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Abstract

In this paper we consider the pairwise graph matching problem of finding correspon-
dences between two point sets using unary and pairwise potentials, which analyze local
descriptor similarity and geometric compatibility. Recently, it was shown that it is possi-
ble to learn optimal parameters for the features used in the potentials, which significantly
improves results in supervised and unsupervised settings. It was demonstrated that even
linear assignments (not considering geometry) with well learned potentials may improve
over state-of-the-art quadratic assignment solutions. In this paper we extend this idea by
directly learning edge-specific kernels for pairs of nodes. We define the pairwise kernel
functions based on a statistical shape model that is learned from labeled training data.
Assuming that the setting of graph matching is a priori known, the learned kernel func-
tions allow to significantly improve results in comparison to general graph matching.
We further demonstrate the applicability of game theory based evolutionary dynamics as
effective and easy to implement approximation of the underlying graph matching opti-
mization problem. Experiments on automatically aligning a set of faces and feature-point
based localization of category instances demonstrate the value of the proposed method.

1 Introduction
Graphs are frequently used as underlying representation for various computer vision tasks
like object localization [18], action recognition [10] or 3D reconstruction [23]. In all these
applications, nodes in general represent local features in the image and edges correspond
to spatial relations between them. The goal of graph matching is to find correspondences
between the nodes of two provided graphs, analyzing local descriptor similarity (unary po-
tentials) and spatial relations between the nodes e. g. pairwise relations [15] or sometimes
higher-order relations, for example analyzing triangles [14].

Graph matching has become widely used in several applications including tracking [13],
shape matching [3] or object detection [18]. Various approaches for efficiently solving this
NP-hard problem in an approximated manner are available, as e. g. spectral techniques [9],
probabilistic methods [24] or the graduated assignment method [11]. Surprisingly, only
few papers focused on the important graph potentials themselves, which have a tremendous
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influence on the quality of the obtained graph matching results. For example in [4] it turned
out that solving a linear assignment problem using well chosen potentials even improves
over related state-of-the-art quadratic assignment solutions. Furthermore, as shown in [7]
also appropriate normalization of the different potentials is quite important.

In general, potentials used in graph matching are defined by their order. Single order
(so called unary) potentials solely evaluate the single node compatibility, e. g. comparing
local descriptors. A frequently used unary potential is the well known Shape Context [2]
which analyzes the local distribution of the remaining graph nodes in a log polar histogram.
Pairwise potentials analyze the compatibility of edges between pairs of nodes, e. g. the nor-
malized differences between edge lengths. Such second order potentials allow rotation and
translation invariant matching. Recently some effort has also been put on defining higher
order potentials [14, 24] for building invariants to larger classes of transformations, for ex-
ample achieving invariance to similarity transformations by considering triangle angles. By
additionally analyzing the local edge orientation, even projectively invariant potentials can
be designed for triangles [9].

One important challenge of using powerful potentials in graph matching is their appro-
priate parametrization. Mostly, these parameters are selected manually. Despite so much
progress in the field of graph matching, only a few papers focused on the problem of choos-
ing the right parameters. Caetano et al. [4] showed how to learn optimal parameters for the
features used in the potentials in a supervised setting from manually labeled reference data
sets. In Leordeanu et al. [17] this idea was extended to the unsupervised setting without the
need for labeled data. They automatically learned weights for shape context features, edge
length distances and angle distances in a pairwise graph matching setting and demonstrated
a significant matching quality improvement in several settings even outperforming the super-
vised approach of [4]. By all means, both approaches strongly agree on the fact that learning
the parameters is important for improving the matching performance.

In this paper we follow the idea of learning optimal parameters for the task of graph
matching. Instead of learning fixed parameters for the features used in the potentials as done
in [4, 17], we directly learn edge-specific kernel functions for each node pair in a defined
reference graph structure, assuming that the setting of graph matching is a-priori known.
Such a-priori knowledge is indeed available in several important applications like automated
face alignment, model fitting and object localization.

We assume that we have given an annotated reference data set for our target scenario,
e. g. for matching faces, we assume that several face images, including salient points (eyes,
nose, . . . ) and their correspondences, are given as training data. Such point correspondences
allow the estimation of a statistical model of shape [8] describing the distribution of point
locations. Based on the learned model we can define pairwise kernel functions which are
then used to solve a standard pairwise graph matching problem between a reference graph
and a query graph in an improved manner.

This paper has several contributions. First, we show that statistical shape models can
be easily integrated in the pairwise graph matching setting and that they enable significant
improvement of matching results in several computer vision settings. We further advocate the
usage of a game theory based evolutionary dynamics for efficiently solving the underlying
optimization problem, and outline its similarities and advantages in comparison to the more
frequently applied spectral matching methods. Finally, we demonstrate the potential of our
method in the field of object localization with possible extensions to higher order potentials
for achieving invariance to larger classes of transformations.
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2 Overview of Method
In standard graph matching, optimal correspondences are found without any knowledge of
the type of graph. The underlying idea of our novel method is to improve matching results
by constraining the type of graphs considered, e. g. to faces or specific object categories.
Thus, our method matches a reference graph of a known class to any query graph with the
goal of finding optimal correspondences between the two graph node sets. This has several
applications in computer vision like point set alignment, model fitting or localization of
object instances. We only assume that the type of the graph is known in advance and that we
have access to a set of labeled training images for this type. As we show in the experiments,
actually only a few training samples are sufficient to significantly improve matching quality.

Our approach is divided into two main steps. First, in the training step, we learn a statisti-
cal shape model from labeled training images, obtaining a model of the location uncertainties
of the graph nodes. Our model is defined by edge-specific kernel functions for every pair of
nodes, which are defined in Section 3. Second, during testing, our method is an extension of
standard graph matching formulated as quadratic assignment problem. The main difference
is that we exploit the learned kernel functions for improving matching quality. Section 4
describes our graph matching step in detail.

3 Learning Pairwise Kernel Functions
As a first step we define our pairwise kernel functions by estimation of a statistical model of
shape describing the distribution of point locations from a set of labeled training images. Our
definition is inspired from statistical shape models and especially point distribution models
which have seen a lot of attention over the previous years in the form of Active Shape Models
and related or derived approaches [5].

We formulate our kernel functions Ki j to relate an edge connecting points i and j in our
reference graph to an edge connecting points a and b in the query graph by deriving the
statistics of the point locations, that are obtained from a labeled training set. We assume
that we have given a set of training images, with the same number of labeled points in each
image, where we require the labeled points to be corresponding over the training set. In a
first step, we register all labeled points of the training set to each other, which then allows
to describe the spatial distribution of each point over the training set by a Gaussian. We
then define edge-specific kernel functions Ki j for measuring the spatial compatibility of any
query edge (a,b) to the corresponding model edge (i, j).

Formally, we have a graph model consisting of N points with a graph node i at each point
location for all training samples. We assume a densely connected graph with edges (i, j) be-
tween every pair of points in the model. Since we have to filter out differences in global ori-
entation over the training set, we perform an iterative procedure involving Procrustes Analy-
sis [12] to align each training shape to a mean shape as described in [6]. Procrustes Analysis
minimizes the sum of squared distances D = ∑(xi− x̄)2 of each training shape to the mean
shape x̄ under a similarity transformation (rotation + translation + uniform scale), where xi is
the location of a point i. After this procedure the training shapes are aligned to a mean shape
x̄ which is centered at the origin and has unit scale. Now that all training shapes are globally
aligned, the location uncertainties, due to nonlinear deformations and variations between the
training samples, are modeled as Gaussian distributionsNi = (µi,Σi) , where µi is the mean
and Σi is the covariance matrix of the point distribution. We derive the parameters µi,Σi for
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Figure 1: Building a statistical shape model from labeled training data. Unaligned point sets
(left), Procrustes aligned sets (middle) and obtained location uncertainties (right) are shown.

every point in our model by performing a Principal Component Analysis on the locations of
the points in the training samples. Thus, we receive an ellipse as representation for location
uncertainty as it is illustrated in Figure 1.

Finally, we define the kernel function Ki j(ab) which relates a pair of edges (i, j), (a,b)
in terms of squared Mahalanobis distances defined by

r1(i j,ab) = ((xa +vab)−µ j)
T

Σ
−1
j ((xa +vab)−µ j) , (1)

r2(i j,ab) = ((xb +vba)−µi)
T

Σ
−1
i ((xb +vba)−µi) , (2)

with vab being the vector pointing from node a to node b. Thus, r1 is the squared Maha-
lanobis distance with respect to node j, if we place our query edge (a,b) onto the model
such that node a coincides with the mean location µi of node i and r2 is defined equivalently.
Finally, the kernel function for a graph edge connecting nodes (i, j) is defined as

Ki j(ab) =
r1(i j,ab)+ r2(i j,ab)

2
. (3)

Since this kernel is simply a linear combination of squared Mahalanobis distances, the
obtained matrix is guaranteed to be positive semi-definite and is thus a valid kernel function.
Please note, that of course at test time only the coordinates of the query points (a,b) have
to be inserted into above equations, since the mean and covariances are already fixed after
training. This formulation is only valid if the distribution of the point locations follows
a Gaussian model. For more complex distributions, Gaussian Mixture Models would be
more appropriate. But as it is demonstrated in the experiments in Section 5 learning single
Gaussian models already achieves excellent results with reduced computation time and no
need to specify the number of mixture models.

4 Pairwise Graph Matching

In this paper we focus on graph matching formulated in the quadratic assignment problem
(QAP) setting, where we assume that we have given a reference graph with N1 nodes and
labels i, j,k, . . . and a query graph with N2 nodes and labels a,b,c, . . . . The goal of graph
matching is to find a one-to-one mapping between the two graphs defined by a binary N1 N2×
1 assignment vector x∗, where x∗ia = 1 if node i of the reference graph matches to node a of
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the query graph and x∗ia = 0 otherwise. The assignment vector is found in an optimization
procedure by solving

x∗ = argmax
x

(
xT Ax

)
= argmax

x
∑Aia, jb xia x jb and ∑

i
x∗ia = 1,∑

a
x∗ia = 1 , (4)

where A is a provided N1 N2×N1 N2 affinity matrix describing how well a pair of nodes in the
reference (i, j) agrees in terms of local descriptors (unary potentials) and geometry (pairwise
potentials) with a pair of nodes in the query (a,b). The affinity matrix A only represents
pairwise potentials, therefore the unary term is mostly placed in the main diagonal or spread
over the entire matrix.

We now first explain how to define the affinity matrix A considering the learned kernel
functions in Section 4.1 and then describe in Section 4.2 how to obtain an approximate
solution for the NP-hard integer optimization problem shown in Equation 4.

4.1 Affinity Matrix Using Learned Potentials
The affinity matrix used in pairwise graph matching mainly combines unary and pairwise
potentials and needs parameters to be set, which is mostly done manually. One commonly
used example [9] for defining the matrix using unary and pairwise potentials is

Aia, jb = exp−
(

wT
1 |si− sa|+wT

2 |s j− sb|+wT
3
|di j−dab|
di j +dab

)
, (5)

where si denotes the 60-dimensional shape context descriptor [2] for node i, di j is the edge
length between nodes i and j and w1,w2 and w3 are corresponding weight vectors, e. g. w1 is
a 60-dimensional vector defining the weights for the bins in the shape context representation.

Extensions to the model in Equation 5 find optimal parameters wi for the individual
feature entries [4, 17]. In contrast, we propose to use the learned statistical shape model as
described in Section 3 to define the pairwise affinity values Aia, jb. We let the unary potentials
(shape context) unchanged and replace the pairwise term (normally simply analyzing the
differences in edge lengths) by our learned edge-specific kernel functions. For this reason,
the affinity matrix entries are adapted to

Aia, jb = exp−
(
wT

1 |si− sa|+wT
2 |s j− sb|+wT

3 Ki j(ab)
)
, (6)

where Ki j(ab) is the learned pairwise kernel function as defined in Section 3. In such a way
differences from the reference model are not equally penalized as in the standard setting,
they are penalized depending on the location uncertainty learned by the statistical shape
model. We always set the weights w1,w2 and w3 to the same value to be able to uniquely
demonstrate the improved performance when using our kernel functions.

4.2 Graph Matching Optimization
After definition of the affinity matrix, any of the available approximation methods for solving
the NP hard integer optimization problem shown in Equation 4 can be applied. The most
common way to find the assignment vector x∗ is to relax the integer optimization problem
into the continuous domain and to apply spectral methods [16], which analyze the statistical
properties of the provided affinity matrix A. Recently, Albarelli et al. [1] demonstrated that
game theory can be used to solve the quadratic assignment problem, where the problem
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is also relaxed into the continuous domain but an evolutionary dynamic is applied to find
the solution. We also consider game theory as an efficient and powerful field for graph
matching, but in contrast to [1], who proposed an algorithm denoted as immunization and
infection algorithm, we stick to the more popular replicator dynamics. Especially, we aim at
highlighting similarities between spectral methods and replicator dynamics, which, although
having two totally different scientific perspectives, share many common parts.

Replicator dynamics are the most popular evolutionary algorithm in the field of game
theory. We apply these dynamics to solve the optimization problem defined in Equation 4 by
iteratively updating the assignment vector x using

xt+1
i = xt

i
(Axt)i

xt T Axt
, (7)

where xt is the assignment vector at time t. As a necessary additional constraint x has to lie
on the simplex ∆ defined as

∆ =
{

x ∈ RN1 N2 : xi ≥ 0 and 1T x = 1
}
, (8)

where 1 is an N1 N2-dimensional vector of ones, i. e. ∑xi = 1. The dynamics start with
a random initialization Π which also has to lie on the simplex. We always initialize the
dynamics by a slightly perturbed version of the barycenter of the simplex. Starting from Π,
replicator dynamics find an optimal assignment vector x∗ lying on the simplex which is a
local (!) maximum of the optimization problem shown in Equation 4. Finally, the entries
of the solution x∗ represent normalized probabilities for all possible correspondences. To
obtain a binary correspondence vector from the continuous vector x∗, we apply the same
strategy as proposed in [16], which iteratively chooses the most likely correspondence and
then removes all contradictory correspondences by checking all assignment constraints.

The simplex ∆ is invariant under the replicator dynamics formulation, which means that
every trajectory starting on the simplex (random initialization) will remain on the simplex.
Furthermore, the score to be maximized xT Ax is strictly increasing along any trajectory
of the dynamics given in Equation 7. The final solution is a so-called evolutionary stable
strategy (ESS), which is a stricter formulation of the well-known Nash equilibrium from
game theory. For more details and convergence proofs of these dynamics see e. g. [22].

Interestingly, these dynamics have many similarities with spectral approaches for graph
matching. The most popular spectral approach in this field is to apply power iteration [16]
to the affinity matrix A, a highly efficient method to find the largest eigenvector of a matrix.
Power iteration, similar to replicator dynamics, is also an iterative method, which subse-
quently approaches the sought solution vector x∗ starting from a random initialization. Thus,
there are only two minor differences between power iteration and replicator dynamics. First,
within each iteration both methods multiply the affinity matrix times the current vector, but in
replicator dynamics additionally the transposed vector is multiplied times the multiplication
result in an element-wise manner (see first part of Equation 7). Second, in spectral matching,
optimization is performed over the set of vectors with specific properties, for example the
Frobenius Norm has to be N0.5

2 [9]. In contrast, in replicator dynamics optimization is done
over the simplex ∆, representing normalized vectors whose entries sum up to 1. As also
outlined e. g. in [9], a simplex normalization shows a more robust behavior.
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Data / Method
AR data set IMM data set

Unlearned Learned Impr. Unlearned Learned Impr.

Spectral 88.0±1.6 97.8±0.2 +9.8 60.3±3.0 79.7±1.9 +19.4
Replicator 95.7±0.7 98.7±0.1 +3.0 69.3±2.4 80.5±1.4 +11.2

Table 1: Comparison of standard graph matching (Unlearned) and proposed method
(Learned) on AR and IMM face data sets. Percentage of correct assignments and standard
deviation for a 5-fold cross validation experiment is shown.

Data / Method
AR data set IMM data set

Unlearned Learned Impr. Unlearned Learned Impr.

All vs. all 88.1±1.2 98.5±0.3 +10.4 56.3±1.2 81.3±1.1 +25.0
Mean 0% out 95.6±0.7 98.7±0.1 +3.1 69.2±2.4 80.5±1.4 +11.3
Mean 100% out 82.2±1.4 87.7±0.4 +5.5 58.2±2.9 64.6±2.7 +6.4
Mean 200% out 71.5±0.9 75.9±0.6 +4.4 51.7±2.3 54.4±2.8 +2.7

Table 2: Results if using the mean model from training data as reference graph with in-
creasing amount of outliers (Mean 0% to Mean 200%) and if using each training model as
reference graph (All vs. All). Percentage of correct assignments and standard deviation for a
5-fold cross validation experiment using replicator dynamics are shown.

5 Experiments
As a first experiment we use our method for aligning a set of face images in Section 5.1,
where we provide a direct comparison between standard graph matching and our proposed
method. In Section 5.2 we further demonstrate the capability of our method for localizing
category instances considering edge points as graph nodes. Analyzing simple unary poten-
tials and our learned kernel functions allows localization of previously unseen instances.

5.1 Face Alignment
We evaluate our method on two publicly available face alignment data sets both containing
ground truth correspondences: the IMM face data set [21] (240 images of 40 humans with
58 salient points) and the AR face data set [20] (550 face images with 22 salient points). We
compare results obtained by standard graph matching (Equation 5 – Unlearned) to results
when using our learned kernel functions (Equation 6 – Learned). All other parameters are
set to the same values, to directly evaluate the achievable improvements.

As first experimental setup we used the mean point set obtained in the learning step as
reference graph and compared it to all point sets of the remaining test data. As score we
return the average percentage of correct assignments and the standard deviation for a 5-
fold cross validation. Table 1 shows correct assignment rates for the IMM and the AR data
set comparing power iteration to replicator dynamics. As can be seen replicator dynamics
consistently outperforms the spectral power iteration method. Furthermore, independent of
the optimization method, using our learned kernel functions clearly improves results by up
to 20% and the low standard deviation indicates good generalization properties.

To further demonstrate the influence of outliers and different reference models on the
results, we additionally repeated the experiments, in the same style as described above, ex-
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Figure 2: Graph Matching results with added outliers (100%). Left: IMM where 55 correct
assignments are shown in green, whereas 3 wrong assignments are shown in red. Right: AR
with 21 correct assignments from 22 (best viewed in color).

clusively using replicator dynamics with an increasing number of outliers from 0 to 200%
(Mean 0% outliers to Mean 200% outliers), where 200% means that for 58 reference points
we randomly added 2 · 58 = 116 outliers in the query image space in an uniform manner.
Besides using the mean model as reference graph, we also made an exhaustive experiment
using each point set of the training images as reference graph (All vs. All). Results for 5-
fold cross validation are shown in Table 2. As can be seen our proposed, learned potentials
again show significantly improved performance independent of the reference model and the
amount of outliers. For example we achieve a 25% improvement in the all vs. all experiment,
indicating that graph matching becomes much more robust against the choice of the refer-
ence model when using the learned potentials. Figure 2 illustrates two exemplary matching
results for the IMM and the AR data set.

An implicit requirement of our method is the availability of labeled training samples,
which might be cumbersome to obtain. Thus, it is important to analyze how many samples
are required to improve matching quality and for this reason we made an additional experi-
ment, analyzing performance when different numbers of training samples are available. We
randomly selected a test set of 100 images from the AR data set and added 100% noise.
From the remaining images, we randomly selected an increasing number of training images
to learn our kernel functions. Figure 3 shows the percentage of correct assignments in de-
pendence of the number of training samples over 100 runs of this experimental setup. As
can be seen, actually only a few samples (more than 5) are sufficient to improve results.

5.2 Object Localization
In this experiment we demonstrate the applicability of our method for the task of object lo-
calization. This application is mainly motivated by [18], where a discriminative shape based
object detection method was introduced. There, authors used simple unary potentials (edge
normals, chord angles and lengths) in a pairwise graph matching setup and outperformed
state-of-the-art appearance based object recognition methods.

It is also possible to use our learned kernel functions in such an object localization sce-
nario. We again assume that we have given a set of ground truth correspondences between
several objects from the same category. This labeled data is used to learn category specific
kernel functions as outlined in Section 3. We then use our extended graph matching method
to localize instances of the same category in test images in three subsequent steps. First,
we sample equidistant points on edges detected by the Berkeley edge detector [19]. Second,
we match the mean point set to the sampled point set exploiting the learned kernel functions
as it is described in Section 4. Finally, we estimate a thin plate spline transformation from
the correspondences and transform the coordinates of the mean model to the current image
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Figure 3: Matching results in dependence of number of training samples on AR data set
with 100% added noise over 100 runs with randomly selected samples. Number of training
samples = 1 represents the unlearned, standard graph matching model (81.7±1.4 – red line).
As can be seen, only a few training samples (> 5) are sufficient to improve results.

Figure 4: Face model fitting using learned pairwise potentials. First row shows learned AM
model fitted to IMM images, whereas second row shows IMM model fitted to AR. Sampled
edge points used in graph matching are shown as blue crosses, and highlighted points are
thin plate spline (TPS) transformed model coordinates. TPS transformation is obtained by
analyzing the correspondences returned from graph matching (best viewed in color).

for object localization. We used the ground truth provided by the AR and IMM data sets
for learning face models. For modeling the cars we manually labeled 20 images. As unary
potentials we always used angular differences between the edge point normals.

Figure 4 shows exemplary results for face model fitting, where in the first row we fitted
the model obtained from the AR data set to the IMM images and in the second row the
IMM model is fitted to AR images. As can be seen, despite the simplicity of the approach,
reasonable localization results are provided. Of course, since the points shown are only thin
plate spline transformed locations of the mean model, accuracy is limited.

Finally, Figure 5 shows results for localizing cars. For every example the obtained graph
matching results and the thin plate spline transformed car model overlaid on the image
are shown. As can be seen accurate localization results are achieved for different types of
cars. Note, that these experiments should not demonstrate state-of-the-art localization per-
formance, we only aim at outlining the potential of using our approach in such a scenario.
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Figure 5: Object localization by graph matching to sampled edge points using learned ker-
nel functions. Left and middle image show returned correspondences and the right image
highlights the thin plate spline transformed model overlaid on the image. Blue crosses show
sampled points on edges (best viewed in color).

6 Conclusion
This paper described an extension to standard graph matching methods for the case that the
matching scenario, e. g. aligning faces in images, is known before. We showed how pairwise
kernel functions are learned from annotated data sets and how these kernels can be used
in a quadratic assignment setting to improve results. We also demonstrated that replicator
dynamics are an easy and efficient method for approximating the NP hard graph matching
solution, outperforming corresponding spectral methods. Experiments demonstrated the im-
proved performance and outlined the potential for localizing category instances in images.
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