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ABSTRACT

Increasingly important for both clinical and forensic medicine,
radiological age estimation is performed by fusing indepen-
dent bone age estimates from hand images. In this work,
we show that the artificial separation into bone independent
age estimates as used in established fusion techniques can
be overcome. Thus, we treat aging as a global developmen-
tal process, by implicitly fusing developmental information
from different bones in a dedicated regression algorithm.
With 0.82±0.56 years absolute deviation from chronological
age on a database of 132 3D MR hand images, the results
of this novel automatic algorithm are inline with radiologists
performing visual examinations.

Index Terms— age estimation, hand bones, magnetic res-
onance (MR), regression random forest, information fusion

1. INTRODUCTION

Estimation of the unknown age of individuals is an impor-
tant topic for both clinical and forensic practice. Clinical
medicine is focused on estimating biological age to determine
endocrinological diseases in children [1] or in paediatric or-
thopaedic surgery [2]. Approximated by the biological age,
forensic medicine is focused on estimating unknown chrono-
logical age, e.g. the age of victims or minor asylum seekers
lacking valid identification documents [3].

Age estimation (AE) from left hand images is a wide-
spread radiological method for assessing unknown age, where
ossification of individual hand bones, i.e. epiphyseal plate fu-
sion, is predominantly examined visually. When examining
such images, radiologists have to take into account the highly
nonlinear relationship between the development of individual
bones, that finish ossification with different timings. Thus,
it is an important and non-trivial task how to combine the
information about the ossification progress of distinct hand
bones to derive an age estimate of a subject. The most com-
monly used Greulich-Pyle [4] (GP) method is easy to apply
and treats aging as global developmental process, since all
hand bones are simultaneously compared to the best matching
reference image from the X-ray image atlas. However, it also

requires the rater to visually examine and mentally perform
the fusion of information from different hand bones, which
makes the GP method prone to intra- and inter-reader variabil-
ity. The more accurate and complex Tanner-Whitehouse [5]
(TW2) staging scheme reduces observer-related subjectivity
by independently estimating individual bone age according to
textual and visual descriptions. The individual bone age es-
timates are then fused using a pre-defined nonlinear fusion
function derived from characteristics of a sample population.
BoneXpert [6], the most prominent automatic AE method,
imitates the atlas matching procedure of TW2 with an auto-
matic hand bone segmentation and an extraction of image fea-
tures describing ossification. By calibration to TW2, BoneX-
pert performs fusion of individual age estimates based on the
same pre-defined nonlinear function. A current trend in AE
is to use non-ionizing Magnetic Resonance Imaging (MRI)
data [7] instead of radiographs. In the automatic MRI-based
AE method [8], a heuristic fusion strategy was presented,
based on a decision tree excluding metacarpal and phalanx
information from AE when averaging individual hand bones
for older subjects. Empirical determination of this exclusion
age is considered ad-hoc and depends on parameter tuning.

In this work, we investigate strategies for the complex
task of fusing information describing ossification in 3D MRI
hand bones for automated AE. As a baseline, we show the
performance of fixed rule fusion like summing or multiply-
ing [9] individual hand age estimates, exemplified by a novel
regression-based bone AE algorithm. To better model the
nonlinear relationship between the development of individ-
ual bones, we further propose to learn how to combine bone
age distributions by training a meta-estimator of unknown
age [10]. To overcome the need for splitting training data
as needed for training the meta-estimator, we develop as our
main contribution a fusion strategy integrated into the regres-
sion algorithm. In the proposed approach, the algorithm in-
ternally decides from which bones to learn the subjects age.
Thus, aging is treated as a global developmental process. Our
experiments confirm that this strategy is both accurate and ef-
ficiently using available data without the need for pre-defined
nonlinear functions or heuristic fusion schemes.
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Fig. 1. Features generated from cropped MRI hand data are used in either bone independent or combined information fusion
approaches to estimate the subject age.

2. METHOD

Fusion of age estimates from the subject hand bones is built
upon a machine learning algorithm that automatically esti-
mates age of individual bones. Inspired by [8], the algo-
rithm uses Random Regression Forests (RRF) [11] to non-
linearly model age estimates of individual hand bones from
training data. The method assumes hand bones have been
automatically localized, aligned and cropped. To estimate
a subjects age from individual predictions, different fusion
strategies based on fixed rules or learning-based schemes are
developed, as shown in Fig. 1.

2.1. Feature Generation

Image features are generated in a pre-processing step enhanc-
ing the appearance of the ossifying epiphyseal plate in the
3D MR images compared to surrounding anatomical struc-
tures (see Fig. 1). Due to the planar structure of the epiphy-
seal plate, an intermediate image representation Ibi is gener-
ated for each cropped bone volume b = {1, .., NB} of hand
i = {1, .., N}, based on an eigenanalysis of the Hessian ma-
trix [12]. Thus, to enhance plate structures we compute

Ibi =
1

1 + exp
(
− |λ1|−ζ1

ζ2

) · exp(−|〈~v1, ~nz〉 − 1|
ζ3

)
, (1)

where the left term exploits the ratio between Hessian
eigenvalues in planar structures, i.e. |λ1| � 0, |λ2,3| ≈ 0
with ζ1 = 40 and ζ2 = 5 chosen to enhance |λ1| inside
the epiphyseal plate. The right term penalizes the deviation
of eigenvector ~v1, i.e. the plane normal, from the longitudi-
nal axis of the aligned bone ~nz , via their dot product, scaled
by ζ3 = 0.25. To provide the input for RRF, for each bone

separately feature responses f bi (~x; d) are calculated as aver-
age intensity values along the line from random coordinate
~x = (x, y, z) in direction of ~nz with random length d.

2.2. Bone AE with Random Forest Regression

The nonlinear RRF can cope with arbitrarily large pools of
randomly generated image features f bi (~x; d) for computing
trees of a forest during training the model. Thus, shrink-
age and relevant feature selection for mapping ossification
progress of individual bones b to chronological age are per-
formed implicitly in each tree node by maximizing informa-
tion gain IG over a random pool of features:

IG = |V ar(S)| −
∑

i∈{L,R}

|Si|
|S|
|V ar(Si)|. (2)

Here V ar(·) is the variation of age in a set of bone images,
and S, SL and SR are the set of the bone images reaching the
node and its left and right split subsets, respectively. The node
splits are defined according to the binary test ~f b(~xj ; dj) > τk,
j ∈ {1..NF } and k ∈ {1..NT }. At each node, feature param-
eters (~xj ; dj) and a threshold τk that best discriminates over
the ages are stored. When the maximum tree depth ND is
reached or there is no improvement in IG, the recursive split-
ting procedure is finished and histograms of the age distribu-
tion for the bone images that reach the leaf node are stored in
the tree.

During testing, feature responses are computed for a test
input Ibi based on the stored parameters (~xj ; dj), and the im-
age is passed to the left or right child node according to the
result of testing with τk. The estimated bone age distribution
hb is obtained by averaging the histograms from the reached
leaf nodes of all trees in the RRF.
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Fig. 2. (a) The results in independent bone age estimation
of RRF for groups of bones and (b) separately for each age
group of the best performing IF strategy.

2.3. Fusion of the Age Distribution

To estimate the subjects age from the individual bone age dis-
tributions hb (Fig. 1), the following fixed rule fusion meth-
ods [9] are applied: mean of the distributions median (MDM),
and maximum of the distribution sum (MDS) and product
(MDP). Enabling comparison to recent work from [8], MDM
is combined with incorporating prior knowledge by removing
phalanges and metacarpals from mean calculation for subjects
older than a pre-specified exclusion age (PK-MDM).

To investigate learning the nonlinear relationship between
the development of individual bones [10], we also create a
meta Random Forest (metaRF) based on the bone age distri-
butions hb, splitting the available training data into two parts
according to a ratio r = 0.5, i.e. half of the data used to
train the RRF method and the other half to train the metaRF
with the same parameter settings as RRF. A feature response
fi(ξ; b) of the metaRF is a value at a randomly selected bin
of the histogram ξ, representing an estimated bone age distri-
bution of a randomly selected bone b. Based on these feature
responses, metaRF is trained for each node by maximizing the
information gain according to Eq. 2 on the part of the train-
ing data reserved for learning the fusion of age distributions.
When testing a novel input image, we first apply the RRF
method to the individual hand bones to obtain age distribu-
tions separately for each bone, and use these distributions as
input for the metaRF, giving final estimated age distributions
hmRF , see Fig. 1.

As our main contribution, we propose to integrate the
fusion step into regression (integrated fusion, IF), such that
the algorithm internally selects relevant bones according to
the subject age, see Fig. 1. Such an approach is very well
supported by the RF architecture, since it can easily cope
with a large number of features needed for simultaneously
learning ossification in individual bones as well as how to
fuse that information to nonlinearly relate their development.
Thus, a simple feature parameter extension allows that a
bone, in which the bone age regression is the most promi-
nent, is selected in each node. By making the bone number
b ∈ {1, .., NB} a feature parameter (~x; d; b), the features
are generated from all hand bones at each node simultane-
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Fig. 3. Variations of mean of distribution median (MDM)
fusion results according to the exclusion age of metacarpals
(M) and phalanges (P) with (PK-MDM FG) and without (PK-
MDM no-FG) feature generation step. Radius (R) and ulna
(U) are always used in estimation.

ously and the parameters whose feature response produce the
maximum IG (see Eq. 2) are stored in the tree. At testing,
the estimated age of a subject is calculated as median of the
estimated age distribution hIF obtained by using all bone
volumes of a subject as input for a single RRF.

3. EXPERIMENTAL SETUP AND RESULTS

Experimental setup: Our dataset of left hand T1-weighted
3D gradient echo MR images consists of scans from N =
132 male volunteers of known chronological age between 13
and 20 years, with in-plane resolution and slice thickness of
0.5 and 1mm, respectively. For evaluation, NB = 11 bones
(radius, ulna, five metacarpal and four proximal phalanges)
are automatically cropped using [13] as well as empirically
determined widths ensuring that bones are contained.

In RRF, NT = 1000 trees of depth ND = 5 were used
and NF = 20 features were generated per node. The num-
ber of features NF generated in each node of the IF approach
was increased by a factor of NB compared to the individual
bone RRFs, to guarantee the same probability for generat-
ing bone image features. The results of all experiments were
computed in a leave-one-out cross-validation with the training
time around 2 hours and testing time below one minute.
Results: Age estimation results for each bone separately
are shown as box-whisker plots in Fig. 2a. Fig. 3b reveals
how the pre-selected exclusion age of metacarpal and pha-
langes information from the MDM calculation affects the
estimated age of a subject in PK-MDM. The mean absolute
deviations from chronological age ± its standard deviation in
cross-validation for the MDM fusion method is 0.98±0.62,
for MDS is 0.97±0.61 and for MDP is 1.12±0.98. The best
results 0.88±0.64 for the PK-MDM is obtained for the ex-
clusion age of 15.45 years. When a metaRF is trained by
splitting the available data into two equal parts, the result is
0.85±0.64, and for the IF strategy it is 0.82±0.56. Detailed
results of IF are shown in Fig. 2b.
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4. DISCUSSION AND CONCLUSION

In this work, we investigated fusion strategies to automat-
ically combine growth information from individual hand
bones into an AE of a subject. The RRF is chosen for bone
AE (Fig. 2a) since, compared to most other machine learn-
ing methods, it has the ability to cope with a large pool of
image features that may be selected during training, without
significantly increasing training time. Furthermore, RRF is a
nonlinear approach with good generalization due to random-
ized feature generation when constructing trees.

When the ossification of the bone is about to be finished,
epiphyseal plate location is hard to be recognized even for the
experienced radiologist, and impossible when ossification is
finished. As an inaccurate cropping of epiphyseal plate re-
gions leads to unpredictable BAE results, we experimented
with omitting this step and taking the whole bone images
between the localized anatomical landmarks for training the
BAE methods. However, when using the same fusion strategy
PK-MDM on our larger dataset of 132 subjects (compared
to 56 subjects in [8]), which better represents the inherent
biological variation present in growth development, this re-
sulted in a larger estimation error, i.e. 0.98±0.70 (see Fig. 3,
red) compared to 0.85±0.58 reported in [8]. We found the
main reason for this decrease in accuracy in image artifacts
and intensity inhomogeneities. To remove unreliable epiphy-
seal plate detection step, and to make our method more robust
against image artifacts and intensity inhomogeneities, we al-
lowed the use of the whole bone for learning the age regres-
sion function and introduced a preprocessing step enhancing
the epiphyseal plate. To conclude, compared to the work pre-
sented in [8], our method is not depending on accurate detec-
tion of the bounding box around the epiphyseal plate.

Our main goal of this work was to find the best fusion
strategy capturing the highly nonlinear relationship between
the development of individual bones. Since individual hand
bones follow the stages of ossification similarly, but with dif-
ferent timings, fixed rule fusion (MDM, MDS, MDP) offers
the lowest potential to perform information fusion from dif-
ferent bones for estimating unknown chronological age. By
integrating prior knowledge on when metacarpals and pha-
langes finish ossification into the MDM fixed rule fusion strat-
egy as proposed in [8], an increase in estimation accuracy
(p < 0.1) can also be noted in our implementation. Thus, our
results of PK-MDM, achieved on a much larger dataset, are
similar to [8], where additionally more complex epiphyseal
gap region extraction is required. However, such an approach
is highly dependable on tuning the exclusion age parameter
that is additionally dataset specific, e.g. in [8] the exclusion
age is 17 years, while for our dataset the best exclusion age is
15.5 years, see Fig. 3. A significant improvement (p < 0.04)
for RRF fusion compared to fixed rule fusion is achieved if
the nonlinear relationship between the development of indi-
vidual bones is learned (metaRF), thus interpreting the differ-

ent bones as an ensemble of experts for AE [10]. Unfortu-
nately, by splitting the training data into two parts for individ-
ual BAE and training the fusion model, this approach is inef-
ficient regarding the use of available data. To overcome this
problem and to also reflect that aging of subjects is a global
development process not requiring an artificial separation into
individual bones, we finally proposed the IF approach, i.e. a
novel regression method that implicitly combines age infor-
mation from different bones. Although, there is no signifi-
cant difference in results between metaRF (0.85±0.64) and
IF (0.82±0.56) approaches, the IF approach makes best use
of the given data and we expect that it will scale better to
a larger data set, since it simultaneously combines most dis-
criminative features from all bones.

Age estimation results on our database of 132 MRI sub-
jects obtained with the novel IF approach (0.82±0.56 years)
are comparable with the clinically established X-ray based
methods, where deviations from 0.5 up to 2.0 years are re-
ported [14]. To interpret these results, the reader has to bear
in mind that the estimated age is the biological age of a sub-
ject, which due to different development speed of individu-
als might vary from the chronological age used in the com-
parison. To overcome this ambiguity, the automatic BoneX-
pert [6] method is calibrated by the same nonlinear function
as used in the TW2 staging scheme and the reported results
of 0.72 years on 1700 X-ray images (from 2 to 17 years) are
obtained as deviation from the visual GP [4] atlas matching
result. Nevertheless, when using the GP matching system to
estimate the ground truth biological age, its high intra- and
inter-observer variability has to be considered for interpreting
results. The evaluation results of the BoneXpert [6] method
are also depending on the quality of the nonlinear fusion func-
tion, which was originally introduced by TW2 in an ”ensem-
ble scheme” intended to reduce observer-related subjectivity
from information fusion. As the main goal of this work is to
find the best fusion strategy, the nonlinear fusion function in-
troduced by the TW2 method therefore cannot be used as the
established ground truth bone age during evaluation. For ex-
ample, our metaRF scheme calculates the nonlinear fusion of
age estimates from individual bones and additionally the rater
subjectivity from individual BAE is eliminated.

To sum up, in this work we have shown that the best fusion
strategy is achieved in our automatic IF approach, if aging is
treated as a global developmental process, by removing the
artificial separation into individual bones as it is done in TW2
or BoneXpert.
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