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Abstract

Verbal communication plays an important role in our economy. Laryngeal high-speed
videos have emerged as a state of the art method to investigate vocal fold vibrations
in the context of voice disorders affecting verbal communication. Segmentation of the
glottis from these videos is required to analyze vocal fold vibrations. The vast amount
of data produced makes manual segmentation impossible in every day clinical appli-
cations. Therefore, computer-aided, automatic segmentation is essential for the use of
high-speed videos. In this work a novel, fully automatic glottis segmentation method in-
volving motion compensation, salient region detection and 3D Geodesic Active Contour
segmentation is presented. By using color information and establishing spatio-temporal
volumes, the method overcomes reported problems in related work regarding low con-
trast and multiple glottal areas. Efficient computation is achieved by parallelized im-
plementation using graphics adapters and NVidia CUDA. A comparison to the seeded
region growing based clinical standard shows the benefits of the proposed method in
terms of higher segmentation accuracy on manually annotated evaluation data.

1 Introduction

During the last fifty years our economy changed from a manual labor to a service oriented
one. Speech, as the main form of communication between people, has gained tremendous
economic value. With e.g. around 60 % of the jobs in the US requiring communication
skills and prevalence of 9.5 % of speech and voice disorders in 0 - 19 years old subjects in
developed nations, they have become a crucial part in any country’s economy [Ruben, 2000].
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Figure 1: Recording setup for laryngeal high-speed videos (taken from [Lohscheller et al.,
2007]). The vocal folds (1) are filmed with a rigid telescopic high-speed camera (2).

Thus, diagnosis and classification of these disorders have become important research topics
in recent years.

Voice is generated by the glottis, which is the gap between the vocal folds (see Fig. 1).
The primary voice signal is generated within the larynx by the two opposed vocal folds,
set into vibrations by streaming air provided by the lungs [Titze, 1994]. The frequency and
intensity of the voice signal varies within a wide range due to modification of muscle ten-
sion, vocal fold length and lung pressure [Titze, 1976]. Generally, a healthy voice requires
symmetric and regular vocal fold oscillations [Doellinger et al., 2003, Hertegard et al., 2003].
Perturbations of the acoustic speech signal can be caused by irregular and asymmetric vi-
brations, which may result in hoarseness [Hoppe et al., 2001]. [Eysholdt et al., 2003] define
hoarseness as the unspecified symptom of a diseased larynx, which originates from irreg-
ular vocal fold vibrations. The International Classification of Disease and Related Health
Problems of WHO classifies voice disorders according to etiological aspects. Depending on
whether organic abnormalities exist or not, they are then further divided into organic and
functional dysphonia. Thus, to investigate voice disorders, both anatomy and vocal fold
vibration patterns are analyzed.

Due to the frequency of vocal fold vibrations (e.g., 250 Hz in Fig. 2), a laryngeal high-
speed video (LHSV) camera with a high frame rate is used for recording vocal fold videos
(see Fig. 1). Figure 2 shows a video recording depicting a typical, complete vocal fold oscil-
lation cycle with a duration of 16 frames, including the open and closed phases. The main
limitation of LHSVs is the vast amount of video material produced in a single investiga-
tion, which makes manual assessment very time-consuming and thus impossible to use for
everyday clinical application. Therefore, methods for automated processing of LHSVs are
needed.

The automated segmentation of the glottal area is an important preliminary step for later
visual or quantitative evaluation of spatio-temporal plots [Lohscheller et al., 2008] of the
glottal opening (i.e., phonovibrograms). Typical obstacles for this segmentation problem are
a slow spatial drift of the glottis due to patient and camera movements, fluid artifacts on
the camera, limited spatial resolution, brightness changes, and contrast inadequacies during
acquisition. Those problems arise from difficulties in image acquisition, i.e., the appropriate
positioning of the camera is difficult and its insertion may provoke the patient to gag.
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Figure 2: Several frames of a laryngeal high-speed video sequence showing a complete cycle
of glottis movement including the open and closed states.

State of the art methods for glottis segmentation have limitations when it comes to ac-
curacy and efficiency. Processing speed is also restricted due to required user input and
often necessary manual corrections that complicate the detection process even further. Ad-
ditionally, these methods neglect the available color information and lack a proper motion
compensation step.

1.1 Contribution

Extending previous work presented in [Schenk et al., 2014], a fully automatic, computation-
ally efficient glottis segmentation method is developed, starting with a preprocessing step
including contrast stretching, motion compensation to correct patient or camera drifts and
edge-preserving denoising to get well-defined edges for later segmentation. A novel salient
region detection method first detects a region of interest (ROI) and then uses this information
to calculate seed regions to initialize the segmentation, also taking full color information of
the input videos into account. For image segmentation, videos are treated as spatio-temporal
volumes, to which a 3D Geodesic Active Contour segmentation is applied. To overcome slow
computation time of the large amount of video data, thus potentially preventing the use in
clinical practice, the presented method is partly implemented in CUDA (Compute Unified
Device Architecture), a parallel programming platform by NVidia, which uses the immense
capabilities of modern graphics adapters to greatly increase the speed of 2D and 3D image
processing algorithms.
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2 Related Work

With the invention of LHSVs, researchers have received a very powerful tool to observe
vocal fold vibrations. The huge amount of data produced in LHSVs has led to the develop-
ment of computer-aided tools to study the video material. Especially the segmentation of
the glottis has received a lot of attention in the last decade.

An early method based on seeded region growing (SRG) was developed by [Lohscheller
et al., 2007]. Initial seed points and thresholds have to be manually adjusted by the user on a
large number of frames throughout the video, which is a tedious and time consuming task.
A general obstacle is the crucial choice of an appropriate homogeneity criterion, which can
be very difficult. This is due to intensity and brightness variations and unclear transitions
between glottal opening and surrounding tissue. A constant set of seed points is used to
re-detect the glottis after every full cycle. Even though this method has emerged as a clinical
standard, it has a few drawbacks like the need for extensive user intervention and refinement
of the final segmentation, or the lack of a proper motion compensation step to account for
patient/camera movement.

[Demeyer et al., 2009] avoid user-interaction by an initial analysis step of the video, which
detects key frames with maximal glottal opening and estimates the vocal fold oscillation fre-
quency. To localize the key frames, dark, elliptical regions bordered by the brighter vocal
folds are detected. Center and size of these regions determine the glottis and an SRG step
with an automatically obtained threshold is applied. This segmentation result is then prop-
agated forward and backward along the temporal dimension throughout the image cycle
using per image level sets [Sethian, 1999], which evolve the seed regions towards the glottis
edges. The detection of the glottal opening is not sufficiently robust. Similar to [Lohscheller
et al., 2007] this algorithm is prone to leaking problems and motion is supposed to be com-
pensated through result propagation. Additionally, the 2D level set algorithm requires diffi-
cult parameter selection and heavily depends on the SRG initialization.

[Karakozoglou et al., 2012] first look for frames with maximal glottal opening similar
to [Demeyer et al., 2009], which are called landmark frames (LF). In these LF, large, nearly
vertically oriented areas are identified and an edge detection filter is applied. The vertically
oriented object with the largest area in each cycle is found via connected component analysis.
A bounding box is then computed for every frame to reduce further calculation time and
memory requirements. Glottal drift and camera movement is compensated by keeping the
bounding box steady throughout every cycle. An active contour segmentation as proposed
by [Chan and Vese, 2001] is used for segmentation, using information obtained from the LF
like shape and area of the object of interest. Segmentation always starts from the LF, where
either an automatically computed threshold or an elliptic mask for curve initialization is
used. After this process, the segmentation results are propagated using the mask of the
previous or next frame as initial mask. Despite promising experimental results and full
automatism, this method has certain limitations in difficult situations. The calculation of
the initial curve for the LF can be problematic due to leaking or in cases, where the glottis
does not have an elliptic shape. Further, topological changes (e.g., two glottal openings in
pathologic cases) are hard to segment correctly with 2D active contours, suggesting the use
of a 3D approach.

A very recent approach proposed by [Koç and Çiloğlu, 2014] is based on image histogram
modeling and thresholding. It assumes that the area of the glottal opening changes during
the opening and closing cycles, which can be detected by looking at the histogram changes
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Figure 3: The proposed method can be divided into three major steps: preprocessing, auto-
matic region of interest and seed region detection, and glottis segmentation.

solely in an ROI around the glottis. Based on the vocal folds being the most active structures
within the sequence, accurate determination of this ROI is crucial. By calculating the Total
Variation (TV) norm over a time sequence, the largest TV values correspond to regions of
maximal movement, which coincide with the glottal area. An automatic threshold compu-
tation using a Gaussian Mixture Model and a reflectance histogram, which is required to
deal with non-uniform illumination, leads to a glottis segmentation. This method neglects
the global drift and therefore does not provide any type of motion compensation. This and
the assumption that the vocal folds are always the most active regions of the image imply
that the detection of the ROI is not very robust, since TV calculation leads to wrong ROI
detections if no vibration or drift over a longer period of time exists.

3 Method

In related work, no automatic glottis segmentation methods have yet been presented, that
make use of the color video information, include a motion compensation step into the al-
gorithm, and rely on 3D segmentation of spatio-temporal volumes instead of stacking to-
gether 2D segmentations independently from temporal context. To overcome these limita-
tions, an image processing pipeline is presented as shown in Fig. 3. The presented method
consists of three major steps, which are preprocessing, automatic region of interest and seed
region detection, and glottis segmentation. In the preprocessing step, problems like non-
homogeneous background, illumination artifacts and global drift are dealt with. Then a
glottis ROI is automatically computed and seed regions for later segmentation are calcu-
lated. This is the core of the presented method, where a salient region detection algorithm
localizes the glottis. The generated seed regions are finally used as initialization for a 3D
Geodesic Active Contour segmentation algorithm.

3.1 Preprocessing

In preprocessing, first image contrast is enhanced by a color contrast stretching operation. A
typical LHSV contains noise as well as small interfering structures like illumination artifacts
and blood vessels. This greatly affects segmentation and ROI detection, therefore an edge-
preserving denoising step is introduced. It is performed according to the model of Rudin,
Osher and Fatemi (ROF) [Rudin et al., 1992]:

min
u

EROF =
∫
Ω

|∇u|dx +
λ

2

∫
Ω

(u− f )2dx

 . (1)

http://www.bmva.org/annals/2015/2015-0001.pdf
http://www.bmva.org/w/doku.php?id=annals_of_the_bmva


6 SCHENK ET AL.: GLOTTIS SEGMENTATION FROM HIGH-SPEED VIDEOS
Annals of the BMVA Vol. 2015, No. 1, pp 1–15 (2015)

Figure 4: Every 10th frame is registered and used to transform the images before and after.

In this model, denoising is formulated in a variational framework, where the first part rep-
resents the regularization term and the second part the data fidelity term. The solution to
this optimization problem is a convex, continuous function u. Data fidelity accounts for dif-
ferences of the denoised image u to the given, noisy image f , penalizing deviations with
a quadratic norm. Regularization accounts for gradients in the reconstructed image u, by
penalizing the L1 norm of the gradients. A weighting term λ serves as a trade-off between
data fidelity and regularization. To solve this convex optimization problem, a primal-dual
optimization algorithm presented by [Chambolle and Pock, 2011] is applied to the 3D spatio-
temporal volume. The last step of preprocessing is image registration, where global patient
and camera movements are compensated. For registration, the sum of absolute differences
between color images is introduced as the similarity measure in a rigid registration scheme
applied to consecutive video frames [Hill et al., 2001, Deliyski et al., 2006]. The three un-
known 2D motion parameters from translation and rotation are registered by an exhaustive
search strategy, where 9 rotation angles between [− π

240 , π
240 ] and 5 translation steps between

[-2 px, 2 px] in each image dimension specify the search space. The high frame rate of the
video recordings allows further speed-up of registration, because no fast global motion be-
tween consecutive frames exists. Therefore, only every tenth image is registered to a fixed
image, and the resulting transformation is applied to four frames before and five after this
image (see Fig. 4).

3.2 Automatic Glottis ROI Detection

Automatic glottis detection makes use of the concept of salient regions to detect the ROI
and the bounding box around the glottis, as well as to find the seed regions for the final
segmentation step. The basic idea of salient region detection [Borji and Itti, 2013, Riche et al.,
2013] is to find salient areas in an image and to show their likelihood of being important as
intensity values. Therefore, an area surrounded by background and not connected to the
image borders is defined as a salient region. The glottal opening fulfills these requirements,
since it is a dark area surrounded by tissue and usually located near the center of an image.

The salient region detection is inspired by Boolean Map based saliency [Zhang and
Sclaroff, 2013], which relies on topological structural information attracting visual atten-
tion [Wolfe and Horowitz, 2004]. A Boolean Map is a spatial representation that partitions
a visual scene into two distinct, complementary regions, i.e., fore- and background [Huang
and Pashler, 2007]. It is generated from selected feature channels to highlight regions attract-
ing visual attention. The influence of such regions can be represented by an attention map
A(B). Figure 5 shows how a set of Boolean Maps B = B1, B2, ..., Bn is generated from image I
by thresholding its feature map φ(I) at a value θ:
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Figure 5: Saliency detection based on Boolean Maps (adapted from [Zhang and Sclaroff,
2013]).

Bi = THRESH(φ(I), θ),
φ ∼ pφ, θ ∼ pθ .

The threshold function THRESH(φ(I), θ) assigns 0 to every pixel smaller than θ and 1 oth-
erwise. After each iteration, θ is increased by a step size δS, which can be selected by the
user. The feature channels φ(I) are assumed to be in the range between 0 and 255 and in
our case the color information of each frame is used. φ ∼ pφ and θ ∼ pθ represent the prior
distribution of θ and φ. Salient regions should have a higher chance to be separated from
the background when generating a Boolean Map, which can be achieved by a uniform dis-
tribution of the threshold θ. The CIE Lab color space is used due to its perceptual uniformity
with all channels stretched to the range of [0,255]. L is lightness, a the color space position
between red and green and b the position between yellow and blue.

The final saliency map can vary depending on step size δS due to image content. A higher
δS means faster computation because less Boolean Maps have to be calculated. From the set
of Boolean Maps B = B1, B2, ..., Bn attention maps Ai are computed based on the Gestalt prin-
ciple for figure-ground segregation, which states that surrounded regions are more likely
to be perceived as figures [Palmer, 1999]. Surrounded regions in a Boolean Map represent
salient areas and can be determined by simply filling all the regions connected to the bor-
ders. This operation is performed using a region growing method with the image borders as
seeds. The resulting attention maps are normalized using the Frobenius norm of the atten-
tion map to give small, concentrated areas more emphasis. The normalized attention maps
Ai are summed up to a mean attention map Ā and the final saliency map is calculated using
a threshold operation with 1

δS
to filter out weak signals.

For ROI detection the approach shown in Fig. 6 is used. Similar to [Karakozoglou et al.,
2012, Demeyer et al., 2009] the frame with lowest intensities is found, which is the one with
the largest glottal opening (landmark frame) and then a saliency map is calculated. Because
all the salient areas are candidates for the ROI, a connected component analysis is performed
and then each component is multiplied with a gray-scale version of the image. To find the
correct glottal opening a ranking value, which takes the area and the sum of intensities into
account, has to be calculated for each component. The highest ranked one is then selected as
ROI for the whole video and used for computing the surrounding, fixed size bounding box.
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Figure 6: Processing pipeline to find the region of interest and bounding box for the largest
glottal opening. Images were contrast-enhanced for visualization purposes.

3.3 Glottis Segmentation

The size of the glottal opening is a very important information for speech and voice disorder
research and its segmentation is the main purpose of this work. All the previous steps were
required to prepare the LHSVs for the segmentation step. As shown in Fig. 7, seed regions
and edge information from the preprocessed images restricted to the bounding box from
the previous step are used to initialize the segmentation. These seed regions then evolve
towards the edges of the glottis to yield the final segmentation. In this work, a novel way of
glottis detection utilizing a salient region based algorithm initializes the segmentation step.
Seed region detection is applied to each image as opposed to the once per video performed
ROI detection of Section 3.2, but otherwise works very similar. After calculating the mean
attention map, a threshold filter removes weak salient regions. Then only information inside
the previously calculated image bounding box is extracted. By multiplying with the ROI
all unwanted salient regions in the image are removed, thus avoiding the time consuming
connected component analysis. After a thresholding operation with the mean intensity gray
value of the previous seed region and morphological erosion, a seed region inside the glottis
is determined.

3.3.1 3D Geodesic Active Contour Segmentation

For final glottis segmentation, the spatio-temporal volume is processed by a Geodesic Active
Contour (GAC) model [Caselles et al., 1997]. This model, which is traditionally solved using
the level set method [Sethian, 1999] prone to local minimia, is adapted to 3D and formulated
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Figure 7: Image segmentation: After extracting a bounding box and computing edge infor-
mation, seed regions from the salient region detection determine segmentation input.

as a continuous, variational energy minimization problem according to

E(C) = α
∫ 1

0
|C′(q)|2dq− λ

∫ 1

0
|∇I(C(q))|dq, (2)

where a 3D surface C(q) : [0, 1] → R3 is sought, that minimizes this energy functional,
balancing an internal force penalizing deviations from a smooth surface and a data term pe-
nalizing a force derived from∇I. This data term is an external energy force, that attracts the
segmentation surface towards the image gradients. By defining a monotonously decreasing
edge indicator function g : [0,+∞) → R+, a generalization of Eq. 2 can be achieved, which
leads to the GAC energy combining internal and external energy in a single term

min
C

{
EGAC :=

∫ L(C)

0
g(|∇I(C(q))|)ds

}
, (3)

where the integration over the infinitesimal area elements ds along L(C) is weighted with g,
derived from the image information, thus representing computation of a geodesic in a Rie-
mannian space. Extending the model of [Chan and Vese, 2001], it has been shown by [Bres-
son et al., 2007], that the GAC energy of Eq. 3 can be formulated using the weighted Total
Variation, which is defined as

TVg(u) =
∫

Ω
g(x)|∇u|dx. (4)

For u being a characteristic function 1C, [Bresson et al., 2007] have shown that EGAC is equiva-
lent to TVg(u). The characteristic function 1C is a closed set in the image domain Ω and C rep-
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resents its boundary. By allowing u to vary continuously between [0,1], Eq. 4 becomes a con-
vex functional, enabling computation of a global optimum in this relaxation to Eq. 3. A key
benefit of such a convex formulation compared to other works based on geodesic [Caselles
et al., 1997] and other active contours [Xianghua and Mirmehdi, 2003, Zhou et al., 2013] is
its ability to overcome local minima when minimizing the energy functional, an issue which
has also recently been dealt with in [Appia and Yezzi, 2011]. Looking at the definition of the
weighted TV model (4) it can be seen that a global minimizer is given by the trivial solution
C = 0 (a point). To get meaningful results the previously calculated seed regions have to be
incorporated as additional constraints. The final variational image segmentation model is
defined as

min
u∈[0,1]

{
ESeg :=

∫
Ω

g(x)|∇u|dx + λ
∫

Ω
u f dx

}
. (5)

The first term is the TV formulation weighted by an edge indicator function g(x). In addi-
tion, a second term, which is convex in u, resembles the incorporation of the seed regions
into f . λ is a trade-off factor between constraints and surface area minimization, while the
edge indicator function g reaches a minimum at the edges and is defined as

g(I) = e−α|∇I|β . (6)

The segmentation is initialized with f = −∞ according to the previously found seed regions
and 0 otherwise. f = −∞ leads to the propagation of u = 1 and for f = 0 only the pure
Geodesic energy is minimized until the edge indicator g prevents it. A binary segmentation
is then obtained by applying a threshold of 0.5 for u. Even though this only approximates
the original GAC energy, this choice not critical in practice. For numerical optimization of
EGAC, again the primal-dual algorithm of [Chambolle and Pock, 2011] is used.

4 Experiments and Results

To evaluate the presented method, a comparison to the clinical standard [Lohscheller et al.,
2007] has been carried out on a set of images from male and female patients of different ages,
with and without medical conditions. The ground truth for these image sets was generated
through manual glottis annotation by an experienced computer vision researcher together
with an expert in voice disorders. Three video sequences that include one or more open-
ing and closing cycles were acquired with an HRES ENDOCAM 5562 (Richard Wolf GmbH,
Knittlingen, Germany) and annotated to establish the ground truth. Spatial resolution was
256× 256 pixels and temporal resolution 4000 frames per second. Additionally, from a set of
randomly chosen images from a variety of different videos, another set of annotated images
was constructed, containing a larger variety of videos.
Four experiments were designed:

• Experiment 1: A 60 frames video sequence, every second frame used.

• Experiment 2: A 60 frames video sequence.

• Experiment 3: A 30 frames video sequence.

• Experiment 4: 25 randomly picked frames from a variety of videos.
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In all experiments, frames containing manual segmentation annotation were used to com-
pare the proposed method to the implementation of the clinical standard [Lohscheller et al.,
2007]. An overlap measure of the ground truth segmentation and the result of the presented
and the SRG method was calculated. The Dice coefficient (DC) is a statistical measure for
comparing 2D region overlap. It ranges from 0 to 1 and is computed as

DC =
2 |A ∩ B|
|A|+ |B| ,

with A the ground truth and B the automated segmentation.
A number of parameters were set to empirically chosen fixed values for all these exper-

iments. A fixed sized bounding box based on the detected glottis with a width of 80 and a
height of 150 pixels was used. For ROF denoising a λ value of 25 provided the best trade-
off between data fidelity and regularization. In registration, 25 different translation offsets
with a step size of 1 pixel and 9 rotation angles between [- π

240 , π
240 ] were used for exhaus-

tively searching the optimal transformation between frames. For the 3D GAC segmentation,
edge computation with α = 15, β = 0.55 and a weighting factor of λ = 0.01 empirically
proved suitable. All implementations were done in C++ and evaluation was performed on
an Intel Core i7 (8 cores/3.4 GHz) with 8GB of memory and running Ubuntu Linux 14.04
as operating system. A number of steps in the proposed method (i.e., denoising, sum of ab-
solute difference computation for registration and 3D GAC segmentation) were accelerated
by a parallel implementation using the graphics adapter as a numeric co-processor based
on NVidia CUDA. This lead to a significant speedup, thus enabling the method to be used
in clinical applications due to the very fast computation time of around 25-30 minutes for a
whole sequence of over 8000 frames (δS = 8).

The automatically computed quantitative results of the comparison between the pro-
posed method, using δS = 3 and δS = 8, and the clinical standard are shown in Fig. 8 as
box-whisker plots showing the DC. Qualitative results can be found in Fig. 9.

5 Discussion

The quantitative results show that the proposed fully automatic segmentation approach
yields good qualitative results. It overcomes certain problems of the SRG-based clinical stan-
dard [Lohscheller et al., 2007] like leakage or over- and undersegmentation, and outperforms
it in all four experiments. The proposed method with saliency step size δS = 3 performs
better than the reference implementation of the clinical standard with median DC percent-
age values of 86.1, 61.3, 92.7, 76.7 and 67.4, 41.6, 79.8, 54.5, respectively. The SRG method
has problems with leakage as depicted in Figure 9 (a,c,d), while the proposed method does
not show these shortcomings. As expected, it performs slightly better than the version with
saliency step size δS = 8 with median percentage values of 86.1, 61.3, 92.7, 76.7 and 85.9, 60.5,
92.6, 76.4, respectively, but the differences are not significant. Both versions of our method
show a significantly better median value than the clinical standard at the 5 % significance
level as represented by the notches of the box-whisker plots. As mentioned in Section 3.2,
the main benefit of a larger step size is the lower calculation time. Using δS = 8 instead of
δS = 3 results in a speed-up factor around 2, while the quality of the results is nearly the
same.The computation of a block with 1500 frames at δS = 8 takes approximately 5 minutes
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Figure 8: Box-whisker plot with DC results in % of all four experiments. Proposed method
in blue for δS = 3 and orange for δS = 8, SRG [Lohscheller et al., 2007] results in red. The
notches of the proposed and SRG method do not overlap, showing a significantly better
median value at the 5 % significance level.

and for a whole video of 8000 frames around 30 minutes. Some of the outliers in the box-
whisker plots (see Fig. 8) can be explained due to the nature of DC, which over-emphasizes
relatively small mistakes for small structures (e.g., missing a ground truth segmentation that
only consists of a single pixel would result in DC = 0). In Fig. 9 (e) an oversegmentation can
be seen in the top right corner when using δS = 8. This is not an error due to segmentation,
but a problem from ROI detection, because a connection to a nearby dark area exists, which
could not be removed by filtering out weak signals in the ROI detection step.

Our dataset already includes some morphological variations due to various recordings
from different patients with and without medical conditions. However, to study morpho-
logical dissimilarities in more detail an extended evaluation on a larger database is required.

http://www.bmva.org/annals/2015/2015-0001.pdf
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Figure 9: Comparison of the original (green), the ground truth (blue), the proposed method
with δS = 3 (turquoise) and δS = 8 (orange), and the SRG based clinical standard (red).

6 Conclusion and Outlook

A fully automatic glottis segmentation method for LHSVs was presented, which shows
promising quantitative and qualitative results and is useful for routine clinical application.
The method was evaluated by comparing it to the clinical standard on a data set containing
annotated ground truth segmentations. Four different experiments were designed, consist-
ing of three video sequences and 25 individual frames, randomly selected from a variety
of video recordings. In all experiments, the proposed method outperformed the current
clinical standard regarding accuracy while not requiring any user interaction. Despite the
promising results, there is still room for improvement. More robust behavior is expected by
further refining the ROI and bounding box detection. Additionally, to replace the current
clinical standard, in future work a more extensive evaluation on a larger database as well as
comparisons to other related methods are needed.
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