is suggested [1] to smooth

the orientation field before detecting SPs. Naturally, this

comes with a trade off. In particular, one has to make a

compromise between missing singularities (false negatives

due to excessive smoothing) or spurious singularities (false

positives, occur due to too low smoothing). We use the

Poincáre-Index computed over a 9x9 pixel rectangle for SP

detection. All SPs in the 800 images have been manually

labelled.

We compare three different OF smoothing approaches.

The first method is smoothing the pixel wise extracted ori-

entation data using Gaussian convolution (described in [1]

by Bazen and Gerez). The second method is described in

[14] by Wang et al. and proceeds by fitting two-dimensional

Fourier series to the orientation field. Both methods base

their smoothing feature on the doubled angle averaging

method of Witkin and Kass [5]. For orientation smoothing

using convolution, we employ a σ = 5, 25 and 12 (optimal

value as of [1]). Ridge orientation modelling using Fourier-

Series is done exactly as described in [14], the parameter k

has been varied between k =2, 4 and 6.

In Figure 4 the orientation smoothing capability of dif-

ferent methods is illustrated. Ridge orientation 4(b) has

been extracted using a gradient based method from the orig-

inal image 4(a). Subfigure 4(i), 4(h) and 4(g) show the ori-

entation field smoothed using Gaussian convolution. While

low smoothing (σ = 5 in 4(i)) causes wrong detections, too

much smoothing (σ = 25 in 4(g)) usuallycauses a smooth-

ing of the high curvature area and results in a poor overall

orientation field. In Subfigure 4(d), 4(e) and 4(f) the orien-

tation modelling capability of the FOMFE approach [14] is

shown. In 4(d) we use a second order trigonometric polyno-

mial with 50 parameters. The reconstructed orientation in

the noise affected area is not satisfactory. In 4(e) the optimal

number of 162 parameters is used and in 4(f) we used 338

parameters for describing the orientation. Note that in both

cases wrong singularities are detected. In Subfigure 4(c)

the computed orientation of our proposed method is shown.

Emphasize should be paid on the correct reconstruction of

the orientation in the noise affected region and to the accu-

rate determination of the SPs position.

Figure 5 illustrates how the second optimization step

proceeds. The fingerprint image is the same as shown in

Figure 4(a) and the orientation has been estimated as shown

in Figure 4(b). The first image 5(a) is derived from the

closed form optimization formula. By further optimiza-

tion using the described non-linear approach, SPs arise and

move closer to their real position (seen in 5(b) and 5(c)).

Furthermore, it can be seen how the global orientation field

(especially in the noisy region) incrementally converges to

the real one. After 17 iterations 5(d) the orientation approx-

imation has already reached a satisfactory level. The final

result after 100 iterations is given in Figure 4(c).



(a) original image (b) extracted orientation (c) our approach, 42 parameters

(d) FOMFE, 50 parameters (k=2) (e) FOMFE, 162 parameters (k=4) (f) FOMFE, 338 parameters (k=6)

(g) Gaussian, σ = 25 (h) Gaussian, σ = 12 (i) Gaussian, σ = 5

Figure 4. In 4(b) the orientation field of a partially noisy fingerprint image 4(a) can bee seen. Manually labelled SPs are shown as ’+’ and

’×’, detected cores as ’©’ and deltas as ’△’. The second row shows ridge orientation smoothed using the FOMFE approach as described

in [14]. The orientation modell has been varied between heavy smoothing 4(d), optimal value 4(e) and low smoothing 4(f). A similar

sequence has been created in the third row, where the smoothing is done using convolution with a Gaussian. In 4(c) the proposed method

is shown. Both, the high curvature area as well as the global orientation field have been reconstructed more accurate in contrast to the other

methods.



(a) start (b) iteration 3 (c) iteration 7 (d) iteration 17

Figure 5. Illustration of the second optimization step (using the same input data as shown Figure in 4). In 5(a) the output of the closed form

optimization can be seen. In 5(b), 5(c) and 5(d) it is illustrated how the non-linear method converges towards the final solution, which is

shown in Figure 4(c).

5.1. Performance Measures

For measuring the performance of an SP detection algo-

rithm, the two quantities of interest are clearly the number

of correct detections and the number of spurious detections.

Obviously, the ultimate goal is to maximize the number of

correct detections and to minimize wrong detections.

Unfortunately, there is no established ’standard’ in litera-

ture for evaluating SP detection approaches. Although most

authors give true positive and false positive numbers, there

seems to be no consensus on how large the threshold should

be, on which this decision is based on. In this publication,

we intend to vary this threshold and display all figures as a

function of it. The definition of the performance measures

is given in the following:

Recall =
TP

TP + FN
(15)

Precision =
TP

TP + FP
(16)

F-Measure =
2 · Recall · Precision

Recall + Precision
(17)

Where TP=true positive, FN=false negative and

FP=false positive. The first quantity of interest, namely,

the proportion of SPs that are detected, is given by the

recall. The second quantity of interest is the number of

correct detections relative to the total detections made by

the system is given by the precision. As we are interested

in which method achieves the best trade-off between these

two quantities, we need a third measure. The F-Measure

summarizes the trade-off between recall and precision,

giving equal importance to both.

5.2. Experimental Results

Figure 6 shows the results for SP detection in the

FVC2004 3a database. Low smoothing results in good

recall figures. This is due to a) the fact that fewer SPs

are ’missed’ during the detection (because they were not

smoothed out) and b) due to the fact that noisy OFs con-

tain many random detections which may be counted as true

positive. On the other hand, low smoothing results in poor

precision rates. Both this findings can be observed in Fig-

ure 6(b) and 6(a) for the Gaussian smoothed orientation

field (’Gaussian σ = 5’) as well as for the FOMFE model

(’FOMFE338’). In defence of FOMFE it should be men-

tioned that it performs much better on the precision figures

as compared to Gaussian smoothing.

The other performed scenario is the heavy smoothing of

orientation fields (’FOMFE50’ and ’Gaussian σ = 25’),

Figure 6(a) and 6(b)). Ideally, one would expect that more

smoothing results in better precision figures and in worse

recall figures. Unfortunately, this findings can not be ob-

served in practice, since heavy smoothing shifts the position

of the SPs beyond any usable thresholds. Therefore, heavy

smoothing results in bad precision and bad recall numbers.

The trade off between the above mentioned two scenar-

ios is denoted with ’FOMFE162’ and ’Gaussian σ = 12’.

These values have been suggested by the corresponding au-

thors [14, 1]). As can be seen in Figure 6, our approach

scores very high precision and recall figures. The trade

off, smoothing artefacts while preserving high curvature ar-

eas, has been significantly improved (F-Measure 10% in-

creased) using the proposed method.
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Figure 6. Recall, Precision and the F-Measure evaluated for different Fingerprint Ridge Orientation smoothing approaches using the

FVC2004 3a [8] database. On the y-axis, the threshold for obtaining the mentioned performance measures is given.

6. Conclusion

In this paper we proposed a novel method for finger-

print ridge orientation modelling using Legendre Polyno-

mials. The methods proceeds in two steps. In the first op-

timization step we roughly estimate the parameters using

a closed form solution. In the second optimization step,

we propose to use a non-linear optimization technique for

more precise parameter estimation. The motivation for the

second step can be found by analysing the almost exclu-

sively used method in literature for orientation smoothing,

proposed by Witkin and Kass [5] more than 20 years ago. In

the main contribution of this work, it is demonstrated that

vectorial orientation data (sine and cosine data) should be

smoothed simultaneously and that the approximation qual-

ity should be evaluated directly using the orientation angle.

For evaluation of the proposed method we use a Poincáre-

Index based SP detection algorithm. The experiments show,

that the proposed method has improved orientation smooth-

ing capabilities in comparison to other methods. Further-

more, the presented approach requires only a small number

of parameters for global ridge orientation description.
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