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ABSTRACT 

 

The determination of an individual’s legal majority age is 

becoming increasingly important in forensic practice. 

Established age estimation methods are based on 2D X-rays, 

but suffer from problems due to projective imaging and 

exposure to ionizing radiation, which, without proper 

medical or criminal indication, is ethically questionable and 

legally prohibited in many countries. We propose an 

automatic 3D method for the determination of legal maturity 

from MR images based on the ossification of the radius 

bone. Age estimation is performed by a linear regression 

model of the epiphyseal gap volume over the known ground 

truth age of training data. Results are comparable with the 

established Greulich/Pyle (GP) and Tanner/Whitehouse 

(TW) methods, but do not involve harmful radiation. 

 

Index Terms — legal majority age, hand bones, bone 

age estimation (BAE), magnetic resonance (MR), 

segmentation, random forest 

 

1. INTRODUCTION 

 

Forensic age estimation of living individuals and human 

remains has become an important procedure in legal 

medicine. Example applications include victim 

identification after disasters or assessing living individuals 

entering a country without proper identification documents, 

when age status becomes important for criminal pro-

secutions, immigration hearings, and determining refugee 

status of asylum seekers [1]. Being based on ossification of 

the hand/wrist bones, bone age estimation (BAE) methods 

employ conventional medical imaging modalities to provide 

means for objective and reliable age estimation.  

Different standards have been developed and are continually 

refined to make BAE applicable to many situations. The 

most widely used approaches in forensic practice for BAE 

are the methods proposed by Greulich/Pyle (GP) and by 

Tanner/Whitehouse (TW) [2]–[4]. Building upon the visual 

X-ray image comparison of the whole hand with a reference 

atlas, the GP method is fast and easy to use compared to the 

TW method, but shows larger inter-observer variability. 

Instead of using the hand as a whole, the TW method is 

based on comparing individual hand bones to reference 

illustrations using X-ray images. With the use of medical 

image analysis, different manual and automated methods 

have been proposed to make the evaluation procedure in X-

ray images more objective and reliable [5], [6]. However, 

the examination of 2D X-ray images is limited due to the 

projective imaging configuration. Additionally, X-ray 

imaging involves an exposure to ionizing radiation, which is 

legally and ethically controversial when performed without 

medical indication, thus many countries prohibit its use for 

non-medical reasons.  

Recently, magnetic resonance (MR) imaging has become an 

alternative in BAE research. It is not associated with 

harmful ionizing radiation and provides a detailed 3D 

representation of the anatomy. Further, MR imaging 

provides means for measuring bone and cartilage volume 

which may lead to improved reliability and precision. State 

of the art BAE methods using MR images are restricted to 

best-view cross sections to make use of estimation methods 

that were developed for 2D X-ray images [7].  

The main goal of our research is to develop an automated 

method for determination of legal majority age based on 

BAE of all hand bones from MR images. This paper 

presents a first step in that direction, as we propose a 

method for determination of legal majority age based on an 

automated 3D segmentation of the gap between epiphysis 

and metaphysis of the radius bone. We focus on the radius 

bone, since its ossification is most clearly visible and is 

therefore the first bone examined by radiologists in BAE. 

The hypothesis is that the epiphyseal gap volume of the 

radius bone, which is segmented using a random 

classification forest from MR hand image training data, 

predicts the real age using a linear regression model. To 

determine whether a person is juvenile or adult, the linear 

regression model is used to define a binary classification 

into below and above 18 years, where the threshold in gap 

volume is derived from the training data. 

 

2. MATERIALS 

 

A total of 60 T1-weighted 3D gradient echo MR images of 

the left hand were separated into training (43) and test data 

sets (17). The known ground truth age of the Caucasian 
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male population in this study has a mean of 17.1 years 

(standard deviation SD = 2.4 years, range of 13.0‒24.7 

years). Average volume and voxel sizes are 294x512x72 

and 0.47x0.47x0.9 mm³, respectively. Since various 

methods for automatic detection of the radius bone in hand 

images can be found in the literature [9]-[10], the 

assumption is made that the radius bone was successfully 

detected and a volume of interest was appropriately cropped 

in a pre-processing step (see Fig. 1a). The ground truth 

segmentation of the gap voxels between epiphysis and 

metaphysis (see Fig. 1b) was created by a scientist well 

experienced in the analysis of 3D MR images. 

 

3. AUTOMATED BONE AGE ESTIMATION 

 

3.1. Segmentation of the epiphyseal gap in radius bone 

 

Inspired by the work of Criminisi et al. [8] and Donner et al. 

[9], the segmentation of the gap between epiphysis and 

metaphysis in radius bone is based on a random 

classification forest (Fig. 1) that learns the gap location from 

the training data set. To decrease the computational effort 

for building the random forest, not all voxels in the training 

data set of radius bone images were used to train the 

classifier, but rather a smaller, specially selected set of 

voxels. For each tree, this voxel set is generated from the 

ground truth annotation of the gap and from the no-gap 

voxels which are selected based on the following 

probability: 

 

 
(1) 

 

where |I(xn, yn, zn)| and |G(xn, yn, zn)| are the normalized 

image intensity and gradient magnitude of the n-th no-gap 

point in the radius bone images. The probability p(xn, yn, zn) 

favors the selection of soft tissue voxels surrounding the 

radius bone and edge voxels between radius bone and 

surrounding tissue. The random classification forest is 

therefore forced to learn from the image appearance of the 

surrounding soft tissue and the anatomical shape of the 

radius bone. 

During training, classification trees are built by recursively 

selecting the best split between the gap and no-gap voxels 

that reach a specific node. For each node, the subset of 

feature vectors fj = (vj, Mj), j = 1,..,NF; and threshold values 

Tk, k = 1,..,NT; are randomly generated, where vj = (xj, yj, zj) 

is an offset vector in the 3D image coordinate system and Mj 

is an image feature selected as either image intensity or 

gradient magnitude. For each point i that reaches a node the 

following difference dj,i is calculated:  

 

 

Depending on the difference values dj,i, each threshold Tk, 

splits the voxels that reach a node into two subclasses. The 

split that gives the highest information gain IG when 

separating gap and no-gap points, is selected as the best split 

and its feature vector fB and threshold values TB are stored in 

the node. The voxels of the subset where dj,i < TB are 

classified to the left child node and the remaining voxels to 

the right one. The IG is given with the formula: 
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where ωp = np/(nL + nR) is the ratio of the number of voxels 

classified to left (L) and right (R) child node, and pq|p is the 

probability that gap (G) or no-gap point (NG) is classified to 

left or right child node. When there is no improvement in 

the information gain or the depth of the tree reaches 15, the 

recursion stops with a leaf node. The count of the gap voxels 

which resemble gap probability are stored in the leaf. Since 

training data voxel subsets are randomly selected, and the 

feature vector and threshold are randomly generated, each 

tree in the random forest is therefore unique.  

During testing, all image voxels of a test data set are routed 

from each tree root to a leaf by being pushed to the left or 

right child node depending on the feature vector and 

threshold value stored in the node. The gap probability 

stored in the reached leaf is accumulated at the location of 

the point in an image initialized in the same coordinate 

system as the observed 3D image of the radius bone (Fig. 

1c). The values of the 3D accumulator normalized with the 

number of trees therefore represent the probability of the 

gap to exist at the respective location in the test image. The 

gap is segmented by thresholding the normalized 3D 

accumulator with the value TP obtained for the minimal 

segmentation error in the training data set (Fig. 1d). 
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Figure 1. The gap between epiphysis and metaphysis in radius 

bone is segmented with a random classification forest in 3D 

MR images. a) The radius bone, b) manually segmented gap, c) 

obtained probability of the gap location from random forest 

and d) segmented gap with the proposed method. Illustrations 

correspond to the best-view cross section of the 3D MR image. 
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3.2. Determination of legal majority age 

 

The chronological age of the radius bone is modeled as a 

linear decrease in the volume size of the gap between 

metaphysis and epiphysis with a regression function: 

 

 

(4) 

 

where age is the age of the person, V is the segmented gap 

volume that is normalized with the estimated weight of the 

radius bone, and A0 is the age when the gap is no longer 

visible in the image. The coefficients k1, k2 and A0 are 

determined by fitting the linear regression function to the 

segmented gap volumes using the training data set. The age 

of the person is therefore estimated solely based on the 

chronological age model derived from the radius bone. The 

legal majority age is determined by comparing the 

segmented gap volume with the value TC that best separates 

the juveniles from adults in the training data set. The 

threshold value TC corresponds to a binary classification 

with equal sensitivity and specificity. 

 

4. EXPERIMENTAL SETUP 

 

The number of trees NT = 25 is obtained from the maximum 

curvature of the function representing the improvement in 

the segmentation precision according to the number of trees 

in the random forest. The depth of a tree ND = 15 as well as 

the number of feature vectors NF = 50 and threshold values 

NT = 25 generated in each node was chosen as a compromise 

between segmentation performance and calculation time. To 

force the classifier to learn from the local anatomical 

structures, the maximal distance of the randomly generated 

offset vector is restricted to be |vj| ≤ 40 mm. The algorithm 

was implemented in MATLAB 64 on a Core i7 3.4GHz. 

Training time of the random forest was 3.5 hours and the 

testing time on average 45 minutes per image. 

 

5. RESULTS 
 

The proposed method for determination of a legal majority 

age was applied to T1-weighted MR images of the left hand. 

Fig. 2 shows the chronological age model defined by the 

regression function (Eq. 4) obtained for the manual 

segmentation and proposed automatic 3D segmentation of 

the epiphyseal radius bone gap from the training data. The 

uncertainty in BAE, which was obtained as difference 

between the estimated and real age of the persons younger 

then A0 = 19 (see Fig. 2), is presented in Figure 3 with box-

and-whisker plots, where the estimations obtained from 

manual and proposed automatic 3D segmentation of the 

radius bone gap are shown separately for training and test 

data set. The results for determination of legal maturity 

based on the binary classifier with equal specificity and 

sensitivity (TC = 0.04) are presented in Table 1, again 

separately for ground truth and proposed 3D segmentation. 

6. DISCUSSION 
 

Up to our knowledge, the first method for automatic 

determination of legal maturity in 3D MR images was 

presented. A random classification forest was used to 

segment the gap between metaphysis and epiphysis in 3D 

MR images of the radius bone. Since the volume of the gap 

represents a small part of the radius bone volume, the use of 

all image voxels in building the random classification forest 

as proposed in [8] may not only require a long computation 

time and deep trees, but may also lead to overfitting to the 

no-gap voxels in the training data set. Each tree in the 

random forest is therefore trained on a small subset of image 

voxels that most distinctively represents the anatomical 

position and appearance of the gap and no-gap voxels. The 

image intensity and gradient magnitude are used to generate 

features that distinguish gap and no-gap voxels, we consider 

these two image modalities to contain sufficient information 

for successful classification. The long testing time can be 

explained by the fact that during testing each voxel of the 

image has to be classified according to the random forest, 

while during training of the random forest only small 

subsets of the voxels in the training data set were used. 

Figure 2 reveals that the age of a person can be estimated 

based on the chronological age of the radius bone, since the 

volume of the gap between metaphysis and epiphysis 

linearly decreases with age. The maximal accuracy of the 

proposed method is indicated by the mean difference of 

estimated age and real age for the manual segmentation and 

its value of 0.81 years is as expected, regarding the fact that 

the speed of bone aging varies between individuals [7]. 

Although the similar accuracy between the manual and 

proposed methods on the training data indicates that the 

method can be used in automatic segmentation of the radius 

gap in 3D MR images, the difference between training and 

test data for the proposed 3D segmentation is not negligible 

(Fig. 3). The difference may be due to the small training and 

test data sets, but may also be due to insufficient accuracy in 

the segmentation of the gap volume, especially in the final 
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Table 1. Classification results for determination of legal 

maturity based on the manual and proposed automatic 3D 

segmentation in the training and test data set. The 

classification outcomes are reported in percent (%) for equal 

specificity and sensitivity (TPR = TNR).  

 TPR FNR TNR FPR ACC PPV 

GT training 93.3 6.7 93.3 6.7 93.3 85.7 

GT test 80.0 20.0 100.0 0.0 88.2 77.8 

3D seg training 91.5 8.5 91.5 8.5 91.5 80.0 

3D seg test 70.0 30.0 85.7 14.3 76.5 66.7 

* TPR, TNR, FPR, FNR are true positive, true negative, false positive 

and false negative ratio, respectively, ACC classification accuracy and 

PPV positive predicted value. 
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stage of the ossification when the gap disappears from the 

radius bone. The volume of the gap between epiphysis and 

metaphysis linearly decreases with the age, and by the age 

of A0 = 19 the gap is no longer visible in the radius bone 

(Fig. 2). The lower value of the classification threshold 

(TC = 0.04) that best separates the juveniles from adults 

compared to the value of the regression function for the 18 

years old person (TR = 0.09) can be attributed to the 

precision of the method, but may also be due to the modest 

number of images in the testing data set. Compared with the 

results presented in the papers [4] and [10], the proposed 

method for the automatic determination of legal maturity in 

3D MR images performs better than the GP method in both 

the mean BAE accuracy with an improvement of 0.4 years 

(Fig. 3) and in classification accuracy with an improvement 

of 8% (Table 1). The mean accuracy of the BAE is 

comparable with the 1.65 years obtained by TW method [4], 

while the accuracy of other methods that can be found in 

literature varies in the range from 0.36 up to 2.75 [2]. 

Nevertheless, all these methods are based on the visual 

estimation of all bones of the hand. The method that uses 

only radius and ulnar bones for the BAE in 2D X-ray 

images has shown an accuracy up to 3.2 years [11].  

 

7. CONCLUSION 

 

To conclude, compared to BAE methods established in 

forensic practice that are limited due to projective X-ray 

imaging and harmful exposure to ionizing, we proposed a 

method for determination of the legal majority age from 3D 

MR images, which is based on automatic 3D segmentation 

of the epiphyseal gap of solely the radius bone. Although 

the obtained results indicate that the proposed method can 

be used in the determination of the legal majority age, 

further improvements of the accuracy in the BAE are 

necessary to make the method acceptable in the forensic 

practice. Thus, further research will continue towards 

improving the 3D gap segmentation and extending the 

method to more hand bones. 
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Figure 3. Distribution of the differences between BAE and 

known chronological age for the manual and proposed 

automatic 3D segmentation on training and test data sets. 

 
Figure 2. Bone age estimation model using a linear regression 

function of the radius bone gap volume between metaphysis 

and epiphysis over the known chronological age. Manual (top) 

and proposed automatic 3D segmentation (bottom), gap 

volume is normalized according to radius bone width. 
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