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Abstract. Age estimation from radiologic data is an important topic in
forensic medicine to assess chronological age or to discriminate minors
from adults, e.g. asylum seekers lacking valid identification documents. In
this work we propose automatic multi-factorial age estimation methods
based on MRI data to extend the maximal age range from 19 years,
as commonly used for age assessment based on hand bones, up to 25
years, when combined with wisdom teeth and clavicles. Mimicking how
radiologists perform age estimation, our proposed method based on deep
convolutional neural networks achieves a result of 1.14 ± 0.96 years of
mean absolute error in predicting chronological age. Further, when fine-
tuning the same network for majority age classification, we show an
improvement in sensitivity of the multi-factorial system compared to
solely relying on the hand.

Keywords: forensic age estimation, multi-factorial method, convolu-
tional neural network, random forest, information fusion

1 Introduction

Age estimation of living individuals lacking valid identification documents cur-
rently is a highly relevant research field in forensic and legal medicine. Its main
application comes from recent migration tendencies, where it is a legally im-
portant question to distinguish adult asylum seekers from adolescents who have
not yet reached age of majority. Widely used radiological methods for forensic
age estimation in children and adolescents take into account complementary bi-
ological development of skeletal [3, 12] and dental structures [2]. This allows an
expert to examine progress in physical maturation related to closing of epiphy-
seal gaps and mineralization of wisdom teeth. Despite biological variation among
subjects of the same chronological age (CA), hand bones are the most suitable
anatomical site to follow physical maturation in minors, since epiphyseal gaps
start closing at different times, with distal bones finishing earlier and e.g. the
radius bone finishing at an age of about 18 years. However, the age range of
interest for forensic age estimation is between 13 and 25 years. Therefore, ad-
ditional anatomical sites are required in a multi-factorial approach to allow an
extension of the age estimation range up to 25 years.
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Fig. 1: Overview of our automatic multi-factorial age estimation framework. MRI
volumes of hand, clavicle and wisdom teeth are cropped according to locations
of age-relevant anatomical landmarks. A random forest (RF) or a deep con-
volutional neural network (DCNN) performs the nonlinear mapping between
appearance information and chronological age.

The established X-ray imaging based multi-factorial approach [7] for esti-
mation of biological age (BA) uses the Greulich-Pyle (GP) method [3] based
on representative hand images of different age groups of a sample population,
the Demirjian method [2] involving characteristic stages of wisdom teeth de-
velopment, and the staging method of Schmeling [8] for assessing clavicle bone
maturation. No standardized method exists for the combination of different sites,
but, for majority age estimation, guidelines propose to use the minimum age of
the most developed anatomical site as seen in a reference population [7].

Besides the lack of a standardized method for combining individual estimates,
radiological methods also suffer from intra- and inter-observer variability when
determining, from each anatomical site, the stages that define minimum age.
While the use of more objective, automated image analysis for age estimation
from X-ray data of the hand was already shown in [13, 9], no such approaches
yet exist for orthopantomograms of the teeth or computed tomography images
of the clavicle bones. A novel trend in forensic age estimation research is to
replace X-ray based methods with magnetic resonance imaging (MRI), because
legal systems in most countries disallow the application of ionizing radiation
on healthy subjects. Recently, automatic methods for age estimation based on
MRI data were developed [11, 10], nevertheless with the hand they also solely
investigate a single anatomical site. To the best of our knowledge no automatic
image analysis method for multi-factorial age estimation, irrespectively of the
imaging modality, has been presented yet.

In this work, we investigate novel methods for multi-factorial age estima-
tion from MRI data of hand bones, clavicles and wisdom teeth (see Fig. 1).
Inspired by how radiologists perform staging of different anatomical sites, our
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methods automatically fuse the age-relevant appearance information from in-
dividual anatomical structures into a single chronological age. We compare a
random forest (RF) based method [1] with two deep convolutional neural net-
work (DCNN) architectures [4]. The first DCNN is trained on CA and the second
one fine-tuned on CA after pre-training it using skeletal and dental age as BA
estimates determined by an expert. The proposed methods are evaluated on
an MRI database of 103 images by performing experiments assessing CA es-
timates in terms of regression, as well as distinction of minority/majority age,
defined as having passed the 18th birthday, in terms of classification. Our results
demonstrate the increase in accuracy and decrease in uncertainty when using the
multi-factorial approach as compared to relying on a single anatomical structure.

2 Method

Following the established radiological staging approach involving different anatom-
ical sites in a multi-factorial setup, after cropping of age-relevant structures we
perform age estimation from cropped wisdom teeth, hand, and clavicle bones,
either by the use of an RF or a DCNN architecture.

Cropping of age-relevant structures: Differently to [9], where a large data
set of whole X-ray images is used for age estimation, our motivation for cropping
age-relevant structures is to simplify the problem of regressing age from appear-
ance information, such that it is also applicable for smaller data sets. Therefore,
automated landmark localization methods as presented in [5] or [6] could be used
to localize, align and volumetrically crop age-relevant anatomical structures from
skeletal and dental 3D MRI data (see Fig. 1). From hand MRI we crop the same
thirteen bones that are also used in the TW2 RUS method [12], similar to [10].
Four wisdom teeth are extracted from the dental MRI data using the locations
of the centers of each tooth, and in clavicle MRI data the two clavicle bones are
cropped based on four landmarks on the manubrium and two on each clavicle.

RF framework: Starting from the easily extensible framework for hand MRI
age estimation proposed in [11], we additionally incorporate the selection of teeth
and clavicle bones into each node of an RF. Thus, we allow the RF to select from
which anatomical structure it extracts the features that are relevant for modeling
the mapping between image appearance information and CA. After training it
for regression of CA from all three anatomical sites, we denote this method RF-
CA. Additionally, we train the same framework for majority age classification
(RF-MAJ), and to compare to previous work [10], we also train an RF using BA
as a regression target solely from the hand MRI data (RF-BA-HAND).

DCNN architecture: Identical feature extraction blocks consisting of convo-
lution (conv) and pooling (pool) stages are used for individual cropped input
volumes. Fusion is performed for anatomical sites separately giving a final rep-
resentation of extracted features. Estimated CA is obtained by combining the
extracted features from the three sites with a fully connected (fc) layer.
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Fig. 2: DCNN architecture for multi-factorial age estimation.

The details of our individual identical DCNN blocks [4] are shown in Fig. 2,
where we connect three stages consisting of two convolution and one max-pooling
layer together with Rectified Linear Units (ReLUs) as nonlinear activation func-
tions. Each block finishes with a fully connected layer, leading to a dimensionality
reduced feature representation consisting of 96 outputs for each cropped input
volume. Thus, we require another fully connected layer to fuse feature represen-
tations into a single feature vector for the different structures at each anatomical
site. Finally, all three sites are fused with a fully connected layer to form a sin-
gle continuous CA regression target. To reduce overfitting, we include drop-out
regularization with a ratio of 0.5 into all fully connected layers except the last
layer which solely has a single output. We denote this network DCNN-CA using
CA as regression target. Since our network architecture is mimicking how radi-
ologists perform staging of different anatomical sites, it readily supports the use
of the assigned stages representing BA to pre-train the network weights of each
individual site. This can be achieved by decoupling the last fully connected layer
fco from the network and adding individual fully connected layers with a sin-
gle output for each anatomical site. By training these individual networks with
their respective radiological stage (e.g. DCNN-BA-HAND), we expect to achieve
a better initialization of network weights compared to training DCNN-CA from
scratch solely on CA. Fine-tuning of the pre-trained network on CA leads to our
network DCNN-CA-RFND. Further, we use the same pre-trained network to
directly predict whether a subject is an adult or a minor by fine-tuning network
parameters for a classification target instead (DCNN-MAJ).

For training, we associate each training sample sn, n ∈ {1, .., N}, consist-
ing of thirteen cropped hand bone volumes sjn,h, j ∈ {1, .., 13}, 4 wisdom teeth

skn,w, k ∈ {1, .., 4} and 2 clavicle regions sln,c, l ∈ {1, 2}, with a regression target

yAn . Depending on whether it is used for pre-training or for direct training/fine-
tuning, here A is either chronological age CA or biological age BA defined as the
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average assigned radiological stage of the components of each anatomical site.
Optimizing a DCNN architecture φ with parameters w is performed by applying
stochastic gradient descent to minimize an L2 loss on the regression target yA:

ŵ = arg min
w

1
2

Ns∑
n=1

||φ(sn;w)− yAn ||2. (1)

For estimating whether a subject is a minor (m) or an adult (a) with DCNN-
MAJ, we use the legally relevant chronological majority age threshold of 18 years
to separate our subjects into two groups {m, a}. As an optimization function for
this classification task we apply softmax computed as multinomial logistic loss:

ŵ = arg min
w

Ns∑
n=1

∑
j∈{m,a}

−yjn log
eφj(sn;w)∑

k∈{m,a} e
φk(sn;w)

. (2)

To distinguish whether introducing multiple sites is beneficial for discrimi-
nating minors from adults, we apply the same classification loss for classification
based solely on hand bones. Additionally, this network DCNN-MAJ-HAND fa-
cilitates a comparison with previous work on hand bone age estimation [10].

3 Experimental Setup and Results

Material: We apply our proposed method on a dataset of N = 103 3D MRIs
of the left hand, the upper thorax and the jaw, respectively. The three volumes
for each subject were prospectively acquired from male Caucasian volunteers
with known CA ranging between 13.01 and 24.89 years (mean±std: 19.1±3.5
years, 44 subjects were minors below 18 years) in a single MRI scan session. CA
of subjects was calculated as difference between birthday and date of the MRI
scan. T1-weighted 3D gradient echo sequences were used for acquiring the hand
and clavicle data (resolutions of 0.45×0.45×0.9 and 0.9×0.9×0.9 mm3), while
teeth were scanned using a proton density weighted turbo spin echo sequence
(0.59× 0.59× 1.0 mm3).

Regarding biological ages yBAn as determined by a board-certified radiologist
as well as a dentist, for the hand volumes the GP standard [3] yGPn was used,
the wisdom teeth were assessed using the Demirjian system [2] yDMn , and finally
the clavicles were rated with the Schmeling system [8] ySMn .

Experimental Setup: A cross-validation with four folds was used to compute
results for all experiments. In each cross-validation round, one fourth of the
available datasets were used for testing, while the remaining subjects were used
to generate training datasets for the RF and DCNN methods. To allow a mean-
ingful evaluation over the given age range, the test sets were chosen by sampling
according to the approximately uniform age distribution of our data, where ran-
dom sampling required that at least two datasets from each bin were chosen
for each fold. During training of both RF and DCNN, images were augmented
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Fig. 3: Regression results for chronological age estimation based on DCNN-CA-
RFND (left) and DCNN-CA-HAND restricted to hand MRI data (right).

on-the-fly by translating, rotating, scaling and shifting intensities of the cropped
volumes. The size of cropped volumes after resampling with trilinear interpola-
tion was 44×44×44 pixels for all anatomical sites, respectively. We implemented
our RF as a regression forest consisting of 100 trees, maximal tree depth of 20,
and the number of candidate features/thresholds per node was set to 100/10,
respectively. For the DCNN the Caffe framework1 was used. Optimization was
done with stochastic gradient descent with a maximum of 2 · 104 iterations,
mini-batch size 1, momentum 0.99, and learning rate 10−5. To evaluate our CA
regression results, we compute mean and standard deviation of absolute errors
between predicted and ground truth age. Classification experiments are evalu-
ated by inspecting confusion matrices (TP,TN,FP,FN) and assessing accuracy
(ACC), specificity (SPEC) and sensitivity (SENS), with the latter indicating the
percentage of subjects classified as minors who are actually minors.

Results: For estimating biological age from the hand, absolute deviation results
are 0.62± 0.58 for RF-BA-HAND and 0.33± 0.31 years for DCNN-BA-HAND.
The mean absolute error of predictions compared to CA are 1.93 ± 1.26 for
RF-CA, 1.3± 1.13 for DCNN-CA, and 1.14± 0.96 years for DCNN-CA-RFND.
Regarding majority age classification, Table 1 shows the confusion matrix as well
as accuracy, sensitivity and specificity results for the compared methods.

4 Discussion and Conclusion

Motivated by the lack of a standardized way of fusing age estimates from multiple
complementary anatomical sites, and with the aim to reduce observer variability,
we proposed two automated methods for age estimation of the living from MRI
data in the age range of 13 to 25 years. It is for the first time that such a large
age range was studied by an automatic approach. To verify that our proposed
methods achieve state-of-the-art results on a reduced age range between 13 and

1 Y. Jia, GitHub repository, https://github.com/BVLC/caffe/
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Table 1: Classification results for the majority age experiments (N=103).

TP TN FP FN ACC SENS SPEC

DCNN-MAJ 39 (37.9%) 55 (53.4%) 4 (3.9%) 5 (4.8%) 91.3% 88.6% 93.2%

DCNN-MAJ-HAND 36 (35.0%) 57 (55.3%) 2 (1.9%) 8 (7.8%) 90.3% 81.8% 96.6%

RF-MAJ 21 (20.4%) 58 (56.3%) 1 (1.0%) 23 (22.3%) 76.7% 47.7% 98.3%

RF-MAJ-HAND 25 (24.3%) 59 (57.3%) 0 (0.0%) 19 (18.4%) 81.6% 56.8% 100%

19 years, we first compared them with previous work from [10], based solely on
hand MRIs for estimation of BA provided as bone age stages by a radiologist.
For RF-BA-HAND, we achieved a mean absolute error of 0.62 ± 0.58 years on
our data set, while the best RF result in [10] was 0.52±0.60 years, but required a
pre-processing step. Without any pre-processing but training directly on image
intensity, our result of DCNN-BA-HAND (0.33±0.31 years) was better than the
overall best results of 0.36± 0.30 years reported in [10]. However, results should
be interpreted carefully, since different data sets were used.

Due to biological variation of subjects at the same chronological age, esti-
mation of CA as required in forensic medicine is a much harder task compared
to regression of BA. Our main contribution in this work is the extension of the
maximal age range for CA regression from 19 years, as possible with solely us-
ing hand images, to 25 years, when including data from three anatomical sites.
This extension is clearly visible by comparing the scatter plots from DCNN-CA-
RFND and DCNN-CA-HAND in Fig. 3. The plot corresponding to the extended
age range regression further confirms that after the development of the hand has
finished, uncertainty in estimating CA increases since less age relevant features
are available. Compared to training DCNN-CA from scratch on chronological
age, pre-training of the DCNN-CA-RFND network on the radiological staging
results of the individual anatomical sites improved the mean absolute CA regres-
sion error from 1.3±1.13 to 1.14±0.96 years. Leading to a much higher error of
1.93±1.26 years, we found that RF-CA was not able to achieve competitive age
estimation results for the whole age range by selecting intensity features from all
three anatomical sites, while the DCNNs superior feature extraction capabilities
proved to be more powerful despite the low amount of training data.

A specific challenge in forensic age estimation is majority age classification
of asylum seekers lacking valid identification documents, under the ethical con-
straint that legal authorities need to avoid misclassifications of minors as adults,
i.e. requiring high sensitivity. While the RF based methods do not show compet-
itive classification results, our DCNN-MAJ-HAND network that uses majority
age as a binary classification target achieves a classification accuracy of 90.3%,
while misclassifying 8 out of 44 minor subjects as adults (see Table 1). Refining
the pre-trained multi-factorial network combining all three anatomical sites on
majority classification (DCNN-MAJ) improves classification accuracy to 91.3%.
More importantly, the number of misclassified minors is reduced to 5 out of 44,
an improvement in sensitivity which greatly impacts the involved subjects to
their advantage.
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A limitation of our results is the low number of 103 studied subjects, so gen-
eralization of these results has to be done carefully until a larger set has been
evaluated. Additionally, our method was evaluated on volumes cropped using
manually annotated landmarks instead of predictions from a landmark localiza-
tion algorithm. However, since our training stage involved random translational
and rotational transformations in the data augmentation step, we expect the
same performance using accurate and robust localization algorithms like [5, 6].

In conclusion, we have demonstrated with our proposed DCNN method that
multi-factorial age estimation based on the three anatomical sites (hand, wisdom
teeth, clavicle) can be used to automatically estimate chronological age in the
living, extending the age range up to 25 years. However, caution has to be taken
when it is used for deciding whether a subject is a minor or an adult.
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