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Abstract. We present a pulmonary vessel segmentation algorithm,
which is fast, fully automatic and robust. It uses a coarse segmentation
of the airway tree and a left and right lung labeled volume to restrict a
vessel enhancement filter, based on an offset medialness function, to the
lungs. We show the application of our algorithm on contrast-enhanced
CT images, where we derive a clinical parameter to detect pulmonary
hypertension (PH) in patients. Results on a dataset of 24 patients show
that quantitative indices derived from the segmentation are applicable to
distinguish patients with and without PH. Further work-in-progress re-
sults are shown on the VESSEL12 challenge dataset1, which is composed
of non-contrast-enhanced scans, where we range in the midfield of partic-
ipating contestants.

1 Introduction

Since its introduction in the 1970s, computed tomography (CT) has become
an important tool in medical imaging. It is the gold standard in the diagno-
sis of a large number of different disease entities [4], and further technological
progress has strengthened its diagnostic impact leading to an essential role in
clinical practice. To gain full benefit of the increasing resolution of CT im-
ages, automatic methods are needed to separate important information from
diagnostically irrelevant ones.

Automatic segmentation and analysis of the vessels inside the lung (pul-
monary vessels) from CT images is widely used for computer aided diagnosis
of vascular diseases [17], non-rigid image registration [13], and detection of pul-
monary embolism [18]. Our clinical focus is on the detection of pulmonary
hypertension (PH), which is a chronic disorder of the pulmonary circulation,
marked by an elevated vascular resistance and elevated mean pulmonary artery
pressure (mPAP) [7]. Unlike the systematic circulation, the blood pressure in
the pulmonary vessels is very difficult to measure. In order to determine pul-
monary pressure, an invasive right heart catheterisation must be performed [7].
By the time of diagnosis, PH has usually progressed to late stage and is not
reversible any more. By finding a non-invasive way of measuring the pulmonary
blood pressure, the number of patients awaiting treatment could be significantly

1http://vessel12.grand-challenge.org/
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decreased. Therefore, an important aim of clinical PH research is the early di-
agnosis of pulmonary hypertension.

For determining a measure for pulmonary blood pressure, a segmentation
of the blood vessels inside the lung is needed. We present a robust algorithm
that combines lung- and airway-segmentation, together with a sophisticated
vessel enhancement filter to obtain a proper segmentation of the left and right
pulmonary vessel trees, even in patients showing severe pathologies. A schematic
of the anatomy of the human lung is shown in Figure 1.

The algorithm is fully automatic, computationally efficient and able to han-
dle large datasets. It was tested on phantom data, the publicly available VES-
SEL12 challenge dataset, and CT data from 24 patients from a clinical PH
study.

Figure 1: Anatomy of the human lung showing the airways, starting with the
trachea, left and right lung, the pulmonary arteries in red and the pulmonary
veins in blue ( c© www.somersetmedicalcenter.com).

1.1 Related Work

Several 3D vessel segmentation algorithms have been presented in the literature
up till now. An overview can be found in [12]. Typical approaches include
threshold-based algorithms [9] or fuzzy methods [8]. These approaches have in
common that an intensity model is utilized to detect the vessels. Frangi et al. [6]
presented a technique based on the eigenvalue analysis of the Hessian matrix.
This approach was later refined in the popular approaches of [17] and [10], who
also take the eigenvectors of the Hessian matrix into account. In [1] they ap-
ply vessel-enhancement, junction-enhancement and nodule-enhancement filters,
based on an eigenvector analysis from the gradient vector field. Most of these
approaches work well on controls, however, for patients showing pathologies,
robust extraction of vascular structures is still an open issue, especially in the
case of pulmonary hypertension where vessel pruning occurs [11].

2 Method

At the core of our method is a multi-scale vessel enhancement (VE) filter based
on the Hessian matrix. It is similar to [15] in using the eigenvectors of the
Hessian matrix to detect candidate voxels inside the vessels, and computing
an offset-medialness boundary measure perpendicular to the estimated vessel
direction [10]. The VE response (i.e. medialness) is limited to the right and left
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lung, which is derived from an intensity-based lung segmentation and a coarse
airway tree segmentation with a labelling of left and right main bronchi. After
centerline detection from the VE response, a coarse radius estimation of the
vessel is obtained using a spherical ray-casting approach. The final segmentation
is the output of a globally optimal geodesic active contour model based on total
variation and a data term derived from the medialness [16]. Figure 2 shows the
flowchart of our automatic vessel segmentation approach.

Figure 2: Flowchart of the vessel segmentation algorithm. (a) input CT-image,
(b) lung- and airway segmentation, (c) vessel enhancement filter restricted to
the lung (yellow: high vessel probability), (d) centerline reconnection, (e) vessel
segmentation

2.1 Lung and airway segmentation

A prerequisite for our vascular tree extraction is a segmentation of left and right
lungs, reactively, to restrict the reconnection of the vessel centerlines. A coarse
airway segmentation and labelling of the main bronchi initiates this process.
The labeled airway tree is subsequently used to label a coarse, threshold based,
lung segmentation. Segmenting the airways also helps in removing false positives
of the vessel enhancement filter (see Section 2.2), since the intensity contrast
of the airway border and blood vessels is very low, thus leading to incorrect
detection of blood vessels at the airway walls.

We automatically detect the airway on the top-most slice of the contrast-
enhanced volume, which is a dark circle surrounded by high-intensity tissue, to
get a seed point for an iterative 3D region growing algorithm. For the region
growing two thresholds are defined: thmin = I(xs)− 1HU and thmax = I(xs) +
1HU, where I is the CT image, xs is the seed point and HU denotes a Hounsfield
Unit. All N6 connected voxels which fulfill thmin < I(x) < thmax are added to
the segmentation. Then the thresholds are updated (thmin = thmin−1HU and
thmax = thmax + 1HU) and region growing is restarted with the new segmen-
tation as seed. Convergence of this iterative procedure combines two stopping
criteria. We check whether the number of total voxels, or the number of edge
voxels of the current segmentation is three times larger than the average of all
of the previous voxel counts. In this case a leakage is detected (see Figure 3b),
and we produce the final airway tree segmentation with the restricted thresh-
old range from the previous iteration. Figures 3a shows an example of airway
segmentation obtained from one patient in the clinical PH study.

After coarse airway segmentation, we perform a left and right lung segmen-
tation to identify a region of interest for later vessel detection. A coarse lung
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segmentation is obtained using Otsu’s optimal thresholding method [14]. With
a connected component analysis, the lung is selected and a 3D hole filling is
applied to include vascular structures. The two lungs always merge through the
airways, but in some datasets the border between right and left lung is hardly
visible, resulting in connected lungs. The airway segmentation is used to sepa-
rate the coarse lung segmentation. Using a graph representation of the skeleton
from the airway segmentation, we detect the carina (where the trachea splits
into the left and right main bronchi), and assign different labels to the trachea,
right and left bronchi. To label the voxels in the coarse lung segmentation, we
calculate shortest paths to the labeled airway tree, thus, splitting it into left
and right lung. As a cost function Ic for the shortest path algorithm, we use
the gradient magnitude of the CT image |∇I| and the coarse lung segmentation
without the airways, where we give a larger weight to the gradients to prevent
connecting via short cuts from touching left and right lungs. We found a frac-
tion of 4

5 for the gradient weight, and a weight of 1
5 for the lung segmentation

without the airways to perform well in the labeling of our datasets.
As a final step, to remove holes caused by vessels and other high intensity

structures inside the lung, the airways are removed from the lung segmentation,
and a morphological closing operation is applied several times at each lung
separately. We use a six-neighbourhood star-shaped structuring element and
10 closing operations. These parameters remain constant for all datasets. This
ensures that the lung segmentations contain the whole lung. The different steps
of the lung segmentation can be seen in Figure 4.

(a) (b)

Figure 3: (a) representative result of the automatic airway segmentation from
an example patient, (b) leaked airway segmentation

(a) (b) (c)

Figure 4: (a) one 2D slice of an example CT image, (b) coarse lung segmentation
after separation, (c) refined lung segmentation, separate left (white) and right
(grey) lung
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2.2 Vessel enhancement

We enhance all vessel-like structures using a modified version of the vessel en-
hancement (VE) filter proposed by Pock et al. [15]. We extend the VE filter by
using multiple radii in addition to a multi-scale pyramid with a down-sampling
factor of 1.7. With these parameters, the experiments showed improved dis-
crimination between different vessel radii compared to the widespread use of
Gaussian pyramids with a down-sampling factor of two. Further, to be more
robust against noise and to get rotation invariant derivatives, we compute our
gradients for the boundary measure and for the Hessian matrix using the filter
kernels of [5]. The airway- and lung-segmentations from Section 2.1 are used to
restrict the vessel enhancement output to the left and right lungs without the
airways, respectively.

To get the vessel enhancement filter response, we calculate the eigenvalues e1,
e2, and e3 (ordered such that |e1| ≥ |e2| ≥ |e3|) and the associated eigenvectors
v1, v2 and v3 of the Hessian matrix Hσ(x) at each scale σ. To sort out for
bright tubular structures on dark background, we check that e1 < 0 and e2 < 0
holds. In points that fulfill this condition, the smallest eigenvector v3 gives
an estimation for the vessel direction. Perpendicular to the vessel direction,
in the cross section plane of the tube given by the eigenvectors v1 and v2,
we evaluate boundary information along circles of different radii r. We define
the boundary gradient B(x, σ) = σ∇Iσ(x), with Iσ(x) being the CT image
convolved with a Gaussian kernel with variance σ. An initial response is given
by the median of the boundary contributions bi,σ = |B(x + rvαi , σ)vαi |, with
i = 1 . . . b2πr + 1c, which we denote as R+

0 . A problem of R+
0 (x, r, σ) is, that it

also produces responses at isolated edges. To avoid this, a measure of symmetry
is introduced:

S(x, r) = 1− s(x, r)
b

where s(x, r) is the median absolute deviation of the boundary samples and
b is the median. The final boundary response is computed as:

R+(x, r, σ) = R+
0 (x, r)S(x, r) 3

2

To suppress responses at the border of vessels, the gradient magnitude at the
center of the vessel is combined with the offset medialness R+ from above:

R(x, r, σ) = max
{
R+(x, r)− σ|∇Iσ(x)|, 0

}
The final vesselness response

Rmulti(x) = max
σ,r
{R(x, r, σ)}

is the maximum response from all different scales σ and radii r. We found 4
scales and radii r varying from 1 to 2 pixels, with an increase of 0.3 pixels to
have the best performance.

2.3 Centerline extraction

In a non-maximum suppression step inspired by [2], at each position x with
a medialness R(x) > thmin, we sample 8 points on a plane perpendicular to
the estimated vessel direction. If the medialness on any of those 8 points is
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larger than at the current position x, the VE response at x is set to zero.
This leads to disconnected vessel centerline fragments due to branching points,
where the tubularity assumption fails. Next, small centerline fragments (less
than 5 N26-connected voxels) are removed, and all maxima lying on the airway
border are cleared. To reconnect the centerline fragments, we apply a Dijkstra-
like shortest path algorithm. In each lung separately, we connect all centerline
candidate points to the center of the heart. As a cost function, we combine
the medialness with the gradient magnitudes of the CT image. The separate
processing of right and left lung ensures that wrong connections through the
mediastinum are avoided. The connected trees of the right and left lung form
the final vessel tree.

2.4 Vessel segmentation

At each centerline voxel, 48 points lying on a sphere are sampled from the
CT image and the grey values are summed up. This is done for spheres with
different diameters. As soon as the normalized sum of grey values drops under
0.6 (empirically found), the radius of the vessel has been found. This gives a
more accurate radius estimation compared to the filter radii directly from the
VE filter response. This coarse segmentation is then used as an input for a total
variation based segmentation [16], which gives the final segmentation.

3 Experimental results

For testing our algorithm we used the publicly available VESSEL12 challenge
dataset as well as 24 datasets from patients who underwent contrast enhanced
CT as a part of a clinical PH study at the Ludwig Boltzmann Institute for Lung
Vascular Research, Graz. The median size of the CT volumes is 512×512×426
pixel. Our hardware consists of an Intel CORE I7-2600K 3.40GHZ with 16 GB
RAM and a Geforce 580 GTX with 3 GB RAM.

All of our filters are implemented in CUDA, which is a parallel program-
ming model from NVIDIA, that generates hardware accelerated instructions for
NVIDIA graphics processing units (GPUs). Using CUDA we can significantly
improve the runtime of our 3D image processing algorithms, due to the high de-
gree of parallelization. Therefore, we can directly work on the full resolution CT
data. The runtime of the CUDA implementation of the whole algorithm pipeline
ranges from 5 to 10 minutes, whereas a CPU-only implementation needs more
than an hour. Limited memory on our GPU restricts the possible size of datasets
in the different stages of our pipeline, so we decompose large (i.e. nearly 5123)
CT images into overlapping sub-volumes, which are processed sequentially, with
each sub-volume benefiting from the CUDA based parallelization.

3.1 Airway and lung segmentation

On 24 patients we were able to extract the airway tree to at least four gen-
erations, which is sufficient for our further processing. Due to GPU based
parallelization, one airway segmentation takes on average 69 seconds. Figure 3a
show a representative result.

The lung segmentations from the 24 patients included all lung tissue and
pulmonary vessels, which has been verified through visual inspection (Figure 5).
Processing time for the lung segmentation was on average 132 seconds.
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(a) (b) (c)

Figure 5: (a) 3D rendering of an example lung segmentation, (b) coronal and
(c) axial view; green=left lung, blue=right lung, red=trachea

3.2 Phantom data set

We used a phantom of a liver vessel tree, depicted in Figure 6a, to check the
performance of the algorithm and validate its robustness against noise. We
successively added Gaussian noise with increasing variance to the phantom data,
and calculated the Jaccard index of the ground-truth segmentation with the
obtained segmentation. The curve in Figure 6b shows how the Jaccard index
changes if Gaussian noise with increasing variance is added to the phantom
dataset. As long as the variance of the noise is below 40 Hounsfield Units (HU),
the performance lies above 93% segmentation overlap.

(a) (b)

Figure 6: (a) 3D rendering of liver vessel phantom, (b) Jaccard index over
variance of Gaussian noise

3.3 VESSEL12 challenge

We applied our algorithm to 20 datasets made available through the VESSEL12
challenge2. Table 1 shows the results. The algorithm performs very well in
terms of specificity, however improvement in the sensitivity is still necessary.
This is because the algorithm is optimized for contrast enhanced CT images

2http://vessel12.grand-challenge.org/
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and for finding vessels even in noisy datasets. Thus vessels smaller than 2mm
in diameter are misclassified as noise and are not included in the segmentation.
All results from the other participating groups can be found on the official
VESSEL12 challenge website.

Table 1: VESSEL12 challenge results; our team in comparison with the currently
best performing team (LKEB China)

Az: Area under the Receiver operating characteristic curve; Specificity: number of true
negatives / (number of true negatives + number of false positives); Sensitivity: number of

true positives / (number of true positives + number of false negatives)

3.4 Contrast enhanced CT images from our clinical PH study

Our clinical application is the detection of pulmonary hypertension (PH), which
is a chronic disorder of the pulmonary circulation, marked by an elevated vas-
cular resistance and elevated mean pulmonary artery pressure (mPAP). Our
hypothesis is, that the pulmonary vascular tree shows quantifiable differences
between patients with and without PH. One quantifiable property of the ves-
sels is their tortuosity, which is a readout of twistedness [3]. The most common
metric of vascular tortuosity is the distance metric (DM), which provides a ratio
of the actual vessel length to the Euclidean distance between its endpoints [3].
To determine the tortuosity, the lung vessel centerlines and branching points
are extracted. The DM is calculated and compared with the patient’s clinical
parameters.

We found a correlation between DM and mPAP of ρ = 0.60 (Spearman cor-
relation coefficient, p<0.01). There was a significant difference between the DM
of patients with and without PH (Table 2, p<0.05), thus enabling to discrim-
inate the two groups on our dataset of 24 patients. Two representative vessel
segmentation results of the PH study datasets are shown in Figure 7.

Table 2: Distance metric

Data is presented as mean±standard deviation (range). The significance was tested with
Students t-test; * p < 0.05 as compared to No PH group
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(a) (b)

Figure 7: Representative results of vessel segmentations showing a patient with
(a) and one without PH (b). No visual differences between the vessel structure
can be seen.

4 Conclusion

We have presented a segmentation approach for vascular structures from contrast-
enhanced CT images using a multi-scale vessel enhancement filter and using
information from a lung- and airway-segmentation. We achieved very good seg-
mentation results on our 24 patients from a clinical PH study. We also tested the
algorithm on non-contrast-enhanced data from the VESSEL12 challenge, where
we occupy a midfield position among all participating teams. We see room
for improvement in the case of small vessels. Reasons for this performance of
the algorithm are the optimization for the contrast-enhanced setup and the use
of isotropic CT scans, which is not the case in the VESSEL12 datasets. Due
to a parallelized CUDA implementation, our whole vessel tree segmentation
and centerline extraction shows a run-time of at most 10 minutes for large CT
datasets, without the need for computing on reduced resolutions, thus enabling
the potential use in daily clinical routine.

As an important outcome of our work, we showed that tortuosity is correlated
with mean pulmonary artery pressure, and our vessel segmentation algorithm
can detect the presence of PH. One of the limitations of this study is the small
number of patients, which allows only preliminary conclusions. A large scale
prospective study to determine the true benefits and constraints of this method
is currently in planning. Further, due to the radiation exposure one cannot
test the repeatability of the method. This would be necessary to determine its
ability for use in disease monitoring and follow-up examinations.
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