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Abstract

Pulmonary hypertension (PH) is a chronic disorder of the pulmonary circulation,
marked by an elevated vascular resistance and pressure. Our objective is to find an auto-
matic, non-invasive method for estimating the pulmonary pressure based on the analysis
of lung vessels from contrast enhanced CT images. We present a pulmonary vessel ex-
traction algorithm which is fast, fully automatic and robust. It uses an airway tree seg-
mentation and a left and right lung labeled volume to restrict the response of an offset
medialness vessel enhancement filter. On a data set of 24 patients, we show that quan-
titative indices derived from the vascular tree are applicable to distinguish patients with
and without PH.

1 Introduction

Pulmonary hypertension is a type of disease presenting high blood pressure in the lung ves-
sels. PH is defined as a mean pulmonary arterial pressure (mPAP) > 25 mmHg, and the gold
standard for determining it is invasive right-heart catheterisation (RHC) [9]. In severe cases
PH results in a markedly decreased exercise tolerance and heart failure.

A non-invasive alternative to RHC would be beneficial for diagnosis of PH. We investi-
gate the hypothesis, that a quantitative index of lung vascular tree structure, acquired by a
contrast enhanced CT, is correlated with PH. For vessel detection, we propose an algorithm
that uses a combination of lung- and airway segmentation, together with a sophisticated ves-
sel enhancement filter to obtain a proper segmentation of the left and right pulmonary vessel
trees separately, even in patients showing severe pathologies. The algorithm is fully auto-
matic, computationally efficient and able to handle large datasets. Analysis of the vessel tree
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is based on two readouts, the fractal dimension (FD) and tortuosity, which are computed from
the obtained vascular tree and compared to the patient’s clinical data derived from RHC.

1.1 Related Work

A large number of 3D vessel segmentation algorithms for investigating, e.g. pulmonary
vessel trees, coronary arteries, or brain vessels have been presented in the literature. Typi-
cal algorithms are based on vessel enhancement filters, which analyse the eigenvalues and
-vectors of the Hessian matrix [4]. A recent, comprehensive overview of different enhance-
ment and segmentation techniques can be found in [5].

Previous works showed a correlation of the pulmonary vascular tree complexity with PH.
In [6] FD is reported to correlate with pulmonary vascular resistance in children suffering
from PH. In [3] it was shown, that the FD of the pulmonary arteries in PH patients is highly
correlated with mPAP. However, these two studies use maximum intensity projections (MIP)
of the vessel trees to compute the FD, whereas we calculate our quantitative readouts in 3D.
We are not aware of any work that correlates vessel tortuosity with PH.

2 Method

At the core of our method is a multi-scale vessel enhancement (VE) filter based on the
Hessian matrix. It is a modified version of [8], and uses the eigenvalues of the Hessian matrix
to detect candidate voxels inside the vessels, and an offset-medialness boundary measure
perpendicular to the estimated vessel direction to compute the vessel probability [4]. The
medialness is limited to the right and left lung, which is derived from an intensity-based
lung segmentation. After non-maximum suppression of the medialness, the centerlines are
detected and connected using a shortest path approach. Figure | shows the flowchart of our
automatic vessel detection.

(@) (b) (0) (d)

Figure 1: Vessel extraction flowchart. (a) input CT-image, (b) lung- and airway segmentation, (c)
medialness restricted to the lung (blue: high vessel probability), (d) vascular tree

2.1 Lung and airway segmentation

A prerequisite for our vascular tree extraction is a segmentation of left and right lungs, re-
spectively, to restrict the reconnection of the vessel centerlines. We use a coarse airway
segmentation consisting of an iterative region growing procedure starting at the trachea, and
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a labeling into left and right airway tree (separated at the carina). This labeled airway tree
is taken to divide a threshold based lung segmentation into left and right lung, respectively,
followed by morphological closing to refine the lung segmentations. The airways guarantee
proper separation even in difficult cases as it is presented on Figure 2.

(b) ©
Figure 2: (a) example CT image, (b) coarse lung segmentation after separation, (c) refined lung
segmentation, separate left (gray) and right (white) lung

2.2  Vessel enhancement

We enhance vessel like structures using a modified version of the vessel enhancement filter
proposed by Pock et al. [8]. It uses the eigenvectors and values of the Hessian matrix,
combined with an offset medialness response to estimate a vessel probability. The airway-
and lung segmentations from Section 2.1 are used to restrict the vessel enhancement output
to the region of interest, i.e. the lungs without the airways. To detect a wide range of different
vessel radii, the filter is embedded within a multi-scale framework.

To get the vessel enhancement filter response, we calculate the eigenvalues |ej| > |ez| >
|e3| and the associated eigenvectors vy, v3 and v3 of the Hessian matrix J#°° (x) at each scale
o. To sort out bright tubular structures on dark background we check that ¢; < 0 and e < 0
holds. In points that fulfill this condition, the smallest eigenvector v3 gives an estimation for
the vessel direction. Perpendicular to the vessel direction, in the cross section plane of the
tube given by the eigenvectors vy and v, we evaluate boundary information along circles of
different radii r. We define the boundary gradient B(x) = 6 VI°(x), with I° (x) being the CT
image convolved with a Gaussian kernel with variance ©. An initial response is given by the
median of the N = |27+ 1| boundary contributions b; = [B(x+ v, ) Ve, |, which we denote
as Ra' . A problem of Rar (x,r) is that it also produces responses at isolated edges. To avoid
this, a measure of symmetry is introduced:

o s(x,r)
Sx,r)=1 7

where s(x, ) is the median absolute deviation of the boundary samples and b the median.
The final boundary response is computed as:

RY(x,r) = R§ (x, r)S(X,r)%

To suppress responses at the border of vessels, the gradient magnitude at the center of the
vessel is combined with the offset medialness from above:

R(x) = max{R"(x,r) — 6|VI°(x)|,0}

The final vesselness response is the maximum response from all different scales and radii.
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2.3 Centerline extraction

In a non-maximum suppression step [1], at each position x with a medialness R(X) > thy;n,
we sample 8 points on a circle in the plane perpendicular to the estimated vessel direction.
If the medialness response at x is smaller than on any of those 8 sampled points, it is set
to zero. This results in a large number of vessel centerline fragments. The centerlines are
not connected, because at branching points, where the tubularity assumption fails, we get
a low medialness response. Next, small centerline fragments (less than 5 Ns-connected
voxels) are removed, and all maxima lying on the airway border are cleared. To reconnect
the centerline fragments, we apply a Dijkstra-like shortest path algorithm. At each lung
separately, we connect all centerline candidate points to the center of the image. As a cost
function we combine the medialness with the gradient magnitudes of the CT image. The
separate processing of right and left lung ensures avoiding wrong connections through the
mediastinum. The merged trees from right and left lung form the final vessel tree (see Fig. 3).

(b)
Figure 3: Representative results showing a patient with (a) and one without PH (b). No visual differ-
ences in the structure of the vascular trees are apparent.

3 Analysis of the pulmonary vascular tree

Our clinical application is the detection of PH, a chronic disorder of the pulmonary circula-
tion, marked by elevated vascular resistance and mean pulmonary arterial pressure (mPAP),
respectively. Our hypothesis is, that the structure of the pulmonary vascular tree shows
quantifiable differences between healthy patients and patients diagnosed with PH. For anal-
ysis we compute two measures: the fractal dimension (FD) and the distance metric (DM).
Our patient cohort from the clinical study consisted of 24 patients, who underwent contrast
enhanced CT.

3.1 Fractal Dimension

The fractal dimension of the vessel centerlines was calculated by applying a 3D extension
of the well-validated box counting method [3]. Box counting consists of dividing the vessel
centerline image into a grid of equal boxes with size J, and counting the number of boxes
containing part of the vessel centerlines. This process is repeated for different box sizes
(from one pixel up to 100 pixel side length). The fractal dimension is equivalent to the slope
of a line fitted on a double logarithmic plot of the number of boxes against the box size J.

3.2 Distance Metric

Another quantifiable property of the vessels is their tortuosity, which is a readout of twist-
edness [2]. The most common metric of vascular tortuosity is the distance metric, which
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provides a ratio of the actual vessel length to the linear distance between its endpoints. We
split the vascular tree into vessel segments, where a segment is defined as the path between
two branching points or between a branching- and an end point of a vessel. The 3D length of
the vessel segment d; divided by the Euclidean distance between its endpoints d, (Figure 4)
results in a dimensionless number. The distance metric is calculated for all pulmonary vessel
segments and the mean is taken for quantitative analysis.

vessel
segments

Figure 4: 3D rendering of vessel centerlines with the bronchi (blue) and the heart with main pul-
monary vessels (red). Inset shows the computation of the distance metric. The length of the vessel
segment is divided by the Euclidean distance between the two endpoints, DM = %.

4 Results

We found a correlation between mPAP and the DM of r = 0.69 (Pearson, p = 0.0002) (Fig-
ure 5a). As expected, there was a correlation of DM with the pulmonary vascular resistance
(PVR; Pearson r = 0.66, p = 0.0004, Figure 5b) as this parameter correlates with mPAP. The
ROC curve shows a discriminative power of this parameter with an AUC = 0.87 (Figure 5c).
There was a significant difference between the DM of patients with PH and without PH (Ta-
ble 1). The mean value of the FD in our patient cohort was 2.35, which is in good agreement
with previously reported values from similar studies [7]. There was no difference between
the 3D FD of patients with and without PH (Table 1). Moreover, no correlation of 3D FD
with mPAP or PVR could be observed.

Readout All patients (n=24) No PH (n=6) PH (n=18)
Dt o 1.224 +0.019 1208 + 0.009 . 1.230+0.019
istance metric (1.199 - 1.273) (1.199 - 1.223) (1.202 - 1.273)
Praciat a0 2.35+0.06 2.37+0.08 s 2.34+0.05
(2.21 - 2.44) (2.21-2.43) (2.27 - 2.44)

Table 1: Values of distance metric and fractal dimension. Data are presented as mean+SD (range).
The significance was tested with t-test (* p < 0.05, ns = not significant).

5 Conclusion

We have presented a fully automatic approach for vascular tree extraction and analysis from
CT images based on a multi-scale vessel enhancement filter. Due to a parallel GPU im-
plementation, it processes high-resolution CT data in around 10 minutes, thus enabling the
potential use in daily clinical routine. On 24 patients from a clinical PH study, we showed

91



6 HELMBERGER: PULMONARY VESSEL EXTRACTION AND ANALYSIS

r - 135
R7=0.48(***) R?=0.44 (%)
1304 r=069(+%) 1304 r=066(**) 80)
H . : .
1.25 0 - 1.25 :. o g £ 60
PRPT W < E

Distance metric
Distance metric
Sensitivity%

115 ' 115 e Sensitivity%
: AUC=0.87 — Identity%

0 2023 40 60 80 0 500 1000 1500 9 2 0 s L
mPAP (mmHg) PVR (dyn s cm™) 100% - Specificity%

Figure 5: Correlation of distance metric (DM) with (a) mean pulmonary arterial pressure (mPAP),
and (b) pulmonary vascular resistance (PVR; R = linear correlation coefficient, r = Pearson correlation
coefficient, *** p<0.001). (c) Receiver-operator curve for DM determining mPAP > 25 mmHg (AUC:
area under the curve).

that there is no correlation between PH and FD. The correlations reported in [3] are likely
due to their patient cohort consisting of children where the lung is still under development, or
due to the MIP’s used in the study [6]. In adult patients we have found that tortuosity instead
of FD is correlated with pulmonary hypertension, showing the feasibility of non-invasive
detection of PH with our vessel extraction and analysis algorithm in contrast enhanced CT.
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