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Abstract—Age estimation from radiologic data is an im-
portant topic both in clinical medicine as well as in forensic
applications, where it is used to assess unknown chrono-
logical age or to discriminate minors from adults. In this pa-
per, we propose an automatic multi-factorial age estimation
method based on MRI data of hand, clavicle, and teeth to
extend the maximal age range from up to 19 years, as com-
monly used for age assessment based on hand bones, to
up to 25 years, when combined with clavicle bones and wis-
dom teeth. Fusing age-relevant information from all three
anatomical sites, our method utilizes a deep convolutional
neural network that is trained on a dataset of 322 subjects
in the age range between 13 and 25 years, to achieve a
mean absolute prediction error in regressing chronological
age of 1.01 ± 0.74 years. Furthermore, when used for ma-
jority age classification, we show that a classifier derived
from thresholding our regression-based predictor is better
suited than a classifier directly trained with a classification
loss, especially when taking into account that those cases
of minors being wrongly classified as adults need to be min-
imized. In conclusion, we overcome the limitations of the
multi-factorial methods currently used in forensic practice,
i.e., dependence on ionizing radiation, subjectivity in quan-
tifying age-relevant information, and lack of an established
approach to fuse this information from individual anatomi-
cal sites.

Index Terms—Information fusion, multi-factorial, convo-
lutional neural network, age estimation, majority age clas-
sification, magnetic resonance imaging.

I. INTRODUCTION

AGE estimation of living individuals or human remains is
a very active research field in legal medicine and foren-

sic anthropology [1] as well as in clinical medicine [2]. While
clinical interest is largest in children close to puberty, e.g., to
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assess endocrinological diseases [3] or to plan orthopedic inter-
ventions [4], [5], interest from legal medicine focuses more on a
broad age range around the majority age, i.e., between 13 and 25
years. Recently, majority age classification of children and ado-
lescents without valid identification documents migrating to the
European Union has seen a lot of attention, since it is a legally
important question to distinguish adult asylum seekers from
adolescents who have not yet reached majority age. To estimate
unknown chronological age (CA) in children and adolescents,
the gradual anatomical changes during physical maturation and
growth [6] can be investigated by non-invasive, imaging based
radiological methods, predominantly in skeletal [7], [8] and den-
tal structures [9]. This allows experts in forensic radiology and
forensic dentistry to examine biological development related to
ossification of bones [10] and mineralization of third molars
(wisdom teeth) [11]. However, CA estimation is prone to uncer-
tainties [12]. Firstly, estimating CA based on the assessment of
biological development is inherently limited due to biological
variation among subjects of the same CA [13]. This biological
variation defines the lowest error that any method for forensic
age estimation can make. With no clear consensus in the litera-
ture, the biological variation is assumed to be up to one year in
the forensically relevant age range studied in this manuscript.
Secondly, due to visual examination, established radiological
methods for assessing biological development involve intra- and
inter-rater variability [14], which can be eliminated by utilizing
software based automatic age estimation.

A. Multi-Factorial Age Estimation

The most extensively studied and widely accepted radio-
logical CA estimation methods are the Greulich-Pyle (GP)
atlas method [7] and the Tanner-Whitehouse RUS approach
(TW2) [8]. In both methods, biological development of the
hand is assessed from X-ray images. While GP is based on
representative hand images of different age groups of a sample
population, TW2 improves on intra- and inter-rater variability
by proposing discrete stages of hand bones separately, according
to textual and visual descriptions of their ossification process.
These methods are well suitable to follow physical maturation
in minors, since hand and wrist bones are finishing ossification
at different times. While distal bones finish ossification earlier,
proximal bones like radius and ulna close their epiphyseal gaps
at an age of about 18 years. However, since the age range of
interest for forensic age estimation is between 13 and 25 years,
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hand and wrist bones alone are not sufficient for accurate pre-
dictions. Thus, additional, complementary anatomical sites were
investigated to allow an extension of the age estimation range
up to 25 years. As recommended by the work group for foren-
sic age diagnostics (AGFAD) [15], in the age range between
13 and 25 years, X-ray images of the hand and wrist bones
should be combined with an orthopantomogram (OPG) of the
wisdom teeth, and a computed tomography (CT) of the clavi-
cle bones for assessment of biological development. In such a
multi-factorial approach, most often the Demirjian method [9]
is used for characterizing wisdom teeth development with dif-
ferent stages, and the method of Kellinghaus [16] for assessing
the stages of clavicle bone maturation. Nevertheless, the prob-
lem of how to combine individual staging results from all three
anatomical sites to a multi-factorial age estimate is still an open
question in the literature [17], [18].

B. Magnetic Resonance Imaging Based Age Estimation

A major drawback of the above mentioned methods recom-
mended for multi-factorial age estimation is their use of ionizing
radiation, which is legally prohibited in healthy subjects for non-
diagnostic reasons. However, due to the lack of an established
forensic age estimation method without involving ionizing radi-
ation, some European countries have made an explicit exemption
to this law in the case of asylum seeking procedures. Recently, to
overcome the drawback of ionizing radiation, a lot of research
has focused on using magnetic resonance imaging (MRI) for
forensic age estimation [19]–[21]. It is currently unclear if the
same staging schemes developed for ionizing radiation based
methods can also be used for MRI [22], [23]. Therefore, different
MRI based methods have been developed for assessing biologi-
cal development for each of the three anatomical sites [24]–[26],
however, these methods still rely on the notion of discretizing bi-
ological development into a number of stages and on subjective
visual examination.

C. Automatic Age Estimation

To enable objective age estimation without the drawback of
intra- or inter-rater variability as introduced by radiologic visual
examination, automatic age estimation from X-ray images of the
hand has already been proposed in the literature with different
methods. In the seminal work of [27], a statistical shape model
was used for localization and age estimation. Overcoming the
need for localization, very recently [28] showed a deep learning
approach involving convolutional neural networks (CNNs) [29]
for age estimation, which performed age regression on whole
X-ray images of the hand. In 2017, Radiological Society of
North America (RSNA) organized a Pediatric Bone Age Chal-
lenge intended to show the application of machine learning for
estimating age from 14,036 clinical hand radiographs obtained
from two children’s hospitals [30]. Evaluated on 200 images, the
winner of the competition used the deep Inception V3 CNN [31]
with additional gender information. Differently to the large in-
terest in automatic age estimation from hand X-ray images, up
to our knowledge no machine learning based solutions have yet

been proposed for estimating age from clavicle CTs, while for
wisdom teeth OPGs a first approach has been shown in [32].

Our group has previously contributed to the development of
automated age estimation methods from hand and wrist MRI.
In [33] and [34], we have shown a method based on random
forests [35], which performs nonlinear regression after ded-
icated anatomical landmark localization [36] of age-relevant
bone structures. Later, we improved performance of the age re-
gression component by training a deep CNN (DCNN) for age
estimation in [37].

D. Contributions

In this work we propose a method for MRI based fully auto-
matic multi-factorial age estimation from three anatomical sites
(hand, clavicle and teeth) and we apply it for age regression and
majority age classification in the forensically relevant age range
between 13 and 25 years. Thus, with our novel method we make
the following contributions:

� We overcome the problem of ionizing radiation of the
recommended multi-factorial approach.

� We eliminate the need for defining discrete staging
schemes for individual anatomical sites.

� We provide a solution how to fuse the age estimates from
the three sites.

� We learn a nonlinear multi-factorial CA regression func-
tion directly from MRI data in an automatic manner.

We have already shown initial results on automatic multi-
factorial age estimation in our conference paper at the MICCAI
Machine Learning in Medical Imaging (MLMI) workshop [38].
This work extends our preliminary study [38] in the following
aspects:

� We provide a more detailed explanation of our DCNN
method for multi-factorial age estimation regarding archi-
tecture and parameters.

� We thoroughly investigate three DCNN architectures that
differ in their strategies of fusing information from the
three anatomical sites, compared to the single fusion strat-
egy used in [38].

� We present a method that is robust to missing wisdom
teeth, which was ignored in [38] where for each studied
subject all wisdom teeth were available.

� We provide a visualization and thorough evaluation of
the influence of each individual anatomical site to the
estimated age.

� We now evaluate on a much larger dataset of 322 subjects
compared to 103 subjects in [38].

II. METHOD

In our proposed method, we perform multi-factorial age es-
timation with a DCNN architecture predicting age (see Fig. 1).
This nonlinear regression model is based on mapping appear-
ance information from hand and clavicle bones as well as
wisdom teeth to the continuous CA target variable. Thus, by ex-
tracting age-relevant information for different anatomical sites
obtained through cropping from the input MRI data, our ap-
proach mimics the established radiological staging approaches
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Fig. 1. Overview of our automatic multi-factorial age estimation framework. MRI volumes of the three anatomical sites hands, clavicles and wisdom
teeth are cropped according to automatically located anatomical landmarks. A deep convolutional neural network (DCNN) performs the nonlinear
mapping between appearance information and chronological age (CA) for both, regression and majority age classification (MAJ) tasks.

developed for each site separately, but without the need for defin-
ing discrete stages. In an end-to-end manner, we combine the
information coming from different anatomical sites to automat-
ically estimate the age of a subject from its MRI data depicting
age-relevant anatomical structures.

A. Cropping of Age-Relevant Structures

Differently to [28], where a large dataset of whole X-ray im-
ages is available and used for age estimation, our motivation for
cropping age-relevant structures in a separate preprocessing step
is to simplify the problem of regressing age from appearance
information, such that it is also applicable for datasets that are
limited in size. Additionally, compared to the down-sampling
of the original 3D images, which inevitably leads to the loss
of valuable aging information from the epiphyseal gap regions,
cropping of the age-relevant structures also reduces GPU mem-
ory requirements and allows us to work on a much higher image
resolution. Different automated landmark localization methods
as presented in [39], [40], or [36] could be used to accurately
localize, align and volumetrically crop age-relevant anatomical
structures from skeletal and dental 3D MRI data (see Fig. 1).
By locating two anatomical landmarks per bone similar to [37],
for the hand MRI data we crop the same 13 bones that are used
in the Tanner-Whitehouse RUS method (TW2) [8]. In clavicle
MRI data, the two clavicle bones are cropped separately based
on two identified landmarks for each clavicle, respectively. The
regions encapsulating wisdom teeth are extracted from the den-
tal MRI data using the locations of the centers of second and
third molars. In case of a missing wisdom tooth, we estimate
its most likely location according to the second molars and ex-
tract the region containing the missing tooth as if it would be
present.

B. DCNN Architecture

Motivated by how radiologists perform staging of different
anatomical sites, we use DCNN blocks [29] to serve as an ex-
tractor of age-relevant features for each cropped input volume

(see Fig. 2). Each DCNN block consists of three levels of two
consecutive 3 × 3 × 3 convolution layers without padding and
a max-pooling layer that halves the resolution. Rectified Linear
Units (ReLUs) are used as nonlinear activation functions [41]. A
fully connected layer at the end of the feature extraction block
(fcb) leads to a dimensionality reduced feature representation
for each cropped input volume individually, which serves as a
feature extractor for that specific anatomical structure.

In this work, we explore three different strategies when to
fuse information from anatomical sites within our CNN archi-
tecture. The first strategy is to fuse the three anatomical sites
directly at the input by concatenating all cropped input volumes
as channels before the single DCNN block, followed by two
fully connected layers fci and fco. We refer to this DCNN as our
early fusion architecture (see Fig. 3a). In our second middle fu-
sion architecture, the sites are fused right after the DCNN blocks
(one for each cropped volume) by concatenating the outputs of
their fully connected layers fcb before the two fully connected
layers fci and fco (see Fig. 3b). Finally, in our late fusion ar-
chitecture, the individual DCNN blocks are first combined with
fully connected layers fci for each of the three anatomical sites
separately, before fusing the sites with the last fully connected
layer fco that generates the age prediction (see Fig. 3c).

For training, we associate each training sample sn , n ∈
{1, .., N}, consisting of 13 cropped hand bone volumes
sj

n,h , j ∈ {1, .., 13}, two clavicle regions sl
n,c , l ∈ {1, 2} and

four regions covering wisdom teeth sk
n,w , k ∈ {1, .., 4}, either

with CA as target variable yn for a regression task, or with a bi-
nary variable yn that is 1 for a minor (m), i.e., CA is smaller than
18 years, and 0 for an adult (a), i.e., CA is larger or equal than 18
years, in a classification task. Optimizing a regression DCNN
architecture φ with parameters w is performed by stochastic
gradient descent minimizing an L2 loss on the regression target
y = (y1 , ..., yN )T :

ŵ = arg min
w

1
2

N∑

n=1

‖φ(sn ;w) − yn‖2 (1)
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Fig. 2. Individual bone/tooth feature extraction block used in our DCNN
architectures for multi-factorial age estimation.

Fig. 3. Three DCNN architectures for multi-factorial age estimation
with (a) early, (b) middle, and (c) late fusion strategies for combining
information from the three anatomical sites. The red lines represent the
depth level in the network architecture, where multi-factorial information
is fused.

To regularize the regression problem, we use a standard weight
decay regularization term as well as dropout [42]. For estimat-
ing whether a subject is a minor or an adult, the result of the
regression DCNN architecture can be used for classification by
thresholding the estimated age. In this work, we compare the
classification results derived from the regression prediction with

the classification results obtained by training the same DCNN
architecture with a multinomial logistic classification loss com-
puted as softmax:

ŵ = arg min
w

N∑

n=1

∑

j∈{m,a}
−yj

n log
eφj (sn ;w )

∑
k∈{m,a} eφk (sn ;w ) (2)

Again weight decay and dropout are used for regularization.

C. Visualization of Influence Per Anatomical Site

To determine the importance of each bone or tooth as well as
each anatomical site independently for different predicted ages
in our multi-factorial age estimation method, we calculate the
influence of the individual DCNN blocks on the network predic-
tion. For each tested sample and its predicted age, we calculate
the mean activation value after the fully connected layer fcb at
the end of each feature extraction block (see Fig. 2 and Fig. 3).
To visualize the relative importance on the predicted age of each
bone or tooth, the mean activation values are normalized to sum
up to one. Additionally, we visualize the relative importance on
the predicted age of each anatomical site independently, by first
calculating the mean activation value of all feature extraction
blocks contributing to hand, clavicle and teeth sites separately,
followed by a normalization of the three calculated values to
sum up to one.

III. EXPERIMENTAL SETUP

A. Material

Our MRI dataset was collected at the Ludwig Boltzmann In-
stitute for Clinical Forensic Imaging in Graz as part of a study
investigating the role of MRI in forensic age estimation. This
study involving male Caucasian volunteers was performed in ac-
cordance with the Declaration of Helsinki and approved by the
ethical committee of the Medical University of Graz (EK 21399
ex 09/10). All eligible participants provided written informed
consent and from underage participants written consent of the le-
gal guardian was additionally obtained. Exclusion criteria were
history of endocrinal, metabolic, genetic or developmental dis-
ease. We evaluate our proposed multi-factorial age estimation
method on a dataset of 3D MRIs from N = 322 subjects with
known CA ranging between 13.0 and 25.0 years (mean ± std:
19.1± 3.3 years, 134 subjects were minors below 18 years at the
time of the MRI scan). For each subject, we use as our input for
the DCNN architecture the three corresponding MRI volumes
of left hand, upper thorax, and the jaw, which were acquired
in a single MRI scan session. CA of subjects was calculated
as difference between birthday and date of the MRI scan. T1-
weighted 3D gradient echo sequences with fat saturation were
used for acquiring the hand and clavicle data (physical voxel
resolutions of 0.45 × 0.45 × 0.9 and 0.9 × 0.9 × 0.9 mm3 , re-
spectively), while teeth were scanned using a proton density
weighted turbo spin echo sequence (0.59 × 0.59 × 1.0 mm3).
Voxel sizes of the whole input volumes were 288 × 512 × 72
for hand, 168 × 192 × 44 for clavicle, and 208 × 256 × 56 for
wisdom teeth, respectively. Acquisition times of hand, clavicle,
and wisdom teeth MR sequences were around 4, 6, and 10 min,
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respectively, but show potential for further acceleration through
undersampling [43].

B. Implementation Details

In the architectures shown in Fig. 3, the two convolution lay-
ers from each of the three levels of the DCNN block generate 24,
48, and 96 intermediate outputs, while the fully connected layer
fcb generates 96 outputs, representing the extracted bone/tooth
feature vectors. To address the increased number of inputs for
the DCNN blocks of the early fusion architecture, this archi-
tecture uses four times as many intermediate outputs for both
convolution layers and the fully connected layer. Further in-
creasing the number of intermediate outputs was not feasible,
due to its demands on GPU memory consumption. In the early
fusion architecture, the fully connected layer fci generates 128,
in the middle fusion architecture 96 outputs. Since the late fu-
sion architecture does not combine all DCNN outputs directly,
but only the outputs for the three sites separately, fully con-
nected layers fci with 32 outputs generate the feature vectors
of the three individual sites, i.e., hand, clavicles, and teeth. In
all architectures, the fully connected layer fco generates either
one output for regression, or two outputs for classification. Op-
timization was done with the TensorFlow framework [44] using
the optimizer ADAM [45] with a maximum of 20,000 iterations,
a mini-batch size of 8, and a learning rate of 10−4 . We perform
L2 weight decay with a factor of 0.0005, as well as Dropout [42]
with a ratio of 0.5 before the fully connected layers to reduce
overfitting.

The input volumes were cropped as described in Section II-A
and trilinearly resampled to 44 × 44 × 44 voxels for all indi-
vidual bones/teeth. Due to the varying intensity ranges of the
MR images and to be robust to intensity outliers, we scale and
shift the intensity values of each cropped volume such that the
median of 10% of the lowest intensity values is −1 and the
median of 10% of the highest intensity values is 1. During train-
ing, images were additionally transformed on-the-fly in a data
augmentation step using values sampled from a uniform distri-
bution within the following intervals. The intensity values were
shifted by [−0.1, 0.1] and scaled by [0.8, 1.2]. Additionally, the
cropped volumes were geometrically transformed using trans-
lation by [−2 mm, 2 mm], scaling by [0.85, 1.15], and rotation
by [−5◦, 5◦] in each dimension.

Training DCNNs for one fold of the cross-validation was
around 7 hours, while testing a single subject takes around a
second on our system with Intel Core i7 CPU and NVIDIA
Geforce GTX 1080 GPU with 8 GB of RAM. These times
include cropping of age relevant structures as well as model
evaluation and they do not differ between DCNN architectures
used for single or multiple anatomical sites.

C. Evaluation Setup

In our evaluation experiments, we used a four fold cross-
validation such that each sample from our dataset is tested ex-
actly once and in each cross-validation fold, the tested samples
resemble the same age distribution as in our whole dataset.
We trained networks for age regression, where we randomly

sampled subjects from the training dataset such that the age
distribution is uniform over the whole age range from 13 to 25
years. Further, with an age threshold of 18 years, we trained
networks for majority age classification, where during training
we randomly sampled subjects such that the two classes are
equally represented. For all classification experiments, it has to
be noted that we defined minors as positive samples and adults
as negative samples.

To evaluate the contribution of the three anatomical sites,
we investigated networks trained on different combinations of
sites. We designate the regression (reg) and classification (class)
DCNNs with abbreviations of the anatomical sites on which they
are trained, e.g., Hreg, Hclass for hand bones, C-Treg, C-Tclass for
the combination of clavicle bones and wisdom teeth, or H-C-
Treg, H-C-Tclass for all three anatomical sites simultaneously. To
confirm the radiologist’s findings that age relevant information
in hand images is only related to the closing of the epiphyseal
gaps at around 18–19 years, we additionally evaluate the effect
of randomly shuffling ground truth ages above 19 years for
Hreg. In this experiment, we repeat the shuffling of ages above
19 years three times when training three different age estimation
Hreg DCNN models.

For the age regression results, we compute mean and stan-
dard deviation of absolute differences between predicted and
ground truth age as our error measure and provide the 95% con-
fidence intervals of the mean absolute differences. Additionally
we perform two-sided paired t-tests of our N = 322 samples,
testing the null hypothesis that each method using a single or
two anatomical sites shows the same mean absolute difference
as our H-C-Treg method. Furthermore, we show graphs of the ab-
solute differences over the age range. To generate these graphs,
we calculate the mean and standard deviation at a certain age
by considering all values that are within ±1 years.

We evaluate classification experiments by inspecting true
positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). From the true positive rate (TPR, sensitivity) and
the true negative rate (TNR, specificity) for different thresholds
of the classifiers, we derive receiver operating characteristic
(ROC) curves by plotting sensitivity over 1− specificity.
To compare classifiers, we use the area under the ROC curve
(AUC). Since we define correctly classified minors as true
positives, sensitivity indicates the percentage of minors that
are correctly classified as minors. To further evaluate our
classifiers derived from thresholding the regression prediction
of our DCNN architectures, we introduce δ, which quantifies
the spread of the prediction error that is related to the foren-
sically more crucial false negative predictions, i.e., the minors
classified wrongly as adults. We define δ as the 99th quantile of
all prediction errors, computed solely from subjects that were
overestimated in age.

IV. RESULTS

In our multi-factorial age estimation experiments we investi-
gated three different DCNN architectures for fusing information
from three different anatomical sites on our dataset of 322 sub-
jects in the age range between 13 and 25 years. Cross-validation
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Fig. 4. Scatter plots showing prediction results from the regression DCNNs for (a) multi-factorial age estimation H-C-Treg as well as separately for
(b) hand bones Hreg, (c) clavicle bones Creg and (d) wisdom teeth Treg. When thresholding predictions and groundtruth age with 18 years (red lines),
the upper left quadrants contain false negatives (i.e., minors wrongly classified as adults), while the lower right quadrants contain false positives
(i.e., adults wrongly classified as minors).

results show for our early fusion strategy a mean absolute error
of 1.18 ± 0.95 years, for the middle fusion strategy 1.02 ± 0.76
years and for the late fusion strategy 1.01 ± 0.74 years. To
allow a comparison to our previous work [38], we also evalu-
ated our best performing late fusion architecture on the dataset
of 103 subjects, which is a subset of our larger dataset used
in this work, resulting in a mean absolute prediction error of
1.06 ± 0.79 years.

We used the late fusion architecture H-C-Treg to compare
the regression performance when individual anatomical sites
alone are used for estimating age, as shown in the scatter plots
of Fig. 4. In addition to the scatter plot of Hreg in Fig. 4(b),
in Fig. 5 we show by shuffling three times the ground truth
age of the subjects older than 19 years, that the hand alone
cannot be used for predicting age in the forensically relevant
age range between 13 and 25 years. Comprehensive regression
results for all different combinations of anatomical sites can be

found in Table I in terms of mean absolute errors, and in Fig. 6
by plotting the absolute error and standard deviations over our
investigated age range. At a threshold of α = 0.05 for rejecting
our null hypothesis, statistically significant differences between
H-C-Treg and other methods can be seen for Hreg, Creg, Treg, and
H-Treg (see Table I). The influence of three anatomical sites, as
well as each bone or tooth separately on the predicted age of the
multi-factorial late fusion architecture H-C-Treg, is visualized in
Fig. 7.

For majority age classification, the ROC curves and their
corresponding AUC for individual anatomical sites alone as
well as all three sites combined are shown in Fig. 8. The ROC
curves in Fig. 8(a) are obtained by varying the threshold of the
regression predictions of our late fusion architecture. In addition
to the best performing ROC curve from Fig. 8(a), Fig. 8(b)
shows the ROC curves obtained by varying the threshold of the
prediction output of the same late fusion architecture trained
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Fig. 5. Mean absolute difference of predicted and groundtruth age for DCNNs trained on hand bones only. The graphs show the results for
networks trained on groundtruth age, and for DCNNs trained with ages randomly shuffled above 19 years.

TABLE I
AGE REGRESSION RESULTS FOR DCNNS TRAINED ON DIFFERENT

COMBINATIONS OF ANATOMICAL SITES, SHOWN AS MEAN ABSOLUTE
DIFFERENCES AND ITS STANDARD DEVIATION (SD), 95% CONFIDENCE

INTERVAL (CI) OF THE MEAN, AS WELL AS P VALUES FOR EVALUATING IF
THERE IS A STATISTICALLY SIGNIFICANT DIFFERENCE OF INDIVIDUAL

METHODS COMPARED WITH H-C-TREG

TABLE II
MAJORITY AGE CLASSIFICATION PERFORMANCE OF REGRESSION AND

CLASSIFICATION DCNNS EVALUATED AS FALSE POSITIVE RATES (FPR)
AND THE CORRESPONDING NUMBER OF FALSE POSITIVES (FP) FOR FIXED

FALSE NEGATIVE RATES (FNR∈ {0.5%, 3%, 6%, 10%})

with a classification loss. For the specific threshold of 18 years,
in Fig. 4 we show the classification result of the regression based
classifiers in terms of TP, TN, FP and FN as well as δ, which
robustly estimates the spread of the prediction error solely for
the subjects whose age is overestimated. Finally, in Table II
we compare the different regression and classification based
majority age classifiers in terms of their specificity for several
fixed sensitivities (99.5%, 97%, 94% and 90%).

V. DISCUSSION

Motivated by the lack of a standardized way of fusing infor-
mation from multiple complementary anatomical sites for age
estimation, and with the aims to prevent the use of ionizing ra-
diation as well as to reduce observer variability, in this work we
proposed an automatic method for estimating age in the range
between 13 and 25 years from MRI data. It is for the first time
that a comprehensive evaluation of an automatic approach for
information fusion from different anatomical sites was carried
out on this large, forensically relevant age range.

A. Comparison of Different Fusion Strategies

In this work, we investigated with three different strategies
when to fuse information from anatomical sites within our CNN
architecture. Following the spirit of deep CNNs that the network
is capable to extract all information relevant for an estimation
task on its own, in our early fusion strategy input regions from
all anatomical sites are fused by concatenating them before they
are presented to the network. With a mean absolute error of
1.18 ± 0.95 years in regressing age, this strategy was outper-
formed by the other two, since the translation invariance, an
important property of CNNs, cannot be fully exploited in our
limited training dataset due to the large variations in the relative
position of anatomical sites when being concatenated. In the
other two strategies, we first extract age-relevant features in a
CNN block and then combine features on two different levels. In
the middle fusion strategy, information from all bones and teeth
are fused immediately after features are extracted. This strategy
corresponds to a forensic expert looking at the images of the
individual anatomical structures simultaneously and mentally
fusing all information when estimating age in a multi-factorial
manner. The performance of this strategy was similar to our third
late fusion network architecture, which first combines informa-
tion for each anatomical site individually, followed by fusing the
three anatomical sites with a fully connected layer. Also used
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Fig. 6. Prediction performance of the DCNNs. The graphs show mean absolute differences and the standard deviation of the predicted age to the
groundtruth for DCNNs trained on different sites and their combinations.

in our previous work [38], the late fusion strategy is inspired by
how forensic experts are currently combining individual infor-
mation from hand radiographs, wisdom teeth OPGs and clavicle
CTs in practice when performing multi-factorial age estimation.
We used the late fusion network architecture for our further eval-
uations due to its excellent age regression performance in terms
of mean absolute regression error of 1.01 ± 0.74 years.

B. Comparison to Previous Work

In our previous work [38], we solely studied the late fusion
strategy and compared it to a random forest based approach on
a much smaller MRI dataset of 103 subjects. This random forest
used image intensity features generated by randomly selecting

first an anatomical site, then an individual bone or tooth, and
finally a location in the image to discriminate the age of a
subject. Although this random forest showed state-of-the-art
performance in [46] when only the hand was used for predicting
age up to 19 years, in [38] when all three anatomical sites were
fused, it resulted in a large mean absolute error of 1.93 ± 1.26
years on the dataset of 103 subjects. On the other hand, in [38]
the late fusion DCNN architecture that we are using in this work
achieved an error of 1.30 ± 1.13 years on the dataset of 103
subjects. For the same setup, but pretrained on the radiological
estimation using the GP method for the hand, the Demirjian
method for the teeth and the Kellinghaus method for the clavicle,
the performance was further improved after finetuning to an
error of 1.14 ± 0.96 years in [38]. In the present work we did not
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Fig. 7. Visualization of the contributions of (a) the three anatomical sites and (b) each bone and tooth to the age prediction of the H-C-Treg DCNN
architecture. The crosses in (a) show the individual site influence for each predicted age and curves the mean value of influence at each age.
In (b) dark values indicate low, bright values high influence to the age prediction.

Fig. 8. ROC curves for the DCNNs performing majority age classification and corresponding AUC.

use pretraining, since it requires a costly and tedious procedure
of annotating each anatomical site, which was not yet performed
on our larger MRI dataset of 322 subjects. However, by changing
the optimizer and better tuning our hyperparameters like mini-
batch size and stopping criterion, we were able to outperform our
previous results on the smaller dataset of 103 subjects (1.06 ±
0.79 years) without the need for pretraining. Furthermore, on our
larger dataset of 322 subjects studied in this work, we achieved
the best result presented so far for automatic age estimation from
multi-factorial MRI data (1.01 ± 0.74 years).

C. Limitations of Age Estimation Solely From a
Single Site

According to the recommendations of AGFAD [15], esti-
mation of age in the forensically relevant age range between
13 and 25 years should not be performed by using informa-
tion from the hand alone (Hreg), since epiphyseal gaps of hand

bones close on average around the age of 18 years. The re-
gression results from Hreg as well as from the multi-factorial
H-C-Treg DCNN for our dataset of 322 subjects are shown in
Fig. 4(a) and Fig. 4(b). Comparing these two scatter plots, it
can be seen that when only the hand is used for prediction,
there is a saturation after 18 years, which leads to a prediction
biased towards 22 years. The same behavior can be observed
even better from the results of our shuffling experiments in
Fig. 5, where the absolute error shows a local minimum around
22 years. This is also supported by theory, since the expected
value of a model trained on data that carries no regression in-
formation and is uniformly distributed in a specific age range, is
the average value of that age range. Thus, for subjects older than
19 years, our results confirm the forensic viewpoint that no age-
relevant information can be extracted solely from hand images,
but instead a DCNN trained solely on the hand learns the av-
erage age of the respective subjects with saturated age relevant
information.
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While Hreg can be used for predicting age up to 19 years, the
use of Treg or Creg can extend this age range, since wisdom teeth
mineralization can be followed until an age of 21 years [47]
and ossification of clavicle bones finishes around the age of 24
years [16]. However, when using solely clavicle bones or wis-
dom teeth, the biological variation, i.e., the variation in chrono-
logical age of subjects with the same developmental progress,
is much higher compared to using hand bones in subjects with
an age below 19 years. This can be seen from the scatter plots in
Fig. 4 and the plot of the absolute errors in Fig. 6(a), which fur-
ther show that wisdom teeth on its own are the most unreliable
anatomical site for age estimation. Thus, each site on its own is
either not sufficient to predict age in the age range between 13
and 25 years, or shows high uncertainty in predictions due to
biological variation.

D. Multi-Factorial Age Estimation

The main contribution of our work is the extension of the
maximal age range for age regression from up to 19 years,
which is possible when solely using hand images, to up to 25
years, which is enabled by fusing the multi-factorial data from
three anatomical sites. The contribution of information from
each site to multi-factorial age estimation for the whole age
range is shown in Fig. 7(a). We can see that our late fusion
DCNN mainly learned to estimate age up to 18 years by ex-
tracting age-relevant information from the hand bones, which is
consistent with forensic findings that hand bones are the most
informative source of information for estimating age in this age
range. Confirming the recommendations of AGFAD [15], the
relevance of the aging information coming from the clavicle
bones is constantly increasing when subjects get older. By the
age of 18 years, clavicle bones overtake hand bones regarding
the importance as a source of information for predicting age.
However, between 18 and 21 years our late fusion DCNN still
relies on the information that the epiphyseal gaps of hand bones
have closed to reduce the uncertainty coming from the biologi-
cal variation of clavicle bone development in this age range. For
the last two years of our forensically relevant age range, clavicle
bones become the dominant source of information, since the late
ossification stages of the clavicle bones are a strong indicator
that a subject is older than 22 years. From Fig. 7(a) we can
also see that information from wisdom teeth can be extracted by
our method, although the teeth may be missing, and that they
have some influence on predicting age in the age range between
17 and 22 years. However, overall the contribution of the teeth
is much smaller than from the other two anatomical sites. The
same behavior that is visible in Fig. 7(a) is shown in more detail
for individual bones and teeth in Fig. 7(b), where it can be seen
that radius and ulna carry most relative importance for the hand,
while both clavicle bones are equally used by our late fusion
DCNN.

E. Do We Need All Three Sites?

Inline with the finding that wisdom teeth are showing much
less influence on age estimation in our late fusion DCNN, results
in Table I show that the highest mean absolute regression error

occurs when using solely wisdom teeth (Treg), followed by Hreg

and Creg. This is further confirmed in the case of omitting one
anatomical site from multi-factorial age estimation, since there
we also see that the best regression performance can be achieved
with omitting wisdom teeth (H-Creg). Furthermore, there is no
statistically significant difference between our overall best re-
sult when using all three sites (H-C-Treg) and when combining
only hand with clavicle (H-Creg). However, in the age range
from 16 to 19 years our detail results in Fig. 6(b) show that
highest estimation accuracy is achieved when teeth is combined
with clavicle information (C-Treg). This supports the hypothesis
that bone and teeth provide complementary information since
teeth and bone cells originate from distinct embryonic germ
layers, thus differently affecting the influence of genetic factors
on growth. Currently it is not clear from our results, why our
late fusion DCNN combining all three sites did not achieve the
highest age estimation accuracy over the whole age range indi-
cated by the lower bound of the graphs in Fig. 6(b). Especially
for the age range between 16 and 19 years, this limitation has to
be investigated in future work. Nevertheless, our findings con-
firm the recommendation of AGFAD [15] that a multi-factorial
analysis should be done when predicting age in the forensically
relevant age range between 13 and 25 years, while the use of
teeth remains an open issue for further investigation.

F. Majority Age Classification

A specific challenge in forensic age estimation is majority
age classification of asylum seekers lacking valid identification
documents. In this ethically sensitive scenario, legal authori-
ties have to take special attention to avoid mis-classifications of
minors as adults. Thus, a low number of false negatives, i.e., mi-
nors misclassified as adults, has higher priority compared with
a low number of false positives, i.e., adults misclassified as mi-
nors. We have performed two types of experiments for majority
age classification. Firstly, we used the results of our late fusion
DCNN for regression by thresholding its prediction output, and
secondly, we trained a dedicated binary classifier with the same
network architecture for majority age classification. From the
results in the ROC curves of Fig. 8, we can see that in terms
of AUC our multi-factorial majority age classifier derived from
the regression DCNN (H-C-Treg, AUC = 0.98) outperforms
both regression and classification based types of classifiers that
solely use information from a single anatomical site. This fur-
ther strengthens the hypothesis that age estimation benefits from
a multi-factorial approach, however, it can also be seen from
Fig. 8(a) that solely using hand (Hreg) or clavicle (Creg) for clas-
sification based on thresholding the regression prediction, the
performance in terms of AUC is competitive (AUC = 0.96)
within our dataset. In Fig. 8(b), similar behavior can be seen
from the ROC curves obtained from the prediction probability
of the binary classifiers. However, classification performance
is inferior compared with the regression based classifiers, even
for multi-factorial H-C-Tclass. Overall, the results of the ROC
curves in Fig. 8 indicate that a DCNN trained with the regression
loss from Eq. (1) is better suited for classification than a DCNN
trained with the binary classification loss from Eq. (2). Thus,
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we found that regression should be used for majority age classi-
fication, since the regression loss allows the network to explore
the distance in age between different subjects, while in binary
classification the inter-class distance is fixed and independent
of the age difference of subjects belonging to different classes.

Motivated by the necessity from legal practice to reduce the
number of false negatives, we evaluated in Table II how a de-
crease in sensitivity of the different classifiers affects their speci-
ficity. From this evaluation we see that for all classifiers, increas-
ing the threshold of minors classified as adults from 0.5%, i.e., a
single false negative, to 10%, i.e., 14 false negatives, decreases
the number of adults being wrongly classified as minors, thus re-
ducing the false positive rate. For our best performing H-C-Treg,
the false positive rate is reduced from 25% when allowing a sin-
gle false negative to 7.4% when allowing 14 false negatives. To
achieve the high sensitivity of 99.5%, i.e., allowing only a single
false negative, the predicted age from H-C-Treg has to be thresh-
olded at an age of 20.22 years, while for 97%, 94%, and 90%
sensitivity, the corresponding age thresholds are 19.91, 19.59,
and 18.95 years, respectively. When thresholding predicted age
exactly at 18 years, the sensitivity is low with 82.1%, but the
specificity is very high with 96.8%, thus indicating that this
threshold favors a low number of adults misclassified as minors.
This low sensitivity and high specificity for the age prediction
threshold of 18 years is also visible in the scatter plot of Fig. 4(a),
where the upper left quadrant corresponds to the false negatives
and the lower right quadrant corresponds to the false positives.
For the case of regression being used for classification, we in-
troduced the distance δ in this scatter plot. Additionally to the
sensitivity, δ robustly quantifies the forensically relevant clas-
sification error for minors being wrongly classified as adults.
Defined as the distance between the green line indicating the
optimal prediction from regression and the dashed blue line
capturing the spread of the prediction error solely for subjects
whose age is overestimated, the distance δ = 2.8 years for H-
C-Treg is much smaller than the distances for Hreg, Creg, and
Treg, respectively. Thus, having the smallest spread in errors of
the overestimated predictions, we expect H-C-Treg to generalize
best to a larger population of subjects when aiming for mini-
mization of the number of minors wrongly classified as adults, a
behavior that significantly impacts the involved subjects to their
advantage.

G. Outlook

We see our work as a foundation for a novel multi-factorial
age estimation method to be used in forensic practice, which
would require that our results are reproduced on a different,
potentially larger dataset and compared with multi-factorial age
estimates combining individual estimates of forensic experts
and dentists. As we have shown in our preliminary study [38],
these individual estimates might also be beneficial for pretrain-
ing our prediction networks leading to an improvement of our
automatic multi-factorial age estimation. Although in this work
we have outperformed our previous results on a much larger
dataset without the need for pretraining, we will investigate this
interesting aspect in our future work.

VI. CONCLUSION

In this work, we extensively studied a deep learning based
multi-factorial age estimation method from MRI data of 322
subjects from a large, forensically relevant age range between
13 and 25 years, which automatically fuses information from
hand bones, clavicle bones, and wisdom teeth. We presented
for the first time such an approach that overcomes several lim-
itations of the method currently used in forensic practice, i.e.,
the use of ionizing radiation, the subjectivity due to assigning
discrete staging schemes for the individual anatomical sites,
and the lack of consensus in how information from individual
sites should be fused into a final age estimate. After studying
different network architectures, we showed that multi-factorial
age estimation is possible by automatically fusing age-relevant
information from all individual sites. With a prediction error
of 1.01 ± 0.74 years, we outperformed age estimation results
solely derived from hand, clavicle, or teeth data separately in
the age range between 13 and 25 years. In this work, we also
investigated the legally important question of majority age clas-
sification, by comparing thresholded predictions from the same
regression method with results from a dedicated binary classifier
that was trained with the same DCNN architecture. Our results
showed that the regression based method is better suited for this
task, however, due to the high biological variation of subjects
with the same chronological age, special care has to be taken to
select the compromise between minors being wrongly classified
as adults and adults being wrongly classified as minors.
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