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Abstract. Bone age estimation (BAE) is an important procedure in
forensic practice which recently has seen a shift in attention from X-
ray to MRI based imaging. To automate BAE from MRI, localization of
the joints between hand bones is a crucial first step, which is challeng-
ing due to anatomical variations, different poses and repeating struc-
tures within the hand. We propose a landmark localization algorithm
using multiple random regression forests, first analyzing the shape of the
hand from information of the whole image, thus implicitly modeling the
global landmark configuration, followed by a refinement based on more
local information to increase prediction accuracy. We are able to clearly
outperform related approaches on our dataset of 60 T1-weighted MR im-
ages, achieving a mean landmark localization error of 1.4±1.5mm, while
having only 0.25% outliers with an error greater than 10mm.

1 Introduction

Skeletal bone age estimation (BAE) of adolescents based on 2D hand radiographs
has applications in clinical and legal medicine, like growth predictions, diag-
nosis of endocrinological diseases [1], assessing asylum seekers without proper
identification documents, or preventing age manipulation in junior-level sports
competitions [2]. Recently, non-invasive 3D MRI methods have gained in impor-
tance [1,2], especially in legal medicine, since the use of ionizing radiation is pro-
hibited in many countries for non-diagnostic reasons. To provide an objective,
repeatable and radiation-free measure of chronological age, a fully automatic
BAE method from hand MRI may significantly advance the use of age estimation
in legal medicine. Automated localization of individual hand bone landmarks is
a mandatory and crucial first step in a BAE pipeline to analyze bone ossification
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Fig. 1. Overview of the proposed multiscale localization method

stages. Anatomical landmark localization may be performed based on low-level
interest point detection [3], that requires a reasoning on the high-level semantics
of localized points in a subsequent step. A more specific low-level algorithm for
hand bone localization was presented in [4], where ROIs were extracted from
X-ray images by detecting finger tips and bone longitudinal axes using gradient
information. This approach is not robust to the presence of variations in typical
clinical images. BoneXpert [5] uses a statistical shape/appearance model to de-
tect 2D bone contours from X-ray images, however, such models require a high
effort to extend to 3D surfaces and their generative modelling strategy requires
a large number of training data [6]. Recently discriminative machine learning
approaches have received a lot of attention for anatomical structure localization,
see [7] for a survey. Criminisi et al. apply random regression forests (RRF) to
estimate distances to the planes of bounding boxes containing anatomical struc-
tures [8]. They are able to coarsely locate a large number of different organs, but
especially in the presence of flexible anatomical structures like the fingers, their
approach lacks in precision, presumably due to their axis-aligned bounding box
design. Donner et al. introduce a three-step procedure consisting of a coarse,
generic landmark localization without global knowledge of the landmark con-
figuration, followed by a per-landmark refinement and finally imposing a global
structure using a Markov Random Field (MRF) [7]. In [9] the same authors have
proposed an alternative localization approach using dictionaries of multi-scale
image patches, which jointly predicts landmarks visible within each patch us-
ing nearest-neighbor dictionary lookups. They have shown similar localization
accuracy compared to [7], but at a fraction of the runtime.

In this paper, we present a novel 3D anatomical landmark localization ap-
proach for 3D hand MR images (see Fig. 1). We propose a two-step multiscale
RRF based approach, that first makes a prediction of the coarse bone landmark
positions analyzing the whole shape of the hand and using feature information
from all over the image. This step finds the area, where the landmark locations
are expected, and implicitly models the global landmark configuration. Based
on these locations, the second step uses more localized information for accurate
landmark prediction. We see this idea of gradually decreasing the area of inter-
est of an RRF as our main contribution, which resembles a generic localization
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strategy. We apply our method and related approaches to a database containing
youths in an age range, where BAE is relevant for forensic applications. This
data set is challenging due to its age range, presence of repeating structures,
and variation due to the non-fixed configuration of fingers (see Fig. 2a,b).

2 Method

The location of anatomical landmarks is constrained by all of their surround-
ing structures. However, coarse localization of landmarks is supported by global
information from all over the image, while closer structures provide the informa-
tion to increase the accuracy of landmark localization. We realize this concept
by a weighting scheme, that lets local structures have a higher contribution to
the estimation of landmark positions. To implement this idea the RRF frame-
work [8] is perfectly suitable, since it selects proper image structures that vote
for landmark distances in a probabilistic fashion, where position estimates can
be weighted by the distance to the estimate. Additional information about the
landmark position can subsequently be obtained by connecting multiple estima-
tion steps, where the output of individual steps restricts the area for estimating
landmarks in the following step. This connection is made by using several RRF
stages, that gradually decrease the areas around landmarks, where structural
information is taken from. Together with the weighting scheme, we regard this
idea as our main contribution compared to related work [7, 8].

For our application of landmark detection from hand MR images, we propose
using two RRF steps according to the strategy above, as shown in Fig. 1. The
first RRF coarsely locates the landmarks, and due to its multi-class architecture
where each voxel in the image votes for all landmark positions, it implicitly
models spatial relations between the landmarks. The second RRF learns from
the restricted areas around landmarks given by the first step, thus improving
localization accuracy. In the following we describe our generic RRF and focus
on its use for the two proposed landmark detection steps.

2.1 Random Regression Forest

RRF Training: Our regression forest models the distances in x, y, and z of
voxels in training images to multiple individual landmark positions lc simul-
taneously. At each node of the T independently constructed trees, the set of
voxels (S) reaching the node is split into voxels reaching the left (SL) and the
right child node (SR). The splitting decision is made by thresholding for each
voxel a feature response, calculated by taking the mean intensity difference be-
tween two cuboids with arbitrary size and offset relative to each voxel position
v = (vx, vy, vz) ∈ S. From a pool of randomly generated features and thresholds,
one feature and threshold is selected in order to maximize an information gain
measure IG, computed according to

IG(S, SL, SR) = H(S)−
∑

i∈{L,R}

|Si|
|S| H(Si), (1)
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where entropy H(S) =
∑

c q(c;S) · log|Λc(S)|, and q(c;S) is the ratio between
the number of voxels that vote for landmark c and the total number of voxels in
S. Entropy is computed from per-landmark variances Λc(S):

Λc(S) =
1

|S|
∑

i∈S

||dc(vi)− 1

|S|
∑

j∈S

dc(vj)||2. (2)

The maximization of the information gain aims to minimize the uncertainty
Λc(S{L,R}) of the distance estimates dc(v) to all landmarks from the voxels in
left and right child node. Each voxel votes for the landmark positions lc relative
to its position v, with the relative voting vector dc(v) = lc − v for a landmark
c. Node splitting is done recursively and stops, when the maximum tree depth
D is reached. For testing we store at each leaf node for each landmark the 1D
histograms of the x, y and z components of dc(v) of all voxels reaching the node.

RRF Testing: During testing voxels are pushed through all of the T trained
trees. Starting at the root node, voxels are passed recursively to the left or right
child according to the binary feature tests stored at the split nodes until a leaf
node lt(v) is reached. We apply the distance estimates given by the histograms at
the leaf nodes h{x,y,z},c(lt(v)) relative to the voxel positions v and sum them up
with a weight w(v), according to (3), to get for each landmark three histograms
h{x,y,z},c, representing the probabilities of a landmark being located at a certain
position separately for x, y, and z.

h{x,y,z},c =
1

T ·∑v w(v)

T∑

t=1

∑

v

w(v)h{x,y,z},c(lt(v)) (3)

The final probability estimate p(lc) is obtained by the product of the three
histograms h{x,y,z},c, and the final landmark positions by the maxima of p(lc).

Our main contribution is the introduced weighting factor w(v) in (3), which
lets local structures contribute more, by decreasing the weight of the voting vec-
tors according to their length ||dc||. The weighting factor (4) also incorporates
the goal of reducing the area for estimating landmarks during the second de-
tection step, by plugging the outcome of the first detection step into the prior
probability pc(v) = p(lc).

w(v) = e−||dc||·α · pc(v) (4)

The parameter α allows adjusting the steepness and it is set to 1/cm in all
experiments. With the lack of prior knowledge about landmark positions in the
first detection step, we use the same prior probability for all voxels, i.e. pc(v) = 1.

2.2 First Detection Step: Coarse RRF (CRRF) Estimation

We train an RRF according to Sec. 2.1 by letting all voxels within the training
images vote for all landmark positions simultaneously. Input images are resam-
pled to a quarter of the original resolution, since this first step only requires a
coarse localization, and experiments on full resolution did not show any benefit.
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Fig. 2. Hand bone segmentation with landmark annotation (a) and different subject
with GIRRF localization result (b). Results of compared algorithms (c-e) presented
on a 2D projection of a selected MR volume, with error vectors from cross-validation
drawn relative to ground truth position of the specific MR volume

2.3 Second Detection Step: Refinement

In the second detection step another regression forest is trained by considering
only a small region around the landmarks retrieved by the CRRF step, resulting
in voting for neighboring landmarks only. For training we apply CRRF to all
training images to get the probability p(lc) of the landmark c being at position lc.
We use this probability to focus on local areas by randomly selecting voxels for
training according to the distribution p(lc). Additionally we apply a threshold τ
to eliminate voxels with low probability, representative of non-local structures.
All selected voxels are put into one single forest, and the same kind of features
as in the CRRF step are used. This makes effective use of feature sharing, since
a lot of landmarks share similar local appearance, an idea that was presented
in [10]. When going down to deeper levels of the tree, voxels of landmarks with a
different local appearance will be passed to different branches of the tree. During
the IG calculation and in the voting aggregation in the leaf nodes, voxels are
voting only for those landmark positions where pc(lc) ≥ τ .

In testing, we accumulate the leaf histograms of all voxels in a range r around
the estimation of the landmark position from the first detection step. Due to a
higher prediction accuracy when moving close to the actual landmark position,
this process is repeated niter = 3 times, initialized by the prediction of the CRRF
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or the previous iteration step. This resembles a greedy optimization scheme for
landmark localization, where we experienced convergence after a few steps. We
refer to the combination of first and second detection step as our gradually
improving random regression forest (GIRRF) localization method.

3 Materials and Experimental Setup

Materials: Our dataset of left hand T1-weighted 3D gradient echo MR images
consisted of scans from 60 caucasian male subjects between 13 and 23 years.
The average dimension of the volumes was 294 × 512 × 72 with a voxel size of
0.45×0.45×0.9mm3. Hands are located roughly in the center and rotation about
the z-axis is varying in the range of about ±15◦ (see Fig. 2e). In each volume, 28
landmarks were manually annotated by a scientist, who selected characteristic
locations within the hand at the ends of each of the metacarpal and phalanx
bones, three points at the radius and one at the ulna bone (see Fig. 2a).

Experimental Setup: We evaluated our algorithm and compared it to the
Top-Down Patch Regression (TDPR) [9] method with the parameters proposed
by the authors in a cross-validation setup with N = 5 rounds. In each round
we randomly split the 60 input images into 43 training and 17 testing images.
The measure we used for evaluating the performance is the Euclidean distance
between the ground truth and the estimated landmark position.

First Detection Step: We built T = 8 trees with maximum depth D = 14,
where for each node split 100 candidate features and 10 candidate thresholds
were generated. The maximum size and range of the random feature cuboids
was limited to 50mm and 25mm in each dimension, respectively. Further, to
show the benefit of the introduced weighting scheme, we made an experiment on
the first detection step with and without the use of the weighting function w(v),
denoted as CRRFweight and CRRF, respectively. Note that our first detection
step without the weighting function resembles an implementation of the method
in [8], but focusing on landmark localization instead of bounding boxes, since
we aim for accurate localization independent of bounding box orientation.

Second Detection Step: The threshold used for selecting the voxels for training
was set to τ = 0.4 ·max{p(lc)}. Using the selected voxels, we built T = 8 trees
with maximum depth D = 15. At each node split 20 random candidate features
and 10 candidate thresholds are generated. The maximum size in each dimen-
sion and distance of the feature cuboids is 7mm. To iteratively estimate final
landmark positions, we used the voxels in the ranges r = {30mm, 10mm, 5mm}
around the previous estimation starting with the CRRF result.

4 Results

Figure 2 shows a visualization of the cross-validation results of the TDPR and
our proposed two detection steps. For all landmarks we achieve a localization
error (± standard deviation) of 1.44±1.51mm. In x, y and z direction we achieve
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Table 1. Comparison of localization errors from cross validation on hand bone land-
marks, radius/ulna (R/U), carpometacarpal (CMP), metacarpal (MCP), distal and
proximal interphalangeal joints (DIP,PIP), finger tips (FT)

Method Localization Error [mm]: Mean ± Std.

R/U CMC MCP PIP DIP FT overall

TDPR [9] 2.8±2.8 2.0±1.1 2.0±2.4 2.0±3.1 1.8±3.9 2.7±4.2 2.2±3.1

CRRF [8] 7.9±5.1 7.4±5.1 6.7±3.1 6.5±3.2 6.5±3.3 8.1±5.3 7.2±4.4

CRRFweight 4.8±2.4 3.7±1.5 4.0±2.1 4.1±2.0 4.5±2.5 5.5±3.1 4.4±2.4

GIRRF 1.8±1.3 1.5±0.7 1.2±0.6 1.3±2.2 1.3±2.4 1.5±0.8 1.4±1.5

a mean error of 0.68mm, 0.57mm and 0.84mm, respectively. A more detailed
quantitative comparison of the evaluated methods can be found in Table 1. From
the 5 · 17 · 28 = 2380 detected landmark positions, only six outliers (0.25%) had
a localization error larger than 10mm. One outlier was on the radius bone, the
others occurred on the distal interphalangeal (DIP) and proximal interphalangeal
(PIP) joints. The TDPR approach showed 35 (1.5%) outliers.

Runtime of our C++ algorithm, which was implemented on top of the open-
source Sherwood library from Microsoft Research, is about 400s per volume on
an 8-core Intel(R) Core(TM) i7 CPU. Non-parallelized forest training for one
round of cross validation takes 24 hours on the same PC. Runtimes for training
and testing of TDPR are around 2 hours and 10s, respectively.

5 Discussion

As can be seen in Table 1 and Fig. 2, our proposed algorithm achieves superior
overall and individual localization accuracy in terms of mean error and standard
deviation among the compared algorithms. A detailed analysis of the outliers
shows that for TFPR and GIRRF they occur in hands with a finger pose that
is not covered in the training set during cross validation, however, more often
these situations occur in the TDPR approach. In case something went wrong
during the detection in the TDPR approach, almost all landmarks located on
the phalanges were detected wrong in the same image. TDPR seems to be even
more constrained by the variability in the training data through the explicit
use of a PCA-based point distribution model (PDM). An experiment showed us
that adding this PDM to GIRRF does not fix the remaining outliers, but rather
introduces new errors on already well detected landmarks. In GIRRF, there were
at most three outliers in one single image, compared to 12 for PFHR.

All evaluated algorithms achieved the worst mean error on radius and ulna
bone, which can be explained by the large anatomical variation especially at the
ulna bone and because the landmarks had to be chosen at locations, that were
hard to define in manual annotation due to lack of proper anatomical structures
near the bone. On our dataset CRRF is able to achieve a much better accuracy
when including the weighting function according to (4), compared to a weighting
equal to one as proposed in [8]. The reason for this improvement is, that local
information around each landmark provides a more accurate estimation, since
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there is a large pose variation of the fingers in our database. This fact is exactly
what has driven the development of our proposed approach. Since automatic
BAE relies on a very accurate bone localization, we find that we can improve
by using GIRRF compared to related work, due to its capability to extract
age related features to learn an age regression model based on located bone
landmarks. A drawback of our approach is higher runtime compared to e.g.
TDPR. Our major bottleneck is leaf histogram summation, which could be sped
up by a GPU implementation.

6 Conclusion and Outlook

We have shown a novel hand bone landmark detection approach based on ran-
dom regression forests at multiple scales, which outperforms other methods re-
garding localization accuracy on our hand MRI data. First experiments have
demonstrated that GIRRF is able to initalize an automatic skeletal bone age
estimation algorithm that requires extraction of age related features like ossi-
fication stages of the bone. In future work we plan to investigate GIRRF on
different data sets as well, to show its generalization capabilities.
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