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Abstract. We introduce a fully automatic localization and segmen-
tation pipeline for three-dimensional (3D) intervertebral discs (IVDs),
consisting of a regression-based prediction of vertebral bodies and IVD
positions as well as a 3D geodesic active contour segmentation delineat-
ing the IVDs. The approach was evaluated on the data set of the challenge
in conjunction with the 3™ MICCAI Workshop & Challenge on Compu-
tational Methods and Clinical Applications for Spine Imaging - MICCAI-
CSI2015, that consists of 15 magnetic resonance images of the lumbar
spine with given ground truth segmentations. Based on a localization accu-
racy of 3.9+ 1.6 mm, we achieve segmentation results in terms of the Dice
similarity coefficient of 89.1 + 2.9 % averaged over the whole data set.

1 Introduction

Due to reduced physical activity and working conditions of modern office jobs
low back pain (LBP) resembles a very important health problem in the devel-
oped countries. It is a leading cause of disability affecting work performance and
well-being. Clinical studies indicate correlation between LBP and intervertebral
disc (IVD) degeneration [1]. A widely used imaging modality for examining IVD
degeneration is magnetic resonance (MR) imaging (MRI), since it provides excel-
lent soft tissue contrast without the need for ionizing radiation. In the diagnosis
of MR images of the lumbar spine automatic IVD identification and extraction
of quantitative measures of IVD geometry and appearance is of high interest.
However, development of such automatic methods for accurate and objective
IVD localization and segmentation is challenging and still represents an impor-
tant research area [2-5|. To objectively compare and analyze IVD segmenta-
tion approaches, efforts like the challenge Automatic Intervertebral Disc (IVD)
Localization and Segmentation from 3D T2 MRI Data in conjunction with the
34 MICCAI Workshop & Challenge on Computational Methods and Clinical
Applications for Spine Imaging - MICCAI-CSI2015 are necessary and crucial
for potential future application in clinical practice.
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In this work we present our novel automatic IVD center localization and
segmentation approach. It consists of a machine learning step to predict cen-
ter locations of both vertebral bodies and IVDs as well as an image processing
pipeline to segment IVDs given the located spine landmarks. Segmentation is
based on geodesic active contours formulated as convex energy functional. We
evaluate our method on the 15 MRI data sets from the MICCAI-CSI2015 chal-
lenge and report localization errors and Dice similarity coefficients (DSC) with
respect to the provided IVD ground truth segmentations.

2 Methods

Our proposed IVD segmentation algorithm is built upon a powerful machine
learning based landmark localization step using regression forests [6,7] together
with a high-level Markov random field (MRF) model of the global configura-
tion of the relative landmark positions [8]. After landmark prediction, we attach
a three-step image processing pipeline for segmentation. First, we roughly seg-
ment vertebral bodies based solely on image gradient information, followed by a
merging of pairs of adjacent vertebral bodies to single objects to initialize IVD
segmentation. Finally, we formulate the IVD segmentation problem as a convex
geodesic active contour optimization task based on edges resembling geometrical
similarity to the shape of IVDs. Enabled by the robustness of previous localiza-
tion, this latter segmentation step requires no a priori information on appearance
but only a very rough shape prior. The main algorithm steps are shown in Fig. 1.

2.1 Preprocessing

Since the input MRI data sets contain slightly different absolute intensity val-
ues and some of the volumes show intensity inhomogeneities, we first perform
an automatic Retinex theory based inhomogeneity correction step similar to the

Fig. 1. Algorithm overview. The 3D MR input images (a) are processed by spinal
landmark localization (b), vertebral body segmentation (c), merging of vertebral bodies
to initialize IVD segmentation (d) and final voxel-wise IVD labeling (e).
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work of Ma et al. [9] to remove the smooth bias field due to this imaging artifact.
To derive more similar intensity distributions among the MRI data, we addi-
tionally apply histogram matching ignoring background voxels as determined by
thresholding [10].

2.2 Spinal Landmark Localization Using Regression Forests

Our approach for localization of vertebrae and TVD centers is based on local
appearance information of vertebrae and IVDs in spine images. Inspired by
the localization method proposed by Donner et al. [8], we use a Hough forest
(HF) [11] to generate probability maps p;(x) for each landmark [ being at loca-
tion . Due to the similar, repeating appearance of spinal landmarks, a global
geometric model implemented as an MRF with a dynamic programming based
solver is used to select the most probable configuration of landmark positions
from the set of candidate positions, thus correctly labeling vertebrae and IVDs.

Candidate Position Generation - Hough Forest. For each landmark [ we
train a HF from manually annotated locations. Each HF consists of K trees with
a maximum depth D. Training starts at the root node using all voxels inside a
certain radius r around the landmark position. Our node split functions, passing
a voxel either to the left or right child node, are based on Haar-like features.
The feature response is calculated as the difference between the mean intensity
of two cuboids, whose positions are defined relatively to the voxel position. At
each node split, 7" random thresholds, a pool of F' random feature boxes with a
maximum distance dy nq, from the voxel position and a maximum size S mqx
are generated. The respective combination of feature and threshold, which maxi-
mizes an Information Gain criterion, is used as the node split function and stored
in the split node. In a leaf node we calculate a histogram of the voting vectors
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Fig. 2. Overview of the localization pipeline. The colors of the candidate locations
indicate the strength of the HF response, where red corresponds to a high value. (Color
figure online)
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of all voxels arriving at the node and store one single voting vector derived from
the maximum of this histogram.

During testing, a random subset of all voxels in an image is pushed through
the previously trained trees. All resulting voting vectors from the leaf nodes
are summed up in an accumulator data structure, which can be interpreted as
probabilities p;(x) of the landmark [ being located at position . Using non-
maxima suppression we select for each landmark the N strongest local maxima
of pi(x) as candidate locations (see Fig. 2).

Candidate Selection - Geometric Model. To select the best candidate for
each spinal landmark according to a global geometric model, an MRF' is used
based on the landmark candidate positions from the previous regression forest
step. An MRF is an undirected graph with L nodes and E edges, where each node
N; in the graph corresponds to one landmark. The edges e, connecting the nodes
in the graph, are modeling geometric relationships between the landmarks. In our
MRF graph only the nodes of neighboring spinal landmarks are connected, thus
each vertebral body is connected to its adjacent IVDs and vice versa. Solving
the MRF means to select for each node a candidate such that the function

E

L
¢:H¢(NZ)H¢n(Ne17Nez)v (1)
=1

e=1

based on a product of all node potentials ¢(V;) and edge potentials @,,(Ne,, N, ),
is maximized. The node potentials ¢(N;) are set to the accumulator value p;(x)
obtained in the previous step. The edge potentials between nodes N., and N,
and candidate locations ¢; and ¢y are defined as

dsn(NelaNeg) = (2)

¢$(N61,Ne2) : @g(NepNeg)a if Cl,, = C2,»
0 otherwise

where @7 (N, , Ne, ) is a term punishing large deviations in z-coordinates between
two landmarks and #¢(N,, , N, ) a term based on the Euclidean distance between
candidate locations. The term based on the x-coordinates is defined as

1 ( Cl,x —C2,x )2

@z(Nel7N62):€_§ Tw ) (3)

where o, allows to control the allowed deviation in x, which is set empirically
to 2mm. The model for the Euclidean distance is based on statistics from the
training data and defined as

_%( lleg —eall—re )2

ng(NSUNQ) =€ 7e ) (4)

where u. and o, are mean and variance of the Euclidean distance, respectively.
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2.3 Intervertebral Disc Segmentation Using Geodesic Active
Contours

From the accurate regression forest based landmark localization approach we
achieve a very good initialization for segmenting the IVDs using an image
processing pipeline that extracts vertebral bodies and restricts the region where
the IVDs are expected. This segmentation pipeline, which is shown in Fig. 3,
makes heavy use of a convex 3D geodesic active contour segmentation approach
based on total variation (TV), which is described next.

Total Variation Segmentation. Our segmentation framework is based on
minimizing following continuous non-smooth energy functional Eg.q(u) which
has previously also been used by Reinbacher et al. [12] and Hammerni et al. [13].
It is a minimal surface segmentation approach formulated as

IIEII Egeq(u) = mum/gg(xﬂVu(xﬂ dz + /\/Q u(z) - w(zx) de,

s.t. U € Chop = {u:u(x) €0,1], Vo € 2}

()

where {2 denotes the image domain and v € C! : 2 — R is smooth. The
first term denotes the g-weighted TV semi-norm which is a reformulation of the
geodesic active contour energy [14]. The edge function g(z) is defined as

glz) = e IVI@I" o 5> 0, (6)

where VI(x) is the gradient of the input image. The second term in (5) is the
data term with w describing a weighting map. The values in w have to be chosen
negative if u should be foreground and positive if v should be background. If
values in w are set to zero, the pure weighted TV energy is minimized seeking
for a minimal surface segmentation. The regularization parameter A defines the
trade-off between our data term and the weighted TV semi-norm. The stated
convex problem in (5) can be solved for its global optimum efficiently using
the primal-dual algorithm [15]. As the segmentation w is continuous the final
segmentation is achieved by thresholding u.

Vertebral Body Segmentation. The first step of our segmentation pipeline
is to segment the eight vertebral bodies (T11, T12, L1-L5, S1) individually using
(5) (see Fig.1b). The weighting map w is constructed based on the localization
results for vertebral bodies and IVDs. We span a cylinder whose normal vector
points from the center of the vertebral body to the center of the IVD located
above. This cylinder defines the foreground seed (w = —c0) region. A larger, but
again cylindrical region around the foreground seed is set to zero in the weighting
map w such that the solution w is influenced by the surrounding image edges.
Values farther away in the weighting map are set to background w = oo. The edge
function g(x) is defined according to (6), where the image I () is the input from
the preprocessing step with an additionally applied edge-preserving denoising
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Fig. 3. Exemplary illustration of the segmentation pipeline. The vertebral body seg-
mentation B is used to generate a fused, one-connected structure U containing the
IVD. After morphological operations, the difference D = U — B initializes a weighted
TV segmentation step using wg derived from D (black are foreground seeds, white
background seeds, grey indicates wqg =0) and gqir as edge indicator function. The final
segmentation result shows IVD between 1.3 and 14.

using the TV-L1 model as explained by Chambolle and Pock [15]. Solving the
TV segmentation model in (5) gives us the central part of the vertebral bodies,
which is sufficient to constrain the later IVD segmentation.

Fusion of Vertebral Bodies Using the Star Prior Constraint. The second
step of our segmentation pipeline is to connect the segmentations of pairs of ver-
tebral bodies to obtain a rough spine segmentation (see Fig. 1c), thus initializing
the IVD region. This motivates the use of the star prior constraint introduced by
Veksler [16] and extended to multiple star centers by Gulshan et al. [17]. The inten-
tion of the star prior is that any ray n sent out from a specified star center is directed
in opposite direction of Vu. This enforces one-connected and star convex objects.
The star prior constraint is modeled in terms of a convex set Clqr

Cstar = {u: (Vu(x),n(x)) <0, Vz € 2}. (7)

This constraint on the segmentation v can be handled easily in our segmentation
model (5) by minimizing the energy Eg.4(u) such that u € Cppy NClstqy. For more
details we refer the interested reader to the work of Hammernik [18].

In our segmentation pipeline we use the star prior to connect the gap between
adjacent vertebrae as depicted in Fig. 3. This gap region gives a strong hint of
the expected IVD location. For each IVD, we use the two neighboring vertebral
bodies as foreground seeds setting their weight w = —oc. The border region of
the image domain (2 are background seeds (w = oco) and other regions are set
to zero. The edge function is derived from the binary segmentation result B(x)
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of the two vertebral bodies using the edge inversion function from the original
geodesic active contour approach [19], i.e.

1

9) = TN B@IP

v > 0. (8)

We use two star centers defined by the localization results of the respective
vertebral bodies. The ray direction n(z) is then defined from the star center
which is closest to the position x. After solving the weighted TV model in (5)
with the star prior constraint (7), we subtract the vertebral body segmentation
B(z) from the segmentation result U(z) and perform morphological opening
and erosion operations to achieve one final connected component D(x) that is
guaranteed to be located inside the IVD region (see D in Fig. 3).

Intervertebral Disc Segmentation. For the final IVD segmentation we again
use the weighted TV model for each IVD as described in (5). The foreground
seeds are simply defined by the result of the previous step, defining the region
where (wg= — 00). The background is defined by the borders of the image
domain (2, all other regions are set to wy = 0. For the edge information we apply
a slightly modified variant of the edge function g in (6) to incorporate a small
amount of a priori information on the shape of IVDs. As IVDs are prone to have
double edges, we only consider those edges which are aligned with rays that are
sent out from a specified disc. This disc is defined by a radius r and a normal
vector d which points from the located IVD to the next vertebral body. The rays
n(x) are calculated for every point z relative to the closest point on the disc. We
define the modified edge function g¢4;,- considering directed edges as follows:

Gair = 6—04||§V1($C)||B7 a, B3>0 (9)
with
~ J(VI(z),n(x)) if (VI(z),n(x)) >0
= {0 if (VI(z),n(z)) <0 (10)

3 Experimental Setup

The whole localization and segmentation approach was implemented in C+—+ and
OpenMP, with the exception of the Matlab-based MRF solver. Costly image
processing operations were accelerated using Nvidia CUDA to use graphical
processing units as parallel numerical co-processors.

Localization. Localization results were obtained using a leave-one-out cross
validation on the 15 subjects of the MICCAI-CSI2015 challenge, where centers
of the vertebral bodies and IVDs were manually annotated for all subjects by a
scientist well experienced in spine image analysis. Hough forests were trained and
tested with a voxel size of 1.5 x 1.5 x 1.5 mm. For each HF we trained K =64
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trees until a maximum depth D =15 using all voxels in the range »=8 mm
around the landmarks. At each node split F'=10 candidate feature boxes and
T =10 thresholds were generated. The maximum size S 4, and distance d¢ max
of the feature boxes was set to 20 mm. After non-maxima supression we selected
for each landmark the N = 10 candidate positions with the highest maxima in the
accumulator volume. The MRF made use of a specific statistical model (ue, o)
computed from the 14 subjects of each cross-validation run and was solved with
loopy belief propagation using the publicly available Matlab UGM! library.

Segmentation. To provide a realistic, generalizable setup we pooled the indi-
vidual localization results of each of the 15 leave-one-out cross validation runs
to form our input vertebral body and IVD landmarks for segmentation. The fur-
ther processing pipeline involved a number of parameters. For all edge functions
a=20 and f=0.55 was selected. We chose a A=1.25 for the edge-preserving
TV-L1 smoothing and a radius of 15 mm as well as a height of 7.5 mm to initial-
ize the vertebral body cylinder model. Segmentation of vertebral bodies involved
a A=0.01, while the star prior constrained TV segmentation required A = 1000
and v=0.125. Finally, IVD segmentation was done using A =0.05 and a radius
of 15mm for the prevention of double edges. All TV segmentation steps were
computed until the maximum change of two voxels of subsequent segmentations
was below 0.0001 and a threshold of uw=0.5 was used to derive a binary result
from the convex model in (5).

4 Results and Discussion

Localization. Quantitative results of the individual vertebra/intervertebral
discs as well as for the 15 different subjects are shown in Fig.4. We achieve
an overall mean localization error + standard deviation of 3.9 4+ 1.6 mm for all
15 landmarks of the 15 subjects compared to our own manual annotation of the
landmark centers. For the vertebrae we achieve an average of 4.0 1.7 mm and
for the intervertebral discs 3.8 + 1.5 mm. These are promising results given the
image spacing of the input data of 2 x 1.25 x 1.25 mm, i.e. the mean localization
error is on the order of a few pixel and standard deviations are reasonable. Our
segmentation results also indicate that this localization performance is sufficient
to initialize our image processing pipeline.

For the first test set we achieve a mean localization error of 3.97 4+ 1.19 mm,
with 2.9 % of landmarks below 2 mm, 42.9 % below 4 mm and 94.3 % below 6 mm
of distance. For the on-site test set we achieve 4.37 +1.17 mm, with 0.0 % below
2mm, 37.1 % below 4mm and 91.4 % below 6 mm of distance.

Segmentation. For quantitative evaluation of the overall segmentation algo-
rithm we used the DSC to compute the overlap of our segmentation result
with the provided ground truth segmentation from the CSI challenge data set.

! Downloaded from http://www.cs.ubc.ca/~schmidtm /Software/UGM.html.
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Fig. 4. Box-whisker plots of the mean localization error of our proposed method.
(a) Location error for vertebrae and IVDs showing individual landmarks (blue for
vertebral bodies, green for IVDs). (b) Location error for individual subjects. (Color
figure online)

We achieved an average DSC of 89.1 £2.9% over all IVDs from the 15 sub-
jects. Figure5 shows more details of the performance of our method according
to individual IVDs and subjects.

For segmenting the first five test data sets we achieve a DSC of 87.4 +4.8%
and a surface distance of 1.47 4+ 0.53 mm. Unfortuantely, during the on-site cal-
culation of the segmentation results, in one of the five data sets a severe segmen-
tation error occurred, leading to merged IVDs of T11/T12 and T12/L1, which
prevented our method from being compared to the others.
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Fig. 5. Detailed quantitative Dice similarity coefficients (DSC) results of the IVD seg-
mentation approach (overall: 89.14+2.9%). (a) DSC for individual IVDs. (b) DSC for
each of the 15 subjects.
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Conclusion

In this work, a fully automatic localization and segmentation system for interver-
tebral disc segmentation from MRI data was shown. It builds upon a regression
forest together with a simple global geometric model as well as TV based convex
active contour segmentation steps extracting vertebral bodies and IVDs in a geo-
metrically constrained manner. Our results on the data of the MICCAI-CSI2015
challenge are located in the lower third of the nine compared approaches.
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