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Abstract

Radiological age estimation of living subjects from MR images has recently become
very popular. Besides skeletal ossification this can be done using the mineralization
status of wisdom teeth. To support potential automatic age estimation, an important
preliminary step is a reliable and automatic localization of the wisdom teeth. Therefore,
we propose a random regression forest framework to localize third molars, which is
capable to predict landmarks up to an error of 3.55 + 2.62 mm in mean and standard
deviation in a challenging 3D MRI dataset.

1 Introduction

Radiological age estimation is currently seeing a lot of research interest not only for clini-
cal, but increasingly for forensic applications, most prominently majority age assessment of
young asylum seekers coming to Europe without valid identification documents. According
to AGFAD, the study group of forensic age diagnostics, combined radiological assessment
of epiphyseal plates of the hand bones and the clavicle as well as the mineralization status
of the wisdom teeth, i.e. third molars, are key components of an objective, accurate age
estimation [7]. While established radiological age estimation techniques rely on X-ray and
CT images, recently MRI data has shown to be a promising alternative without the need
for ionizing radiation. Automatic age estimation from MRI is a worthwhile goal to pur-
sue [8], since it removes the need for subjective visual comparison to reference images, as
present in the established radiological techniques. The automatic localization of third molars
is an important preliminary step when designing an automatic dental age estimation method
from radiological data. Therefore, in this work we present a novel automated third molar
localization algorithm, taking 3D head MRIs as input, which may subsequently be used for
automatic dental age estimation. We propose to employ a random forest strategy [1], and
formulate localization as a regression task similar to recent work on bone localization [3, 5].
We compare different types of voxel selection methods for training the random regression
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forest and compare two distinct voting strategies during testing. We show on a data set of
280 3D MRIs the performance of our localization algorithm in cross-validation experiments.

1.1 Related work

State of the art automatic object and landmark localization methods rely on the use of
discriminative or generative machine learning techniques, e.g. statistical models of shape
(SSM) and/or appearance [6]. In [4] an SSM is used to segment the maxillary bone. By
placing a predefined region below this segmentation and finding a suitable separation to split
this region into multiple parts, all teeth are thus located. However, although such an SSM can
handle large outliers very well, it strongly relies on a good initialization of shape and pose,
which is a complex problem of its own. On the other hand, discriminative random forest
(RF) models [1] have recently seen a lot of interest due to their simple adoption to diverse
applications and their ability to handle large and noisy datasets very well. In [2] a classi-
fication RF was designed to locate teeth, based on a spatial assumption that all landmarks
are clustered in a certain region to avoid searching the whole image. Further, a small region
around the ground-truth landmarks was labeled as positive training instances and regions
further away as negative ones to classify teeth. Due to multiple positive labels per landmark
defined for training the classifier, this results in imprecise localizations during testing. The
drawbacks of SSM and classification RF led to research where localization is formulated as
a regression problem [3]. A regression RF (RRF) was trained to predict bounding boxes
around anatomical structures, i.e. organs. This idea was extended in [5] by adding a weight-
ing scheme and a multi-forest approach to very accurately localize single point landmarks
between hand bones. In this work, we investigate suitability of the ideas presented in [3] to
build a novel fully automated 3D MRI wisdom teeth localization algorithm based on RRF.

2 Method

For localizing third molars automatically, we train an RRF only on a small subset of voxels in
each image of our training dataset of annotated MRI volumes, restricting the trained model
to local appearance information around the wisdom teeth. This is contrary to [3], since they
use global information from all over the image. Reasons for restricting training to local
appearance information are the lower anatomical shape variability near the teeth and larger
variations in intensity in more remote structures like the brain. In testing, the model predicts
most likely landmark candidate positions in previously unseen images using a voting scheme.

During the training process of the forest, we first select voxels from regions near the
mean landmark position of the given landmarks. We assume that the most stable structures
in our images are around the teeth region, as illustrated in Fig. 1. For training individual
trees, we push random subsamples of the selected voxel regions through each tree, which
consists of split and leaf nodes, starting at its root split node. At each split node the in-
coming voxels are forwarded either to the left or right child node, depending on a splitting
criterion, until a maximal tree depth is reached. In this case a leaf node is created. See
Fig. 1 for a coarse overview of training. The decision rules that determine the splitting cri-
terion for each split node are chosen from a pool of randomly generated feature tests. Their
selection is done according to the maximization of an information gain measure, represent-
ing the change in variance of the distribution of the input voxels when splitting them into
two separate sets. Each decision rule in the pool consists of feature computations, involving
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Figure 1: Overview of training stage and landmark localization during testing.

differences of mean intensity values from two cuboids, generated randomly in an arbitrary
distance to a voxel position and having random sizes, and a random threshold to which the
computed feature is compared to. This greedy optimization selects for each split node the
best combination of feature and threshold from the pool, thus defining and storing the split-
ting criterion of the node. Recursively performing this operation, trees are trained by splitting
until the maximum tree depth is reached, or the voxel sets reaching a node are too small for
further splitting. In this case a leaf node is created, and the relative distances of the voxel to
each landmark are computed. Finally, in each leaf node /; of a tree ¢, the relative distances
from voxels v reaching this node to all landmarks are stored using for each landmark i three
separate 1D distance histograms Ay, , -y ;(/;(v)) that enable voting for landmark positions.
During testing an unseen image, the RRF randomly selects voxels from the whole image
and pushes them through each tree. Going down a tree, voxels reach split nodes in which
they are either pushed to the left or right subtree according to the stored feature/threshold
combination. Eventually, voxels end up in a leaf node from which the stored relative distance
histograms vote for a potential landmark position. For final landmark prediction, different
methods can be applied to combine votes from individual trees to a single prediction. In
our work we investigate two such methods, i.e. voting based on histogram accumulators and
voting by using an image space accumulator, which can be seen as a point voting scheme.
For the histogram accumulator voting scheme, we first create a final histogram by
accumulating over all histograms Ay, -1 ;(i;(v)), over all voxels and trees, in each axis in-
dependently, similar to [5]. This results in a final histogram Hy, 1 ;. The maxima in each
coordinate per landmark i indicates the most probable landmark position. In contrast, the
image space accumulator, which is also used in [6], is built by first finding the maxima
in each histogram Ay, ,, .1 ;(/;(v)) directly, which represents a potential landmark position for
one voxel, ending up in one leaf node in a single tree. Then, this position is accumulated in
the image space accumulator for this landmark, which is a 3D volume. After having pushed
all voxels through the forest, we get as many accumulators as we have landmarks. Finally,
probable landmark positions can be estimated by finding the maxima in these accumulators.

3 Experiments and results

Dataset: Our dataset consists of 280 3D MR images (PD weighted TSE sequence) with
a dimension of 208 x 256 x 30 voxels and a size of 0.59 x 0.59 x 1 mm per voxel. Per
image, two landmarks, either on the wisdom teeth or on the assumed location of a missing
tooth, were manually annotated by a dentist. During MRI acquisition, noise and artifacts
occurred, which were caused by movement or metallic parts like braces, making our dataset
challenging. Figure 2(a-b) shows a selection of images with annotated wisdom teeth.
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Figure 2: Example of MR image slices for different age groups (a) 13 and (b) 17. Difference
between histogram and image space accumulators is illustrated in (c).

Cross validation: We randomly split our dataset into 67 % training and 33 % testing images
for 5 cross validation runs and average performance measures over these runs. As a perfor-
mance measure we use the Euclidean distance between a found landmark and the annotation.
We train an RRF with 8 trees and a maximum tree depth of 14, since it turned out that using
more or deeper trees does not improve our results. At each split node of a tree, 80 features
and 20 random thresholds per each feature test are generated. The training algorithm gener-
ates 3D cuboid image features with the center at a maximum distance of £16 x 16 x 6 mm
and maximum size of £16 x 16 x 4 mm relative to a voxel position. We have chosen this size
to potentially cover a whole tooth at once.

Experimental setup: We made two experiments. With our first experiment we show the
influence between using image voxels from the whole image and therefore of strongly vary-
ing structures, e.g. in the brain, and more locally selected voxels near the teeth region, which
is more constrained for different subjects. Therefore, we shrink the range from where voxels
can be chosen for training, with certain step sizes, starting from a global range down to a
local one, around the mean position of our teeth landmarks. However, when using a small
range, i.e. 4 mm, the forest is still able to cover appearance from farther away, since we use
long distances features which are at most == 16 mm away (note that neighboring teeth are lo-
cated at around 10 mm distance from each other). In our second experiment, we investigate
the use of different histogram accumulators and compare them to the point voting scheme.

3.1 Range for voxel selection

For the first experiment, we use the image space accumulator and compare different ranges
around the mean landmark position, from where voxels can be selected for the training pro-
cess. The range is defined by a sub-volume with side-length r for each axis. In Fig. 3a we
can see, that when decreasing r from 180 mm to 20 mm, the mean landmark localization er-
ror and its standard deviation get smaller and reach a minimum of 3.55 + 2.62 mm. Further
decreasing the range to 4 mm, leads to imprecise localization and therefore to a larger error.
The main reason is, that the forest has too few voxels from which to learn, and that global
localization thus becomes very hard.

When we look at the error at a range r of 180 mm, we can see that using voxels from
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Figure 3: Localization results for different voxel selection ranges r using (a) image space
accumulator and (b) histogram accumulator.
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the whole image is unfavourable. The algorithm seems to fail for images, in which artifacts
change the appearance of the shape. Also by the occurence of strongly varying structures,
like the brain, the forest may vote with a large uncertainty for the landmarks. Another chal-
lenge occurs due to strong translations leading to occlusions, which only shows in a few
images. The algorithm is not able to precisely localize landmarks, in case the shape (e.g. the
nose, mouth or chin), is partly occluded.

Overall, we can conclude, that using voxels from regions with lower variability for the
training process, helps to improve the localization results, as expected. On the other hand,
we obtain a large standard deviation error, which is due to mislocalization of teeth.

3.2 Histogram accumulator and image space accumulator

In the second experiment, we make a comparison between image space accumulator and
histogram accumulator voting schemes. Figures 3a and 3b depict the difference in results
between these two accumulators. The histogram accumulator yields to much larger errors
for ranges r, smaller than 60 mm. The best result we can achieve, using the histogram
accumulator, is at a range r of 180 mm with an error of 5.82 4+ 3.35 mm, compared to the
best error of 3.55 + 2.62 mm using the image space accumulator.

This happens because we treat each coordinate in the histograms independently. For ex-
ample, assume the 2D case, in which two points vote to the position (x, y;) as illustrated
as a red circle in Fig. 2c. Now, three different points vote to the same x, but different y
coordinates (x2, y2 3 4). The histogram accumulator sums up over all axes independently and
develops the highest peak at position (x;, y;), although more points are voting to the posi-
tion (x1, y1). This happens especially, when the forest localizes multiple possible landmark
candidates at different positions in the image when choosing voxels only from small regions.
However, using larger regions, i.e. from the global shape, the forest is still able to predict
the landmarks quite well with these histograms. By using the image space accumulator we
circumvent this drawback, since we directly vote into an image, as shown in Fig. 2c.

4 Conclusion

We have shown a fully automatic third molar localization framework, which is based on
random regression forests. By investigating the role of areas from where voxels are selected
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for training and using a point voting scheme, we achieved localization results with a mean
localization error of 3.55 £ 2.62 mm, which is well below the distance of individual teeth in
our datasets. Future work will concentrate on employing subsequent steps for a more precise
localization, e.g. a multi-forest approach [5], comparing different voting accumulation types,
e.g. as done in [6], as well as to classify whether a teeth is present or not and to determine
its orientation. Finally, enabled by our low localization error, located wisdom teeth will be
used in an age estimation system, combined with other body parts, i.e. skeletal bones from
hand and clavicle, to achieve more robust age estimation results.
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