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What automated age estimation of hand and wrist MRI data tells us
about skeletal maturation in male adolescents
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Abstract

Background: Age estimation of individuals is important in human biology and has various
medical and forensic applications. Recent interest in MR-based methods aims to investigate
alternatives for established methods involving ionising radiation. Automatic, software-based
methods additionally promise improved estimation objectivity.
Aim: To investigate how informative automatically selected image features are regarding their
ability to discriminate age, by exploring a recently proposed software-based age estimation
method for MR images of the left hand and wrist.
Subjects and methods: One hundred and two MR datasets of left hand images are used to
evaluate age estimation performance, consisting of bone and epiphyseal gap volume
localisation, computation of one age regression model per bone mapping image features to
age and fusion of individual bone age predictions to a final age estimate.
Results: Quantitative results of the software-based method show an age estimation perform-
ance with a mean absolute difference of 0.85 years (SD¼ 0.58 years) to chronological age, as
determined by a cross-validation experiment. Qualitatively, it is demonstrated how feature
selection works and which image features of skeletal maturation are automatically chosen to
model the non-linear regression function.
Conclusion: Feasibility of automatic age estimation based on MRI data is shown and selected
image features are found to be informative for describing anatomical changes during physical
maturation in male adolescents.
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Introduction

An important but challenging branch of human biology

dedicates its research efforts towards the estimation of age in

living individuals or human remains. Due to gradual

anatomical changes during physical maturation and growth,

age estimation is of special interest when determination of the

development of children and young adults is needed (Tanner,

1978). These studies are important for clinical and legal

medical applications, but other domains like forensic anthro-

pology and sports also show considerable interest in age

estimation methods. There are two categories of applications

that involve the need for age estimation. The estimation of

biological (developmental) age assesses an individual’s state

of physical maturation at the time of examination, while

estimation of unknown chronological age is of interest for

living or deceased individuals in case no identification

documents are available. Due to considerable biological

variation in the speed of human development between

individuals, the assessment of unknown chronological age,

which is performed by approximating it with a biological age

estimate, is prone to a significant amount of uncertainty.

Thus, when estimating chronological age, it has to be

considered that the biological clock of an individual ticks

differently compared with the chronological clock.

Estimation of biological age is relevant for applications in

paediatrics. In endocrinology, children showing short or tall

stature, early or late puberty or genetically induced changes in

sexual development (e.g. congenital adrenal hyperplasia) are

examined regarding their biological age to evaluate the need

for growth hormone treatment, to plan the dosage of hormone

therapy (Martin et al., 2011a,b) and to control therapy

success. Another example is orthopaedic surgery, where

biological age estimation is the foundation to predicting the

remaining growth of bones, thus determining the optimal

time-point for corrective surgery in cases of leg-length

discrepancy (Lee et al., 2013) or scoliosis (Wang et al.,

2009).

Recently, a rising interest in age estimation for legal and

forensic medicine applications, targeting children and young

adolescents lacking valid identification documents, can be

observed (Ritz-Timme et al., 2000). In criminal and civil law,

Correspondence: Martin Urschler, Ludwig Boltzmann Institute for
Clinical Forensic Imaging, Universitätsplatz 4, 8010 Graz, Austria.
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determination of age thresholds such as 14 or 21 years is

relevant to establish the proper legal context in which to treat

a subject under investigation. With the growing number of

asylum seekers entering the developed countries of the so-

called Western world, the age threshold of 18 years (i.e. legal

age) has also received a lot of interest, since unaccompanied

minors have the right of protection and education in the

country where they apply for asylum according to the United

Nations Conventions on the Rights of the Child. Therefore, a

reliable, objective and accurate chronological age estimation

technique is required to guarantee fair treatment of children in

this psychologically stressful situation (Schmeling et al.,

2011). Forensic need for chronological age estimation is also

required in sports applications, where the International

Olympic Committee and FIFA (Fédération Internationale de

Football Association) have a particular interest in preventing

age fraud in junior-level competitions. Since competitions

like under-17 soccer tournaments, in which there is much

commercial interest, may be significantly manipulated by

older, physically more developed players, forged identifica-

tion documents need to be prevented by chronological age

estimation techniques (Dvorak et al., 2007). On the other

hand, manipulation of age in the other direction has to be

detected as well, for example in the Olympic gymnastics

competition, where a lower age limit of 14 years exists for

participation, since younger children benefit due to their

stature and mobility. Finally, a branch of forensic anthropol-

ogy (Dirkmaat, 2012) is dedicated to age estimation of the

deceased with the goal of dating human remains, either for

age-at-death estimation in archaeology (Dean et al., 2014) or

for identification of disaster victims (Bassed, 2012). In

contrast to age estimation of the living, here dental, osteo-

logical and histological methods that involve destruction of

teeth or bones may be used (Dutour, 2012).

These various application areas indicate the need for a

reliable, objective and accurate age estimation method for

practical use (Black et al., 2010). In the following we focus

on non-destructive biological age estimation, which may be

used to assess physical maturation and growth development

or to approximate chronological age in forensic applications.

The established biological age estimation procedure involves

radiological examinations of skeletal (Freitas et al., 2004;

Wenzel et al., 1984) and/or dental development (Liversidge,

2012), often together with an external body examination of

sexual maturation to reach a more robust estimate. External

body examinations are commonly assessed using the Tanner

stages (Marshall & Tanner, 1969, 1970). The combination of

several types of examinations is referred to as multi-factorial

age estimation (Schmeling et al., 2011), with each factor

giving complementary information about growth. In the

context of age assessment, the anatomical region of the hand

and wrist is very important for radiological and forensic

examination, as the development of numerous ossification

centres and the progressive fusion of a large number of

growth plates can be observed and assessed from infancy to

attaining adulthood. The depicted osseous structures and

growth plates of a subject of unknown age are either

compared to an atlas of reference images of known age,

the Greulich-Pyle (GP) standard (Greulich & Pyle, 1959),

or to a staging scheme for individual bones, the

Tanner-Whitehouse (TW2) system (Tanner et al., 1983).

Due to biological variation, both reference images and stages

of the developmental staging scheme represent a range of

possible chronological ages in subjects, as derived from a

reference population sample used for constructing these

systems. Building upon the visual comparison of the whole

hand and wrist with a reference atlas, the GP method is fast

and easy to use compared to TW2, but shows lower accuracy

and larger inter-observer variability (Ritz-Timme et al.,

2000). Exploiting the fact that the ageing progress is not

the same for all bones of the hand, bone age estimation is

improved by the TW2 method by visually comparing each

individual hand bone to the X-ray image-based develop-

mental staging scheme, and combining scores describing

individual stages to a final biological age estimate. Recently,

automated image analysis methods for age estimation have

appeared (Mansourvar et al., 2013), most prominently the

X-ray image based BoneXpert method (Thodberg et al.,

2009, 2012), which mimics the atlas matching procedures of

both GP and TW2. The performance of BoneXpert for

automated hand bone age estimation has been demonstrated

in several validation studies (Martin et al., 2009; Thodberg

& Saevendahl, 2010).

A severe drawback of radiographic bone age estimation

techniques is exposure to ionising radiation, which cannot be

ethically justified for screening healthy children and adoles-

cents. Thus, non-invasive magnetic resonance imaging (MRI)

has gained in importance for bone age estimation (Dvorak

et al., 2007; Terada et al., 2013), since the laws of many

countries prohibit the application of ionising radiation without

medical indication. Another benefit of MRI compared to

projective 2D X-ray examinations is its volumetric nature,

which may provide a foundation for more accurate and

reliable bone age estimation. Most current methods proposed

for bone age estimation in MR images are restricted to best-

view cross-sections to imitate the estimation methods

developed for X-ray images (Terada et al., 2013; Tomei

et al., 2014). Two recent exceptions are the works of Hillewig

et al. (2013), who perform staging-based age estimation from

3D MRI of the clavicle, taking left hand radiographs into

account to improve their estimates in a Bayesian analysis step,

and the work of Saint-Martin et al. (2014), who study the

epiphyseal gap in the distal tibial physis for age estimation.

The idea of developing automated image analysis software for

age estimation is even more beneficial when using MR

images due to the need for interpreting additional complex 3D

information that is not available in projective radiographic

images. With modern medical computer vision (Sonka &

Fitzpatrick, 2000) and machine learning techniques (Bishop,

2007), analysis of this complex information becomes possible,

allowing automatic learning of image features that discrim-

inate over age from 3D MR training data, thus promising a

more objective and reliable estimation. While the only

reported work on automatic age estimation from MRI data

(Saint-Martin et al., 2014) solely proposes a static analysis of

grey level variations in the epiphyseal-metaphyseal junctions

of the femur bone, we are very confident that learning the

image features discriminating age from training data is a key

benefit to improve the objectivity in age assessment by an

automatic method.

2 M. Urschler et al. Ann Hum Biol, Early Online: 1–10
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In this work, we examine the 3D MR image information

extracted by a software-based age estimation technique and

verify its sufficiency to define gradual anatomical changes

during physical maturation on the example of skeletal

ossification. Therefore, we use our previously presented

fully automatic bone age estimation method (Stern et al.,

2014), based on volumetric MR images showing the hand and

wrist simultaneously, which is part of our ongoing effort

towards establishing a novel automated multi-factorial MR

imaging-based method for biological age estimation. In this

method, we locate the region of the epiphyseal gap in

individual long bones automatically and extract nearby image

features that discriminate the fusion stages of the epiphyseal

gap in a given dataset based on known chronological age.

Both localisation of the epiphyseal gap region and mapping of

the age relevant image features to chronological age can be

seen as a regression task, where machine learning is employed

to learn the non-linear regression function from annotated

training data. For age regression this has the additional benefit

of performing image feature selection as part of the training

procedure, thus allowing one to visualise extracted age-

relevant image features and to interpret them regarding their

ability to discriminate different ages. This allows us to report

answers to the title of this study: What automated age

estimation of hand and wrist MRI data can tell us about

skeletal maturation in male adolescents.

Materials and methods

Subject data from MRI

For development of an automatic machine learning-based

age estimation software, a dataset of left hand and wrist MR

images of volunteering healthy male European-derived

children from Austria was used. This data was collected at

the Ludwig Boltzmann Institute for Clinical Forensic

Imaging in Graz as part of a study investigating the role

of MRI in forensic age estimation, which was performed in

accordance with the Declaration of Helsinki and approved

by the ethical committee of the Medical University of Graz.

All eligible participants provided written informed consent

and for under-age participants written consent of the legal

guardian was obtained additionally. Exclusion criteria were

history of endocrinal, metabolic, genetic or developmental

disease.

MRI data of 102 subjects with known chronological age

were taken from the study collective, selecting them with a

nearly uniformly distributed age range between 13–20 years

(mean¼ 16.9 years, SD¼ 2.02 years). All MRI examinations

were performed on a 3.0 T scanner (Tim Trio, Siemens AG,

Germany), in prone position with outstretched fixed arm using

both a head and a neck coil to cover the hand and the wrist

simultaneously. The MRI protocol used for acquiring the 3D

volumetric images was an isotropic T1 weighted 3D FLASH

VIBE sequence with a water selective pre-pulse, a resolution

of 0.9 mm and a matrix size of 256. The voxel size of the

resulting MRI scans was 0:45� 0:45� 0:9 mm3 and the

image size 288� 512� 72 voxels. Voxels were interpolated

from the isotropic scanning set-up and acquisition time was

slightly below 4 min.

Automated MRI bone age estimation method

As illustrated in Figure 1, our proposed machine learning-

based age estimation approach (Ebner et al., 2014; Stern

et al., 2014) first locates individual long bones from MR

images of the left hand and wrist, followed by a localisation of

the expected epiphyseal gap position in every bone. A

bounding box capturing the region of the epiphyseal gap is

extracted at this location, which allows cropping the 3D

region of individual bones, where relevant image features for

bone age estimation can be expected that describe the

appearance of osseous structures in terms of its MRI signal

intensity. After image feature extraction, a machine learning-

based regression step automatically maps these image features

to a chronological age. The regression function is derived

from training data with known chronological age for every

bone individually. The last step is the fusion of individual

bone age estimates to determine the final bone age prediction.

In the following, more details on the automatic age estimation

method will be given to develop an intuition on how the

algorithm derives age relevant image features which may be

visualised and inspected.

Extraction of epiphyseal gap images

In the first two steps of our algorithm illustrated in Figure 1,

the aim is to automatically extract the epiphyseal gaps of hand

and wrist bones from the 3D MRI volumes. To achieve this,

we have developed a fully automatic localisation algorithm

Figure 1. Flowchart diagram for the proposed automatic age estimation method. The major components are bone and epiphyseal gap region
localisation, individual bone age estimation and fusion of the age estimates for a final bone age prediction.
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(Ebner et al., 2014), which is able to predict the location of

28 anatomical landmarks defined between the hand and wrist

bones. These anatomical landmarks are shown in red in

Figure 2(a). The algorithm derives this landmark prediction

by using a machine learning technique (Criminisi & Shotton,

2013), which learns the landmark’s position from the sur-

rounding anatomical structures based on a training data

set with manually annotated landmarks. The obtained

anatomical landmarks are used to crop each individual

bone based on its maximally expected 3D extent, as

estimated from the training dataset and to rotate the cropped

image to a standard orientation defined by the bone axis, thus

aligning each individual bone for further processing

(see Figure 2(b)).

Since they are most informative for the following auto-

matic bone age estimation step in our investigated age range,

we now restrict the localisation of the epiphyseal gap volumes

(the green regions in Figure 2(a)) to 11 bones: radius, ulna,

the five metacarpals and four proximal phalanges. To

automatically predict the epiphyseal gap position, the same

algorithm that was used for bone localisation is applied, with

a prediction model derived from training data involving

known manually annotated epiphyseal gap centre locations. In

those bones, where ossification has already finished (corres-

ponding to older subjects), a prediction of where the

epiphyseal gap was located during maturation is obtained.

This leads to a localisation of the blue points in Figure 2(a).

The bounding box of the epiphyseal gap is defined with this

centre location, with the estimated diameter of the bone in the

axial slice where the centre is located and with a statistical

estimate for the height of the gap which is derived from

training images. The gap volume is generated by cropping the

individual bone image with the obtained bounding box and

then normalising the size of the image. Thus, all individual

gap images from the 11 investigated bones are aligned and

normalised to allow image features discriminating age to be

generated in the same co-ordinate system of the respective

epiphyseal gap region. Finally, for each of the 11 individual

bones a dataset of aligned, normalised epiphyseal gap images

is collected from the training set, that enables age estimation

in the following step (see Figure 2(b)).

Age estimation for individual bones

To estimate the age of individual bones, a machine learning

approach is used, which determines the mapping of image

appearance features to chronological age automatically from a

set of training images with known age (see Figure 2(b)). For

that purpose, a Regression Random Forest (RRF) is applied,

which is based on the idea that combining an ensemble of weak

(i.e. only slightly better than random) predictors forms a strong

predictor of age in the form of a non-linear regression function

(Bishop, 2007; Criminisi & Shotton, 2013). An important

advantage of the RRF framework is its ability to perform image

feature selection, which means that the algorithm internally

selects image features that best discriminate age automatically,

thus allowing their visualisation and inspection. Using normal-

ised and aligned epiphyseal gap volumes of individual bones

together with their known chronological age as input, an RRF

is constructed as an ensemble of binary decision trees. Each

decision tree consists of two distinct node types, internal nodes

and leaf nodes (see Figure 3(a). Including the root node where a

decision tree starts, internal nodes store a simple, weak

decision function that aims to separate the input epiphyseal gap

volumes reaching that node according to their age distribution.

This is achieved by computing a discriminative image feature

and thresholding its computed value for all volumes reaching

that node (see Figure 4 for a comparison of a discriminative and

a non-discriminative image feature). At each internal node, an

image feature is generated by randomly selecting one of the

following three types of features: the intensity value at a

randomly generated point, the intensity difference between two

randomly generated points or the average intensity value along

the line that connects two randomly generated points.

Motivated by the appearance of the epiphyseal gap in the

MR images, we designed these feature generation mechanisms

to focus on the age relevant changes in image appearance (see

Figure 5). With the intensity value at a specific location, the

algorithm can determine whether the epiphyseal gap is present

in an image, while the difference of intensity values at two

locations also covers the intensity variation between epiphys-

eal gap and bone. The third generation mechanism is designed

to describe intensity changes more smoothly along lines across

Figure 2. (a) The 28 anatomical hand and wrist bone landmarks (dark-grey, red in color version) as well as 11 landmarks (light-grey, blue in color
version) and bounding boxes (transparent green) of the epiphyseal gaps. (b) Extraction of 11 individual bones and corresponding epiphyseal gap regions
(transparent green) creates a normalised and aligned set of training data providing the 3D volumetric input data for automatically learning an age
estimation function. (Please refer to the online version of this paper for the color figures.)

4 M. Urschler et al. Ann Hum Biol, Early Online: 1–10
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the epiphyseal gap. The second node type is leaf nodes, storing

an age distribution of those input epiphyseal gap volumes that

have reached it during training. This age distribution is repre-

sented as a seven bin histogram (see Figure 6 corresponding to

the age groups between 13–20 years, e.g. all input volumes

between 14.0–14.99 are grouped into one histogram bin).

Training of the RRF involves an optimisation procedure

such that for each node the best discriminating feature and

threshold combination is selected from a set of randomly

generated image features belonging to a randomly generated

feature type and from the set of randomly generated

thresholds (see Figure 4 for two random feature examples).

The best combination is selected according to an information-

theoretic measure, obtained after splitting the input volumes

based on the comparison of the computed feature value with

the selected threshold TS and stored within the internal node.

The determined split of input volumes provides the input for

the connected left and right nodes of the binary decision tree

and training continues in a recursive manner. At the root node

of a decision tree, all uniformly distributed input volumes

initialise the recursive procedure. Due to termination criteria

like maximum tree depth or minimum number of input

volumes reaching a node, the splitting procedure ends within

a leaf node of the decision tree. In the leaf node, the age

distribution among the input volumes reaching that node is

stored as a histogram representing age distribution. Due to the

random choices involved in this tree construction and training

procedure, it has been shown that the RRF framework

excellently generalises to new input data during testing

(Criminisi & Shotton, 2013). In the testing stage, where data

of unknown age is processed (see Figure 3(b)), epiphyseal gap

volumes have to be localised in the same manner as described

above and are pushed through all the trees of the forest. Until

the gap volume reaches the leaf node, a feature response of

the gap volume is generated based on the stored image feature

and the volume is passed to the left or right child node

depending on the result of the comparison with the stored

threshold value. This mechanism is illustrated in Figure 6 for

two distinct decision trees. The estimated age distribution of a

bone is obtained as a sum of the histograms in the reached

leaf nodes of all trees in the forest.

Final age estimation

The ageing progress of epiphyseal gaps is not the same for all

bones of the hand and wrist (Tanner et al., 1983), since the

gradual ossification changes occur at different times for

distinct bones. Thus, the ossification of the epiphyseal gap in

the metacarpal and proximal phalanges bones is faster than

for the ulna and radius bone, except for the thumb metacarpal

bone which lies in-between. Depending on this prior know-

ledge about the differing maturation progress of the individual

bones, a bone is included or excluded when age distributions

are combined to a final age distribution. This fusion stage is

the last step of the pipeline shown in Figure 1, producing a

final age distribution for the evaluated subject based on an

MR image. The estimated age is obtained as the median value

of the subject’s final age distribution.

Experimental set-up for evaluation

After localising bones and epiphyseal gap volumes per bone,

we construct separate RRFs for the radius, ulna, metacarpal

Figure 3. Set-up of a Regression Random Forest consisting of decision trees with nodes and their connections (black arrows). (a) Epiphyseal gap
images with known chronological age form a training dataset that allows computation of a forest of decision trees with internal (blue) and leaf (green)
nodes, modelling a non-linear age regression function. (b) During testing, epiphyseal gap images are sent through each decision tree (paths with light-
grey arrows, red in color version) to achieve age distributions from the reached leaves of the decision tree. Age distributions are combined to form a
final age estimate. (Please refer to the online version of this paper for the color figures.)

Figure 4. Image features used for training internal nodes of an RRF. A
discriminative image feature like the image intensity at a specific,
randomly selected location allows distinction between younger and older
subjects, while a non-discriminative feature shows no clear relationship
with chronological age (CA).

DOI: 10.3109/03014460.2015.1043945 Automated age estimation of hand MRI in male adolescents 5
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Figure 6. During testing an MRI input volume with unknown chronological age, the image features stored in the RRF are evaluated one after the other
for each decision tree. Age distributions are refined while following the path through decision trees, finally reaching a predicted age distribution. These
are summed up to finally derive the likely age estimate.

Figure 5. The three types of feature gener-
ation mechanisms. Single intensity values
(top row), differences between two intensity
values (middle row) and mean intensity along
a path (bottom row). All features are
generated at random locations.

6 M. Urschler et al. Ann Hum Biol, Early Online: 1–10
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bone (MCI, i.e. thumb metacarpal bone) and a single forest

for the other metacarpal bones (MCII–MCV), as well as a

single forest for the proximal phalanx bones (PPII–PPV). We

group metacarpals and proximal phalanges, since they show a

similar appearance and ageing progress of the epiphyseal gap,

while the thumb is treated independently due to its different

time of ossification compared to the other metacarpals. Each

leaf node of the RRF stores a histogram over the age range

with a 1-year resolution between 13–20 years. Decision trees

are built with a maximum depth of 5 and each RRF contains

1000 trees, i.e. for every bone a forest with 1000 root nodes

was started. Age estimation results are computed in a leave-

one-out cross-validation using the 102 available datasets,

where we compute the mean absolute difference between

estimated and chronological age and its standard deviation

over the 102 cross-validation experiments. This involves

using 101 images in each round for training a model and

testing the model on the remaining image excluded from

training. Presentation of statistical results is performed using

MATLAB� software (The MathWorks Inc., Natick, MA).

Box-whisker plots were created using the MATLAB�

‘‘boxplot’’ function, while regression of estimated age vs

chronological age was created using the ‘‘fit’’ function with a

second order polynomial model and the ‘‘predint’’ command

for the 95% confidence interval.

Results

The mean absolute difference between ground truth chrono-

logical and estimated age in our dataset of 102 MR volumes

was 0.85 years with a standard deviation of 0.58 years. Figure

7(a) shows box-whisker plots that incorporate the results for

all images and for each year separately. The error in age

estimation for each bone separately is shown in Figure 7(b) as

box-whisker plots for radius (R), ulna (U), thumb metacarpal

(MCI), long bone metacarpals combined (MCII–MCV) and

proximal phalanges combined (PPII–PPV). Figure 8 shows a

plot of estimated ages vs ground truth chronological ages

along with its 95% confidence interval, obtained by fitting a

second order polynomial to the data. Qualitative results of

bone age estimation for a radius bone can be seen in Figure 6,

where the subject’s radius bone is estimated as being 16.5

years by our algorithm. The corresponding chronological age

of the subject is 16.2 years.

Discussion

Our results demonstrate the feasibility of automatic bone age

estimation from left hand and wrist MRI volumes based on

medical computer vision and machine learning. Such an

automated non-linear regression technique introduces benefits

compared to established methods, which are lack of exposure

to ionising radiation, improved objectivity due to automa-

tisation and the potential for higher accuracy due to exploiting

3D volumetric data of bone as opposed to 2D projective

radiographic images.

Gradual changes during physical maturation are captured

by our RRF algorithm by assigning a chronological age

distribution learned from a training data set to a selected

image feature. Since each image feature corresponds to a

maturation characteristic, the sum of all chronological age

distributions obtained for all selected features in the image of

a subject of unknown age corresponds to its biological age.

With the use of biological age to approximate unknown

chronological age, uncertainty in the prediction of chrono-

logical age has to be taken into account. In Figure 8 this

uncertainty can be seen as a variation from the regression

curve between estimated and chronological age for all

subjects, as determined by our cross-validation experiment.

The deviation of the obtained curve from a linear regression

for subjects older than 18 years can be explained by the lack

Figure 7. Quantitative box-whisker plot results of our automatic age estimation method showing (a) overall absolute deviations of estimated age from
chronological age (CA) as well as separate results for all age groups and (b) absolute deviations for individual bones (R¼ radius, U¼ ulna,
MCI¼ thumb metacarpal, MCII-MCV¼other metacarpals, PPII-PPV¼ proximal phalanges).

Figure 8. Regression of estimated age vs ground truth chronological age
as obtained by fitting a second order polynomial to the data; 95%
confidence interval shows uncertainty in prediction due to biological
variation.
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of maturation characteristics available in hand and wrist

images. This uncertainty can also be seen quantitatively from

Figure 7(a), where the box-whisker plots show the absolute

deviation between estimated and chronological age, both for

the overall results among all age groups and the single age

groups. The latter box-whisker plots show that a larger

difference between the estimated and chronological age is

present for the age groups between 14–16 years, which may

be due to the fact that male children enter puberty during that

time period, thus having larger biological variation. When the

ossification of the hand and wrist is finished, there are a lack

of maturation characteristics available in images for a

regression algorithm to learn discrimination among ages,

which might be the reason for the larger deviation of the age

group older than 19 years. From Figure 7(b), it can be seen

that the performances of radius and ulna bones are better than

metacarpals and proximal phalanges, due to physical matur-

ation finishing earlier in more distal bones. The highest

uncertainty is obtained for the thumb metacarpal bone, since

it was trained separately from the other metacarpal bones, i.e.

on a smaller data base compared to the pooled metacarpals.

The overall results for age estimation of adolescents with a

mean absolute difference of 0.85 years are comparable with

clinically established methods like manual Greulich-Pyle

(Greulich & Pyle, 1959) or Tanner-Whitehouse (Tanner

et al., 1983) X-ray atlas comparison, with reported differ-

ences from 0.5 up to 2.0 years depending on the age, sex and

origin of the examined population (Ritz-Timme et al., 2000).

BoneXpert (Thodberg et al., 2009), the most prominent

automatic method for bone age estimation from X-ray images,

reports a deviation of 0.72 years; however, this result is hard

to compare to ours, since it resembles deviation from the

manual Greulich-Pyle (Greulich & Pyle, 1959) atlas matching

result. The database on which the BoneXpert system is

trained, i.e. more than 1700 X-ray images of boys and girls in

the age range from 2–17 years, significantly exceeds our

dataset size. A current limitation of our work is the restriction

to MRI data from males; however, given a database of female

volunteers, which we currently do not have available, we

expect our method to automatically derive a non-linear

regression function from the training data in the same manner.

Due to male and female children developing at different

speeds, we hypothesise that both regression functions will

look similar, but will be shifted by at least a year.

Our age estimation algorithm internally selects image

features related to changes in visual appearance due to the

gradual progress of growth in subjects. This selection process

is performed in a large number of internal nodes of the RRFs

decision trees, with each node selecting image features from

the epiphyseal gap volumes of the subjects, which are

discriminative regarding chronological age. This feature

extraction only works if the epiphyseal gap volumes of

individual bones are first aligned and normalised in a

standardised co-ordinate system, such that features are

evaluated at anatomically corresponding locations.

Therefore, our automatic anatomical landmark localisation

algorithm has to be used (Ebner et al., 2014), which is robust

to variations in size and pose of hand and wrist among

different subjects. This landmark localisation shows an

accuracy of 1.4 mm (SD¼ 1.5 mm), as has been shown in

Ebner et al. (2014), aligning the bones of all subjects with

each other for further processing. Epipyhseal gap volume

extraction, which is based on the same algorithm used for

anatomical landmark localisation, shows a localisation accur-

acy of 1.1 mm (SD¼ 0.8 mm). These two localisation steps

have been shown to be sufficient for the following age

estimation in Stern et al. (2014), since the goal is to roughly,

but robustly, locate the gap region, where the RRF then

extracts the image features for learning the non-linear age

regression model.

Building upon aligned bones and extracted normalised

epiphyseal gap regions, each internal node of the decision

trees finds image features, separating input volumes and their

visual appearance according to a threshold on the computed

feature value. This idea is illustrated in Figure 4, where an

example for a discriminative image feature during training is

shown compared with a non-discriminative one. This com-

parison is shown for an intensity value image feature at

different locations in the 3D input volumes, corresponding to

three subjects of increasing age. The distribution of intensities

at this location among all subjects in the training dataset is

shown in the bottom row. It can clearly be seen that the

discriminative feature shows a relationship with increasing

chronological age and that the selected threshold TS among

the image intensity will split the subjects epiphyseal gap

volumes into younger and older ones. Therefore, this image

feature, together with the threshold value, resembles a weak

decision function as determined by the node optimisation

procedure and stored in an internal node of the RRF. On the

other hand, the non-discriminative image feature does not

show a clear relationship of its feature value with age;

therefore, it will not be selected during node optimisation,

since no threshold can be found that splits the subject’s

epiphyseal gap volumes into two sub-sets, which are more

informative than the whole set regarding age. The example

intuitively demonstrates the ability of the algorithm to pick up

image features discriminating age. This mechanism is shown

for single intensity features, since they are easier to visualise,

but the same arguments hold for the other types of image

features, as illustrated in Figure 5.

The evaluation of an individual bone’s epiphyseal gap

volume of unknown age during testing also allows a deeper

understanding of the workings of the RRF algorithm regard-

ing image feature selection. When evaluating an epiphyseal

gap volume, it is pushed through all decision trees of the

forest (see Figure 3(b), following the path of red arrows), thus

visiting a number of internal nodes where image feature tests

are performed. Figure 6 shows how the selected path through

a tree gradually improves certainty in age prediction. At the

root node of a decision tree, before evaluating the image

feature test, the initial age distribution corresponds to the age

distribution in the whole training set, e.g. in our case it is

nearly uniformly distributed, suggesting that each age group is

equally likely to be predicted. After evaluating the feature test

in the root node (the yellow feature in Figure 6), tree 1 decides

for this epiphyseal gap volume that an age below 17 is likely,

while tree N votes for an age above 15. These predictions can

be seen from the age distribution histograms below the shown

slice of the epiphyseal gap volume, indicated by the red arrow.

The comparison of the computed feature value with the
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threshold value stored in the internal node determines the next

node, which is visited in each decision tree. With the second

feature in both trees, the age distribution histograms get

sharper, thus allowing a step-by-step elimination of uncer-

tainty in the prediction while the input volume traverses

towards a leaf node for all trees. After reaching a leaf node,

the stored age distribution histogram of each decision tree is

reported and a sum over all histograms of the forest is

computed, thus generating a strong age prediction from many

weak predictors. From this process of decision tree traversal,

it can be seen that it is not single decisions of internal nodes

or individual decision trees that are relevant for the success of

the RRF, but the power of the method comes from the

combination of image features and the ensemble of its weak

predictions. In the example of Figure 6, tree 1 starts with a

prediction of being in the younger half of the age range, while

tree N predicts the opposite situation. However, the combin-

ation of image features lets both trees end up with a more

accurate age distribution, with tree N finally showing a very

different prediction in the leaf node (very likely in age group

16 or 15) compared to the root node (likely older than 15,

with a mean estimate of above 17). Thus, it can be seen that

the RRF framework automatically selects exactly those

anatomical structures from the training input volumes that

are most informative for describing age in a given dataset.

Conclusion

From the presented investigation of the automatically selected

image features and their combination, it can be concluded that

the RRF framework is well suited for non-linear regression of

MR image features to chronological age. In addition it allows

the visualisation and interpretation of selected image features

in a clear and intuitive way, thus finding those image

structures in MR images that are most informative for

describing age in a given dataset. Extending this idea to

analyse novel, yet unexplored soft tissue features visible in

MRI like cartilage or bone marrow (Tomei et al., 2014) is an

interesting step for further research.

The image feature selection is embedded in an automatic

age estimation pipeline based on medical computer vision and

machine learning, consisting of automated bone and epiphys-

eal gap localisation, age regression of individual bones from

aligned epiphyseal gap volume data and fusion of bone age

distributions to a final age prediction. On a database of 102

male European-derived subjects between 13–20 years, we

were able to estimate the subjects age with a mean absolute

difference of 0.85 years (SD¼ 0.58 years) compared to the

chronological age, which is in line with results using

established methods based on X-ray projections that involve

radiation exposure. In future work we will investigate the use

of this approach on a larger database, if possible including

female subjects as well, and investigate how to extend the

method to a larger age range involving younger children as

well and we will explore its use for specific clinical and legal

medicine applications.
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