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Abstract. We present an optical flow deformable registration method
which is based on robust measures for data and regularization terms. We
show two specific implementations of the method, where one penalizes
gradients in the displacement field in an isotropic fashion and the other
one regularizes by weighting the penalization according to the image
gradients anisotropically. Our data term consists of the L1-norm of the
standard optical flow constraint. We show a numerical algorithm that
solves the two proposed models in a primal-dual optimization setup.
Our algorithm works in a multi-resolution manner and it is applied to
the 20 data sets of the EMPIRE10 registration challenge. Our results
show room for improvement. Our rather simple model does not penalize
non-diffeomorphic transformations, which leads to bad results on one of
the evaluation measures, and it seems unsuited for large deformations
cases. However, our algorithm is able to perform registrations of data
set sizes around 4003 on the order of a few minutes using a dedicated
CUDA based GPU implementation, which is very fast compared to other
reported algorithms.

1 Introduction

Nonlinear (deformable) registration of data sets acquired at different points in
time is an important research topic in medical image analysis. Image sequences
of soft tissue organs like lung or liver during breathing or the beating heart often
require registration algorithms to compensate for motion differences. Surveys on
nonlinear registration techniques in medical imaging can be found in Maintz
and Viergever [1] or Crum et al. [2]. In literature, one distinguishes feature- and
intensity based nonlinear registration methods. Intensity based methods [3, 4]
are often favored since they make use of the entire image information, however,
they come at the cost of a higher computational effort.

For deformable registration problems in the context of intra-modality applica-
tions, intensity based optical flow approaches are very popular. In a variational
framework setting [5, 6] one formulates the optical flow problem as an energy
minimization consisting of a data and a regularization term, a technique which
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has its roots in [7]. In this work we show an efficient deformable registration
algorithm based on the optical flow constraint. We penalize the gradients of the
displacement field in order to regularize the variational formulation. Our for-
mulation is simple and straight-forward, however, compared to standard optical
flow using quadratic terms, we penalize data and regularization term using the
L1 norm [8], which has the advantage to be more robust to non-Gaussian noise
and to leave discontinuities in the displacement field intact. Our exact formula-
tion is a 3D extension of the anisotropic Huber-L1 optical flow method presented
in [9], which has shown to be both accurate and extremely fast for 2D optical
flow applications.

A drawback with optical flow regularization using the L1-norm compared to
a quadratic norm is its difficulty to come up with a numerical scheme to solve
the underlying partial differential equation since the derivative of the L1-norm
is undefined at zero. In Section 2 we describe our optical flow formulation in
detail and the numerical scheme which is based on a primal-dual algorithm. In
Section 3 we describe the whole implementation framework and include the used
parameter settings for the EMPIRE10 evaluation. In Section 4 we present the
evaluation results of our two algorithm variants. Finally Section 5 concludes our
work by discussing the results of the evaluation.

2 Algorithm Description

In this section we describe our core algorithm, the Huber-L1 optical flow for-
mulation and its variant that takes image gradients into consideration for regu-
larization (anisotropic optical flow). We present the basic formulation as well as
the numerical scheme that implements the minimization of the optical flow en-
ergy functional. This algorithm is embedded into a multi-resolution framework
to register fixed and moving lung CT images from the EMPIRE10 evaluation.
For the lung registration it also gets initialized by a very simple rigid registra-
tion that only takes translation into account. In this section we focus on the
generic optical flow algorithm while the following section will provide the details
of the framework that was used for the lung CT evaluation as well as its required
choices of parameters.

In computer vision motion estimation via optical flow is an important topic
which also has obviously found its application in medical image registration.
The aim of optical flow is to compute the motion in a sequence of images, where
in medical applications often only a pair of images (e.g. thorax CT scans at
different states in the breathing cycle) is available. In a variational framework a
possible formulation of the optical flow motion estimation is given by

min
u

∫
Ω

3∑
i=1

|∇uTi D∇ui|+ λ‖ρ(u)‖1dx , (1)

where u = (u1, u2, u3)T : Ω → R3 is the motion field, and

ρ(u) = It + (∇I)T (u− u0) (2)



is the traditional optical flow constraint (OFC). It is obtained from a lin-
earization of the assumption that the intensities of the pixels stay constant over
time. It is the temporal derivative of the image sequence (image pair), defined as
the difference between fixed and moving image. ∇I is the spatial image gradient,
and u0 is some given motion field. The regularization term is a total variation
formulation with D a symmetric, positive definite diffusion tensor. The param-
eter λ is used to define the trade-off between data fitting and regularization.

Note that the OFC is valid only for small motion (u−u0). In order to account
for larger motions, the entire approach has to be integrated into a coarse-to-fine
framework using a multi-resolution pyramid to re-estimate u0. Further, we want
to stress that the linearized OFC combined with the TV regularization is a
convex energy formulation, so a global solution for the linearization may be
obtained.

In this work we use two specific formulations of optical flow (OF), isotropic
and anisotropic OF (i.e. OFiso, OFaniso). One can derive the isotropic formula-
tion from (1) by setting the diffusion tensor D in the regularization term equal
to the identity matrix

min
u

∫
Ω

3∑
i=1

|∇ui|ε + λ‖ρ(u)‖1dx , (3)

such that the regularization is isotropic in all directions for all deformation
field components. In (3) we have replaced the L1-norm with the more robust
Huber norm |∇ui|ε, which has beneficial properties in avoiding staircasing ar-

tifacts [10, 9]. The Huber norm is defined as |∇ui|ε = |∇ui|2
2ε if |∇ui| ≤ ε and

|∇ui|ε = |∇ui|− ε
2 otherwise. The advantage of the Huber norm over the widely

used total variation (TV) norm for regularization is the reduction in favoring
piecewise constant solutions in weakly textured areas, which leads to staircas-
ing artifacts. As a benefit compared to quadratic regularization, still edges are
preserved and not smoothed over.

As an alternative algorithm we derive the anisotropic formulation from (1)
by using a diffusion tensor calculated from the image gradient

min
u

∫
Ω

3∑
i=1

|∇uTi DI∇ui|ε + λ‖ρ(u)‖1dx . (4)

Under the assumption that gradients in the deformation field coincide with
image gradients, this gives us a more accurate deformation field estimate at the
cost of computing the diffusion tensor DI pixel-wise as a diagonal matrix

DI =

DI,x 0 0
0 DI,y 0
0 0 DI,z

 (5)

with the componentsDI,x = exp
(
−α ∗ Iβx

)
,DI,y = exp

(
−α ∗ Iβy

)
andDI,z =

exp
(
−α ∗ Iβz

)
. This is only an approximate diffusion tensor due to efficiency rea-

sons, however, it is still symmetric and positive definite. Note that again we are



using the robust Huber-norm in the regularization. Next we describe the numer-
ical solver for the presented models. The definition of the diffusion tensor is the
difference between our two algorithms, however, for the numerical solver this
difference is only minor.

2.1 Numerical Solver & Discretization

After defining our continuous optical flow model we proceed with a discretization
of the formulation and a numerical algorithm to solve the optical flow problem.
We use a primal-dual convex optimization scheme to solve the linearized optical
flow. This scheme is a saddle point problem where one seeks to minimize a pri-
mal and to maximize a dual variable. For our discretization, the input images I0
(fixed image) and I1 (moving image) with the dimensions M×N×L are defined
on the Cartesian grid Ωh = {(ihx, jhy, khz) : 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ L}.
We define the discretized optical flow uh = (uhx

1 , u
hy

2 , uhz
3 )T ∈ Xh, where the

vector space Xh = R3MNL. The potentially anisotropic image spacing of medical
images is taken into account using spacings hx, hy, hz and the discrete pixel posi-
tion (ihx, jhy, khz) ∈ Ωh. Discretization of the gradient ∇h uses standard finite
differences (forward differences) on the discrete lattice with Neumann bound-
ary conditions. The primal-dual formulation requires a discretized divergence
operator on the dual variable, where we use backward differences. Note that the
gradient and the divergence operator are adjoint

〈
∇huh,ph

〉
≡ −

〈
uh,divh ph

〉
The discretized version of (4) on the lattice Ωh reads

min
uh

{∥∥∇huh∥∥
ε

+ λ
∥∥ρ(uh)

∥∥
1

}
. (6)

Recently, it was shown in [11–13] that primal-dual approaches provide an
excellent performance for solving convex-concave saddle-point problems of the
form

min
x

sup
y
{〈Kx, y〉 − F ∗(y) +G(x)} , (7)

with K a linear operator, and the convex functions F ∗ and G. The basic itera-
tions of the primal-dual algorithm of [11] are defined as

yn+1 = (1 + τd∂F
∗)
−1

(yn + τdKx̃)

xn+1 = (1 + τp∂G)
−1 (

xn − τpK∗yn+1
)

x̃n+1 = 2xn+1 − xn
(8)

Here the stepwidth for the primal and dual update is given as τp and τd, K
∗

denotes the adjoint operator of K and ∂ a partial derivative. In our case K
resembles the gradient operator and K∗ its adjoint operator, the divergence.

To gain a primal-dual saddle point problem like in (7), we apply the Legendre-
Fenchel transform to (6) and obtain the optimization problem

min
uh

sup
ph

{〈
∇huh,ph

〉
X
− ε

2
||ph||22 − δPh(ph) + λ

∥∥ρ(uh)
∥∥
1

}
. (9)



Here we introduce the dual variable p defined on the convex set P which is
defined as Ph =

{
ph ∈ Y h :

∥∥ph∥∥∞ ≤ 1
}

, where Y h denotes the convex set

Y h = Xh × Xh and
∥∥ph∥∥∞ the discrete maximum norm. Embedding the

primal-dual saddle point formulation (9) into the generic formulation (7) yields
G(uh) = λ

∥∥ρ(uh)
∥∥
1

and F ∗(ph) = ε
2 ||p

h||22 + δPh(ph). Based on [11], the re-

solvent operator for F ∗(ph) is given as a pointwise projection onto an L2 ball
yielding

ph = (1 + τd∂F
∗)
−1

(p̃h) ⇐⇒ phi,j,k =

p̃h
i,j,k

1+τdε

max
(

1,
∣∣∣ p̃h

i,j,k

1+τdε

∣∣∣) . (10)

With respect to G(uh) the solution to the resolvent operator is given by

uh = (1 + τp∂G)
−1

(ũh) ⇐⇒ uhi,j,k = ũhi,j,k

+


τpλ∇Ii,j,k if ρ(ũhi,j,k) < −τpλ|∇I|2i,j,k
−τpλ∇Ii,j,k if ρ(ũhi,j,k) > τpλ|∇I|2i,j,k

−ρ(ũhi,j,k)
∇Ii,j,k
|∇I|2i,j,k

if |ρ(ũhi,j,k)| ≤ τpλ|∇I|2i,j,k
. (11)

This iterative update scheme concludes our numerical implementation of the
optical flow algorithms for both cases. We have to specify a maximum number of
iterations in practice to work with this iterative scheme. Further, in the course
of optimizing for u we warp the moving image from time to time to take the
linearized model into account. For this purpose we perform an outer loop over
a number of warps and use the current solution of u0 = u to warp the moving
image.

3 Experimental Setup & Parameters

In the previous section we have described two variants of an optical flow al-
gorithm and their numerical implementation. We have implemented the whole
algorithm framework as well as the optical flow registration per resolution level
on a CUDA-based NVidia Tesla C1060 desktop computer platform with 4GB
of graphics RAM. This leads to a very efficient registration where the isotropic
optical flow takes around 4 minutes on average per data set and the anisotropic
variant around 6 minutes for the chosen parameter settings.

For the EMPIRE10 evaluation we utilize both algorithms and embed them
into a multi-resolution framework. Our algorithm constructs a fixed and a moving
image pyramid and calculates the solution of the optical flow registration on each
pyramid level starting with the coarsest. Then it upsamples the displacement
field u to propagate it to the next finer level and uses this upsampled solution as
initial solution u0. On the coarsest resolution we perform a simple initialization
of the displacement field using the difference vector of the centers of gravity of
the provided segmented lung mask images. This is our only pre-registration that



we perform on all of the 20 data sets of EMPIRE10. Our fixed image pyramid
is constructed by first downsampling the fixed input image to 256 × 256 × 256
voxels. This also defines the image size of our warped image pyramid and the
pyramids for the displacement field components. We currently can not work on
the full resolution as finest pyramid level, due to a 4GB memory restriction of
our implementation hardware. Further, we use the moving image to construct
a pyramid with the original resolution as finest pyramid level. We downsample
all of our pyramids by factors of 2 and repeat this procedure until we have a
total of 5 pyramid levels. Note that the moving image pyramid uses a different
(finer) voxel grid than the rest of the pyramids, however due to the tricubic
interpolation in the warping step, which is of course performed in physical space,
not voxel space, this is not an issue. Tricubic interpolation is also used for all
other warping and resampling steps in the algorithm. As a consequence of our
memory restrictions and the finest fixed pyramid level, which never exceeds 2563,
we have to upsample the registration result from 2563 to the original size of the
fixed image data set. This way we will always make a certain error from the
upsampling, since there is no refinement of the displacement field on the original
fixed image resolution. We are currently looking into methods to parallelize the
algorithm on a higher level and distribute them onto several Tesla GPUs.

In our optical flow algorithm there are a number of parameters which we
either leave fixed or compute adaptively starting from some fixed value. Thus, our
algorithm falls into the category of fully automatic according to the EMPIRE10
challenge rules. First, a very important parameter is the trade-off λ between
regularization and optical flow constraint data term. We have chosen a value of
λ = 50 in our experiments, both for isotropic and anisotropic regularization. This
value gave in our experiments reasonable results, however, after investigating the
EMPIRE10 evaluation results we have to say that we presumably have chosen
λ too large, since the diffeomorphic behaviour of our result displacement field
is not satisfactory. This indicates that we have weighted our optical flow data
term too high. The specified λ is taken for the finest level of the pyramid, for
coarser levels we multiply it by a factor of 1.5scaleLevel to increase the influence
of the data term.

Some more parameters that we have to set are ε = 0.01 from the Huber
norm which was set empirically and does not seem to be critical. α and β for
the edge weighting are taken as α = 10, β = 1, these parameters influence how
large different edges are weighted in the computation of the diffusion tensor
(for OFaniso only). The computation of the gradients for the diffusion tensor is
performed on the fixed image using central differences. The number of warps
and number of iterations are chosen as 40 and 25, respectively, which means
that on the finest level we perform 40×25 = 1000 iterations in total. On coarser
pyramid levels we adapt these values by multiplying with 1.5scaleLevel in order
to perform more iterations since these downsampled levels are less expensive
to compute. The numerical primal-dual scheme requires two timesteps τp =
2 ∗ sqrt( 1

h2
x

+ 1
h2
y

+ 1
h2
z
)−1 and τd =

τp
4∗( 1

h2
x
+ 1

h2
y
+ 1

h2
z
)
. Another implementation note

is, that the update of the displacement fields is always clamped to the distance



equivalent to the voxel spacing of the current pyramid level, since the optical
flow model per pyramid level is not valid for more than one voxel distance. This
is another reason why the course-to-fine framework is mandatory. Finally before
each warp with a displacement u0 we perform a 3 × 3 × 3 median filter on the
displacement field to remove outliers.

4 Evaluation Results

The following two tables show the results of the EMPIRE10 evaluation using
the algorithms OFiso (see Table 2) and OFaniso (see Table 1).

Lung Boundaries Fissures Landmarks Singularities

Scan
Pair

Score Rank Score Rank Score Rank Score Rank

01 0.04 18.00 15.69 28.00 17.95 29.00 13.17 34.00

02 34.00 34.00 34.00 34.00

03 0.00 5.50 0.00 12.50 0.33 6.00 0.08 31.00

04 0.00 24.00 0.00 16.50 4.86 30.00 3.00 34.00

05 0.00 13.00 0.00 16.00 0.00 5.50 0.00 27.00

06 0.00 16.00 0.00 21.00 0.33 10.00 0.01 33.00

07 0.02 16.00 7.53 28.00 6.23 25.00 4.04 33.00

08 0.00 19.00 3.56 27.00 3.22 26.00 1.17 33.00

09 0.00 23.00 0.00 6.50 0.51 3.00 0.06 32.00

10 0.00 17.00 0.00 15.00 10.33 33.00 5.50 34.00

11 0.03 15.00 2.30 27.00 2.09 23.00 2.29 33.00

12 0.00 10.00 0.00 13.50 0.00 5.00 0.00 14.50

13 0.00 11.00 0.06 5.00 0.79 6.00 0.29 33.00

14 0.06 19.00 8.46 26.00 12.78 28.00 7.47 33.00

15 0.00 8.00 0.00 7.00 0.58 2.00 0.10 31.00

16 0.01 31.00 2.06 30.00 4.40 32.00 6.68 34.00

17 0.00 24.00 0.04 12.00 0.69 7.00 0.19 32.00

18 0.06 19.00 6.87 26.00 7.06 27.00 4.61 33.00

19 0.00 14.00 0.00 12.00 0.45 4.00 0.00 31.00

20 0.01 18.00 7.93 27.00 14.09 28.00 9.00 34.00

Avg 0.01 17.72 2.87 19.50 4.56 18.17 3.03 31.67

Average Ranking Overall 21.76

Final Placement 28
Table 1. Algorithm OFaniso. Results for each scan pair, per category and overall.
Rankings and final placement are from a total of 34 competing algorithms.



Lung Boundaries Fissures Landmarks Singularities

Scan
Pair

Score Rank Score Rank Score Rank Score Rank

01 0.27 26.00 15.06 27.00 31.93 31.00 6.43 32.00

02 0.02 31.00 0.00 15.00 0.54 19.00 0.02 31.00

03 0.00 22.00 0.02 30.00 0.90 29.00 0.10 32.00

04 0.00 18.00 0.00 16.50 6.68 33.00 0.43 31.00

05 0.00 13.00 0.00 16.00 0.23 22.00 0.00 30.00

06 0.00 16.00 0.00 7.00 0.46 25.00 0.01 32.00

07 0.40 27.00 11.71 33.00 14.40 30.00 2.22 32.00

08 0.05 25.00 9.23 33.00 9.52 34.00 0.45 32.00

09 0.00 22.00 0.00 25.00 1.45 32.00 0.05 31.00

10 0.01 22.00 0.00 15.00 9.38 32.00 1.14 31.00

11 0.26 26.00 7.15 33.00 5.54 32.00 0.85 31.00

12 0.06 29.00 0.00 13.50 0.89 27.00 0.01 33.00

13 0.00 17.00 0.09 17.00 0.95 14.00 0.14 30.00

14 0.88 28.00 13.34 29.00 19.43 31.00 3.63 32.00

15 0.00 27.00 0.00 15.00 0.90 26.00 0.08 30.00

16 0.00 25.00 0.01 8.50 2.02 28.00 0.48 31.00

17 0.00 20.00 0.06 27.00 0.91 15.00 0.05 30.00

18 0.29 24.00 25.25 32.00 14.72 29.00 1.36 32.00

19 0.06 31.00 0.05 32.00 1.61 32.00 0.22 33.00

20 0.23 26.00 6.83 25.00 20.06 30.00 2.83 32.00

Avg 0.13 23.75 4.44 22.47 7.13 27.55 1.02 31.40

Average Ranking Overall 26.29

Final Placement 31
Table 2. Algorithm OFiso. Results for each scan pair, per category and overall. Rank-
ings and final placement are from a total of 34 competing algorithms.

5 Discussion & Conclusion

From the previous section one can clearly see that the overall performance of
our algorithm is rather weak compared to the other methods. This is mainly due
to our rather simple optical flow model, which is a straight-forward extension
from a two-dimensional algorithm [9]. The most important drawback of our
method is the lack of a penalty for non-diffeomorphic transformations. This
can also be seen in the fourth evaluation measure where we rank at the end
of the field for most of the data sets. We are currently looking into a way to
include such a penalty into our convex formulation, however, this unfortunately is
not straight-forward. One could explicitly model diffeomorphic transformations
similar to [14] by calculating the displacement and its inverse in the optical
flow model and penalizing the difference between these two transformations.
However, this would at least double the time for calculating our solutions, which



brings us to the main benefit of our method, the computational efficiency. We
are not aware of competing algorithms which are able to perform deformable
image registration as fast as our algorithm is able to, using a dedicated CUDA
based GPU implementation. This is a very important feature, especially for the
online registration at the workshop where 10 data sets will have to be registered
in 3 hours.

Another drawback of our method can be seen from the error measures on the
data sets showing large differences in the breathing cycle (scan pairs 1,4,7,8,10,14,16,18,20).
In this case inhaled and exhaled lungs lead to rather different appearances, where
smaller vessels vanish in the exhaled data set due to the limitations in spatial
resolution. Therefore, the implicit brightness constancy assumption of optical
flow is not valid anymore, and our performance drops. So, here we have to con-
clude that the optical flow algorithm is not useful for too large displacements in
combination with disappearing vessel structures.

What we learned from the evaluation was the significantly better perfor-
mance of the anisotropic model compared to the isotropic one. This implies that
the image gradient information is very important for the registration and the
resulting displacement fields. Performance is better although we were not able
to register one data set (data set 2) due to memory problems which could not
be solved in time for the offline workshop contribution.

In conclusion we want to stress that this EMPIRE10 challenge is a very
important step forward in the evaluation of deformable registration algorithms.
In our contribution we have observed the strengths (efficiency) and also the
limitations of a simple optical flow implementation (which is a widely used model
in literature) with respect to the problem of thorax CT registration. We will
continue to work on improved models to perform better on the presented data
sets.
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