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Volumetric Reconstruction from a Limited Number of
Digitally Reconstructed Radiographs Using CNNs

Franz Thaler1,∗, Christian Payer1 and Darko Štern2

Abstract— We propose a method for 3D computed tomogra-
phy (CT) image reconstruction from 3D digitally reconstructed
radiographs (DRR). The 3D DRR images are generated from 2D
projection images of the 3D CT image from different angles and
used to train a convolutional neural network (CNN). Evaluating
with a different number of input DRR images, we compare
our resulting 3D CT reconstruction to those of the filtered
backprojection (FBP), which represents the standard method
for CT image reconstruction. The evaluation shows that our
CNN based method is able to decrease the number of projection
images necessary to reconstruct the original image without
a significant reduction in image quality. This indicates the
potential for accurate 3D reconstruction from a lower number
of projection images leading to a reduced amount of ionizing
radiation exposure during CT image acquisition.

I. INTRODUCTION

Aiming to visualize the interior body structure, computed
tomography (CT) is not an invasive medical imaging tech-
nique, although it utilizes X-rays and as such, exposes the
patient to radiation. Nevertheless, CT remains the dominant
technique in three dimensional (3D) medical imaging due to
fast acquisition and good quality of results. To visualize the
interior structure of a subject, a 3D CT image is generated
from a set of two dimensional (2D) X-ray images taken from
different axial angles around the subject. A widely used
method for 3D CT reconstruction from a set of 2D X-ray
images is the filtered backprojection (FBP). By taking into
account the angle from which the 2D X-ray images were
acquired, FBP accumulates the backprojections of the filtered
2D X-ray images onto a 3D volume. A downside of the
FBP method is that it requires a relatively high number of
projections to give a reliable reconstruction, which directly
correlates to the amount of radiation. Exposure to radiation
increases the probability of cancer [11], which is especially
problematic for applications dependent on frequent or re-
peated X-ray based imaging techniques.

Reducing the amount of radiation when generating 2D
X-ray images lowers their quality and consequently also
decreases the quality of the reconstructed 3D CT image.
Different methods have been proposed to improve the quality
of the reconstruction of a 3D CT image that is generated
with low-dose radiation. In the approach [9] for improving
the reconstruction quality, the low-dose CT sinogram data
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restoration is combined with an advanced edge-preserving
filter in the image domain. Due to latest achievements in
machine learning approaches especially with convolutional
neural networks (CNN) that outperformed humans in a
classification task [2], deep neural networks became also at-
tractive for reconstruction applications. In the low-dose CNN
based reconstruction method proposed in [16], the quality of
the X-ray image is increased by learning to improve each
low-dose ray of the image. The method [5] applies a CNN
to the wavelet transform coefficients to suppress noise that
is specific to low-dose CT image acquisition.

Another group of methods that reduces radiation exposure
are based on beam blockers, which partially block X-rays
allowing only a subset of them to reach the subject’s body.
The works in [1] and [8] make use of a stationary blocker for
scatter suppression using a compressed sensing technique.
An evaluation in respect to the number of slits and the recip-
rocation frequency using moving beam blockers was done in
[7]. In [12] low-resolution detectors are combined with high-
resolution coded apertures to achieve super-resolution. The
work of [17] applied a single-slice and a multi-slice super-
resolution method on low-dose CTs to improve the image
quality by utilizing a CNN. Differently from the blocker
based methods, where the same number of X-ray projections
is used, the same amount of radiation can be reduced without
blocking the X-ray bins but decreasing the number of X-
ray images used in the reconstruction of the CT image.
However, these few-view CT images are heavily burdened by
artifacts when FBP is used for reconstruction. The work of
[3] proposed a gradient-based dictionary learning algorithm
for CT reconstruction from a reduced number of views, using
the vertical and horizontal gradient images as input. In the
approach [18] a CNN is used to improve the quality of a
few-view reconstructed images by learning it’s mapping to
a full-view reconstruction.

An extreme case of CT reconstruction from a low num-
ber of X-ray images can also be found in 3D/2D image
registration. As explained in [10] one approach for 3D/2D
reconstruction is the intensity-based approach that aims to
reconstruct the inter-operative 3D CT image from as few
as possible X-ray images from different views. Namely,
during minimally invasive surgeries it is required to exactly
locate the instruments in use within the patient’s body. To
accomplish this, a high quality 3D CT image of a patient
is acquired pre-operatively and registered with a single or
multiple X-ray images from different directions that are
generated inter-operatively. This is done repeatedly during
surgery, exposing not only the patient but also the medical
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ftFig. 1: Generation of digitally reconstructed radiographs (DRR) used in CNN based 3D reconstruction.

Fig. 2: Reconstruction of a 3D CT vertebra image from a limited number of backprojected 2D DRR images (3D DRR)
using a U-Net based CNN.

staff to radiation.

A similar problem of reconstructing a 3D image given
one or multiple 2D images is also seen in the computer
vision community. The method in [14] utilizes a supervised
learning approach to reconstruct depth information from a
single RGB image. Resulting in a volumetric binary image,
the method [15] based on a CNN uses a RGB image and
depth information to recover a 3D shape of the scene.
Multi-view reconstruction methods utilize multiple 2D input
images from different views to reconstruct the surface of the
scene in a 3D volumetric representation. For example the
SurfaceNet introduced in [4] using a 3D CNN does not only
use multiple images, but similar to CT reconstruction also
the corresponding information of the angle from which each
image is taken.

In this paper we propose a method based on a CNN
for 3D CT image reconstruction from a limited number of
2D projection images. Our approach utilizes a framework
that generates 2D digitally reconstructed radiographs (DRR)
from an arbitrary direction and uses them to train a CNN
for reconstructing the original 3D image. We conducted the

experiments with a different number of DRR images and
compare the reconstruction results with the FBP method.
We show that by using a machine learning based approach
the number of images required for the reconstruction can
be reduced without significant decrease in performance. The
results indicate that our approach has a potential to be used
for accurate 3D reconstruction from a lower number of
views, thus reducing the amount of ionizing radiation.

II. METHOD
In our method we generate 2D DRR images from different

angles (Fig. 1) to be further used for training a CNN to
reconstruct the original 3D CT image (Fig. 2). Due to their
complex shape, which is challenging for reconstruction, we
used spine images including several vertebrae for 3D CT
reconstruction. These images are cropped from whole spine
CT images and brought to the canonical position. DRR
images are generated as a sum projection from the volumetric
images in different angles. When generating DRR images the
volumetric images are augmented by translation, rotation and
scaling. Each generated DRR image is backprojected to a
volume and used as input for training the U-Net based CNN
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Fig. 3: Network architecture.

[13]. The reconstruction results of the CNN are quantitatively
compared to the FBP approach.

The generation of the cropped 3D CT images of the
vertebrae is explained in subsection II-A and the generation
of DRR images in subsection II-B. Our network architecture
is described in subsection II-C. A short overview of the FBP
approach is presented in subsection II-D.

A. 3D CT Vertebra Image Generation

In our approach for 3D reconstruction from a reduced
number of views, we used 3D CT images of vertebrae and
their surrounding structure cropped from a whole spine CT
as visualized in Fig. 1. Since each vertebra has a different
orientation in the 3D spine image and to simplify the
reconstruction task, we bring all vertebrae in the cropped 3D
CT image to a canonical position, which is centered at the
vertebral body’s center, and defined by three orthogonal vec-
tors representing the three dimensions. To find the position
and orientation of the vertebra in the original spine image,
we used two predefined points, i.e. a point in the center of
the vertebra and at the tip of the spinous process. The first
vector of the vertebra’s orientation corresponds to the tangent
vector of the polynomial curve connecting the centers of
the vertebral bodies. The second vector corresponds to the
direction of the spinous process’ tip and the third vector
is defined by the right hand rule. Based on the position
and the orientation of each vertebra in the spine image, we
cropped a cube that captures the vertebra and it’s surrounding
structures.

B. 2D DRR Image Generation

In our approach we used 2D DRR images generated
for reconstructing the cropped 3D CT vertebra image as
explained in the previous subsection. The DRR images are
generated as a sum projection of the cropped 3D CT vertebra
image from an angle lying on the mid-axial plane of the
volumetric image as shown in Fig. 1. We experimented
with a different number N of 2D DRR images uniformly

distributed with fixed angles around the axial plane. Since
each projection image for angle αn, n = 1, . . . ,N is identical
to the projection image for angle αn+180◦, we only generate
DRR images from angles in the range of 0◦ to 180◦.

C. Network Architecture

Our network architecture is based on the U-Net introduced
in [13] and visualized in Fig. 3. Our CNN with volumetric
kernels has a set of N 3D DRR images as an input (Fig. 2).
Each 3D DRR image corresponds to a single 2D DRR image
backprojected to a volume of the same size as the original
3D vertebra image (Fig. 1). A 3D DRR image is created
by repeating the 2D DRR image in the volume shifted by
the angle αn that corresponds to the direction the 2D DRR
image was acquired from.

Our CNN architecture is defined as follows: for each level
in the contracting path, two consecutive convolution layers
are used while a subsequent average pooling layer creates the
input for the next lower level. When the maximum number
of levels is reached, the two convolutions are followed by
an upsampling layer. This upsampling layer is then merged
with the convolution layer output of the contracting path of
the same level by utilizing an add layer. In the expanding
path, every upsampling and add layer is followed by two
convolution layers until the original size of the image is
reached. After that, a final convolution with output size one
generates the prediction corresponding in size to the 3D
vertebra image. To obtain the CNN parameters ω we used
L1 loss between all voxels m ∈M of the predicted image p̂
and the 3D vertebra image p:

ω̂ = argmin
ω

1
m ∑

m∈M
|p̂m(ω)− pm|. (1)

D. Filtered Backprojection

We compare our results with the standard approach used
in CT reconstruction, represented by the FBP. Since simply
summing up the backprojected 2D DRR images, i.e. the 3D
DRR images, gives a blurry reconstruction of the original
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3D image, the FBP utilizes a ramp filter R to reduce the
contribution of low frequencies in Fourier space F before
summation. Thus, before doing backprojection, each ray of
the 2D DRR images I j ∈ I is transformed to the frequency
domain by utilizing the Fourier transform and is multiplied
with a ramp filter. After applying the inverse Fourier trans-
form F−1, the filtered rays Î j are returned to their original
position in the 2D DRR image Î:

Î j = F−1(R ·F (I j)). (2)

III. EVALUATION

A. Material

The data used in this work encompasses CT scans of the
spine of 10 different patients from which we extracted all
present vertebrae. The spine CTs vary in size, spacing and
vertebrae contained within them. The volumes have a size
of 512× 512×K, where K ranges from 507 to 625. The
number of vertebrae included in the volumes ranges from 17
to 19, giving us a total of 176 vertebrae. We separated the
CT images into a training and a test set in the ratio of 80
to 20, i.e. we used eight spines for training and two spines
for testing. As a result, the training set encompasses 141
vertebrae and the test set 35.

As a first step, all 3D CT spine images are transformed to
have an equal size. Since the spacing parameter takes care of
the real world mapping, which keeps the image ratios intact,
rescaling the 3D CT images does not lead to any distortion.
Also, since the CT spine images have a high resolution
for being 3D, we also downsample the spine images to
256×256×256, which is approximately half the size in each
dimension. The CT images are downsampled with tricubic
interpolation and then stored to the hard drive and used
for any further processing. By utilizing this downsampling,
image loading is accelerated and the memory consumption
is reduced.

B. Augmentation

For the CNN to be successfully trained, a training data set
that consists of target 3D vertebra images and corresponding
single- or multi-view input 3D DRR images has to be
increased. Therefore, we utilized online augmentation, which
performs a translation, rotation and scaling when cropping
the 3D vertebra images from the original CT spine images.
We performed a translation by dislocating the center of the
vertebral body in all three dimensions and a rotation by
adding an offset to the angle of each of the orthogonal
vectors defining the canonical position of the vertebra. In
contrast to translation and rotation, scaling is performed
uniformly in all three dimension to prevent a distortion of
anatomical structures. We did not argument the angle αn of
the projection 2D DDR images.

C. Experimental Setup

Our hardware setup consisted of a CPU Intel Core i7-930
@ 2.80GHz, 24 GB RAM and a GeForce GTX TITAN X

with 12 GB. We implemented our network in Keras1 using
TensorFlow2 as it’s backend, volumetric image processing
was done utilizing the ITK framework3.

The target 3D vertebra images we used as ground truth
have a size of 64×64×64 voxels and their size in physical
space is set to 120 mm per dimension. For online 3D
vertebra image augmentation we set the translation range to
15 mm, the rotation range to 30◦ and the scaling percentage
to 15%. We utilized a uniform distribution to generate
the augmentation parameters and the order of execution is
rotation, translation and scaling.

Due to the different amount of image information pro-
jected from different angles when generating the 2D DRR
images from the 3D vertebra image cropped as a cube, we
introduced the same cylindric mask to all the 3D cropped
vertebra images before generating 2D DRR images. Addi-
tionally, when calculating the loss function in Eq. (1), only
the pixels M inside the cylinder are taken into account.

For the implementation of the FBP we utilized the open
source library scikit-image4 on our data.

We trained our network with a mini-batch size of one for
200 epochs, each of them used 200 iterations, resulting in a
total of 40.000 samples used for training. As a loss function
we utilized L1 given in Eq. (1), a weight regularization was
done with L2 and a factor of 0.0005. As an optimizer we
used Adam [6], the learning rate was set to 0.0002, the first
and second moment estimates are defined as β1 = 0.9 and
β2 = 0.999. All convolution layers are defined as volumetric
convolutions, we used zero padding and as kernel initializer
we utilized He normal [2]. For all convolutions except the
final one, we used a kernel size of 3× 3× 3, 64 filters
and ReLU as activation function. The final convolution’s
kernel size was set to 1× 1× 1, we used just one filter
and no activation function. Furthermore, we used 3D average
pooling and 3D nearest neighbor upsampling layers with a
kernel size of 2×2×2.

IV. RESULTS

We train individual networks for different numbers N
of 3D DRR input images and compare the predicted 3D
reconstruction quantitatively and qualitatively to the results
of the FBP. Fig. 4 and Table I show the mean absolute error
to the target 3D vertebra images used as ground truth for both
methods respectively. The center slice of the ground truth of
one 3D vertebra image as well as our qualitative results and
those from the FBP are presented in Fig. 5 and 6. All images
represent the reconstruction of the same 3D vertebra image
using a different number of views, N ∈{1,2,3, . . . ,120,180}.
All vertebra image slices included in our qualitative results
correspond to one another by having the exact same center
voxel. Furthermore, the brightness setting is identical for
all vertebra image slices, however, for better contrast some
values are truncated. This is especially true for the FBP

1https://keras.io/
2https://www.tensorflow.org/
3https://itk.org/
4http://scikit-image.org/
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Fig. 4: Mean absolute error of our CNN and FBP to ground truth for a different number of projection images (N).

results using only very few views, since they show a large
deviation in color value.

TABLE I: Mean absolute error ± standard deviation of our
CNN and FBP to ground truth.

Projections (N) CNN (10−2) FBP (10−2)
1 6.06 ± 2.24 41.50 ± 7.39
2 3.59 ± 0.80 31.77 ± 5.43
3 3.59 ± 0.72 19.07 ± 3.32
4 3.17 ± 0.58 17.11 ± 2.87
5 3.12 ± 0.58 11.90 ± 1.88
6 2.99 ± 0.63 12.04 ± 2.07
7 2.76 ± 0.51 8.90 ± 1.43
8 2.68 ± 0.53 8.95 ± 1.46
15 2.02 ± 0.38 4.63 ± 0.73
30 1.69 ± 0.33 2.62 ± 0.37
60 1.40 ± 0.26 1.76 ± 0.23

120 1.27 ± 0.21 1.74 ± 0.23
180 1.43 ± 0.30 1.74 ± 0.23

V. DISCUSSION
To visualize the interior body structure CT imaging uti-

lizes a number of X-ray images captured from different
axial angles. Involving a large number of X-ray images
increases the ionizing radiation not only to the patient but
also to the medical staff involved in the image acquisition.
Reducing the number of views from which X-ray images
are generated leads to a significant decrease in the quality
of the 3D CT image, when reconstructing with the standard
FBP method. In this work we investigate the potential of
a machine learning based approach to improve the quality
of the reconstructed images when the number of views is
limited. Inspired by the previous work in [4] that comes from
the computer vision community, we constructed a framework
that reconstructs the volumetric image based on multi-view
2D images. Compared to [4] that use camera images with
a higher number of views to reconstruct the surface of
an outdoor scene, in our approach the 3D CT image is
reconstructed from a sparse number of 2D projection images.
Differently from [16], where high quality single axial CT
reconstruction was done from the low quality 2D image
obtained by accumulating few-view backprojections, our

CNN based method reconstructs the 3D CT image directly
from the backprojected DRR images.

When utilizing deep CNNs, a significant number of
training data is required, which in our scenario of CT
reconstruction would require access to a large set of X-
ray projection images used for CT reconstruction. Therefore,
in this paper we investigate the possibility of using DRR
images as a substitution for the real X-ray images, thus,
showing that CNNs combined with 2D DRR images can
be used for reconstructing 3D CT images. We followed the
standard backprojection procedure used in CT reconstruction
but replaced the backprojection of the X-ray images with the
backprojected DRR images, i.e. 3D DRR images. CNNs are
then trained to compensate the missing information coming
from omitted backprojected X-ray images.

The quantitative results in Fig. 4 and Table I show that our
method performs better than the FBP for a small number of
views and almost the same when a large number of DRR
images is used. Thus, the quality of the 3D reconstruction
becomes almost the same for both methods when using
60 3D DRR images as input. However, as seen in Fig.
5 and 6, when using 30 3D DRR images from different
angles our method already provides good qualitative results
with only a small amount of artifacts present in the 3D
CT reconstruction, whereas the FBP still suffers from a lot
of artifacts. Moreover, our method is able to visualize all
important structures of the vertebra in the reconstruction of
the 3D image by utilizing only 15 different views. Using
only two 3D DRR images, the silhouette of the vertebra
reconstructed by our method can be recognized especially in
sagittal view, while the FBP method requires eight views for
a similar quality of the reconstructed images. For a single 3D
DRR input image, neither our nor the FBP method managed
to produce useful results.

By showing a better quality than the FBP method when
using a small number of DRR images to reconstruct a 3D
CT image, the results indicate that our method can be used
to reduce the number of X-ray images to reconstruct 3D CT
images in real world scenarios. Thus, our method shows that
by utilizing a CNN it is possible to reduce the overall amount
of radiation during 3D reconstruction. Reducing the exposure
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Fig. 5: Qualitative results of axial slices for different number of projection views comparing our method (top images) with
FBP (bottom images). Ground truth is shown on top left.

Ground truth
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Fig. 6: Qualitative results of sagittal slices for different number of projection views comparing our method (top images)
with FBP (bottom images). Ground truth is shown on top left.
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to ionizing radiation for patients during CT image acquisition
is especially beneficial when patients are subject to frequent
examinations. Another beneficial application of our method
could be for a scenario, when it is unfavorable or not feasible
to acquire a large amount of views. An example of such a
case is 3D/2D registration during minimally invasive and
image guided surgeries, where 3D reconstruction from a
limited number of X-ray images decreases the exposure of
both patients and medical staff to ionizing radiation.

VI. CONCLUSION

In this paper we proposed a method for multi-view 3D CT
image reconstruction from 3D DRR images using machine
learning. Our method improves the quality of the recon-
structed 3D CT image compared to the standard FBP by uti-
lizing a CNN for a small number of views and gives similar
results for a high number of views. By reducing the number
of 3D DRR images required for a 3D CT reconstruction,
our method indicates the possibility to decrease the amount
of necessary X-ray images in real world scenarios. Thus,
it is possible to reduce the amount of ionizing radiation
exposed to the patient and the medical staff during image
acquisition for examination and surgery. In our future work,
we aim to further improve the quality of the results as well
as to evaluate the performance of our approach on different
datasets.
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