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Abstract
This paper describes an approach to head pose estimation in passport type images with an emphasis
on high accuracy for near-frontal poses as well as person independence. Two different algorithms are
proposed and compared. A Histogram of Oriented Gradients (HOG) descriptor is used for non-linear
regression and a Biased Manifold Embedding (BME) approach is extended to cope with multiple pose-
angles. In addition, we present an approach for the creation of an artificial training database. The
effectiveness of the algorithms is shown on the artificial database as well as on a publicly available
dataset where the HOG based approach performs best.

1. Introduction
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Figure 1. Definition of the human head
pose angles

The estimation of the 3D pose of a human head from still images
is a difficult problem but has numerous potential applications
such as head pose tracking in vehicles [8], controlling virtual
avatars [7] and facial image analysis in biometric images [11].
While humans learn to quickly estimate the orientation of a head
very early in their life, a computer vision system has to overcome
a variety of problems which have challenged researchers and sci-
entists for decades [9]. For example, human faces exhibit an
enormous variation in facial expressions and there are huge dif-
ferences in faces of people with different gender, ethnicity and
age. A Head Pose Estimation System (HPES) should demon-
strate robustness to such factors and also to occlusion, noise,
lighting and perspective distortion.

We are especially interested in analyzing passport type photos as defined by the International Civil
Aviation Organization (ICAO) [5] in order to determine the exact head pose of the person being
shown. This standard requires that the person in the image has a frontal head pose which means that
the head rotation must not deviate more than ±5 degrees in any direction from frontal. The human



head has three rotational degrees of freedom (DOF) which are shown in Figure 1. The left/right-pose
is defined by the yaw angle, pitch angles describe the up/down pose and the roll angle represents
in-plane rotations. Our HPES is required to estimate all of these angles accurately.

The contributions in this paper deal with enhancements of existing algorithms in order to improve
their pose estimation accuracy (see Section 3.). We show how to extend the Biased Manifold Em-
bedding [1] technique to multi-DOF pose estimation and use the histogram of oriented gradients
descriptor [4] for non-linear regression [8]. In addition to that we propose a database for training a
head pose estimation system. An evaluation of all methods in an unified framework allows a direct
comparison of the estimation performance of different systems (see Section 4.).

2. Related Work

According to a recent survey [9] existing algorithms for head pose estimation can be categorized into
several classes. Appearance Template Methods and Detector Array Methods try to estimate the head
pose by either directly comparing head images with a set of template images or by using a trained
detector in order to find the most similar pose for a new head image.

Regression Methods learn a continuous estimate of the head pose by a possibly nonlinear mapping
of the high dimensional image features to pose angles. Manifold Embedding Methods assume that
even though an image consists of hundreds of dimensions spanned by the pixels of the image, only
a few dimensions define the pose [7]. Thus these methods map the head image to a low-dimensional
manifold that is defined by the continuous pose angles. Both methods rely on a robust and accurate
face localization.

Geometric Methods rely more on human perception and include measurements of distances between
facial features and deviation from bilateral symmetry [13]. These methods require that facial features
such as eye corners can be detected robustly. Due to occlusion, facial expressions and pose-dependent
viewing angles this is a non-trivial task [12]. Flexible Models solve this problem by fitting non-rigid
face models to the 2D image of a face in order to determine the head pose. For example, graphs of
facial features can be automatically deformed until they fit to a face in an arbitrary pose [14].

3. Head Pose Estimation

The main focus of our work is the continuous estimation of the head pose in monocular still images
(e.g. passport photos). This means that we require that the HPES is person independent and can
handle the large variety of faces correctly. Detecting facial features like the nose or the mouth is a
challenging problem and wrongly detected features will degrade the overall performance. Therefore
it is beneficial if these features need not be detected in the input image.

Only two types of methods from the overview in Section 2. fulfill our requirements. Both Manifold
Embedding (see Section 3.1.) as well as Non-Linear Regression methods (see Section 3.2.) perform
pose angle regression and require only a good face localization, which is given in our application.
In addition to that, they are able to adapt to the variety of people found in real world scenarios
automatically.

We propose an HPES similar to [8] which is sketched in Figures 2 and 3. The head pose estimation
starts with an image of a human head which is presented as the input to the system. If the position of
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Figure 2. Components of a head pose estimation system using manifold embedding

the head in the image is not known in advance, face normalization such as [11] can be used to trans-
form the input images such that the eyes of the subject have a fixed position in the image. Therefore
the roll angle can automatically be estimated by this step. A narrow region around the face is then ex-
tracted based on the position of the eyes. The yaw and pitch angles can subsequently be estimated by
learning a mapping of the pixels of the region to pose angles. The remainder of this section describes
two algorithms that work within such a framework.

3.1. Biased Manifold Embedding

The first algorithm we evaluate uses a manifold embedding technique [1] to estimate the pose of the
human head. The main idea is to map the high dimensional input image onto a low-dimensional
manifold which correctly maps pose angles while ignoring lighting, occlusions and facial differences
of individuals. Pitch and yaw angles can be extracted from such a manifold by using regression
techniques.

We use the geometrically motivated Laplacian Eigenmaps (LE) [2] algorithm for representing high
dimensional data. It allows an efficient non-linear dimensionality reduction while preserving locality
properties. This makes it suitable for clustering applications such as an HPES which tries to keep
similar poses within a small neighborhood on the manifold. LE require a distance measure between
every tuple of data points (xi, xj) from a training set such as the Euclidean distance between the i-th
and j-th data point:

d(i, j) = ‖xi − xj‖ (1)

As feature vectors xi we use the facial region scaled to 32 × 32 pixels filtered by a Laplacian of
Gaussian filter in order to extract edge information. Laplacian Eigenmaps can be generated from
the distances between feature vectors alone [2]. When using the unmodified distance calculation,
features of the same person at different poses are likely to have a lower distance than features of
different people at the same pose, which is a disadvantage in our context. Balasubramanian et al. [1]
therefore enhanced manifold embedding techniques by using a Biased Manifold Embedding (BME)
approach that incorporates pose information into the creation of the manifold in order to weight pose
differences much higher than inter-person differences:

d̃(i, j) =
|p(i, j)|

maxm,n p(m,n)− p(i, j)
· d(i, j) with p(i, j) = |φy(i)− φy(j)| (2)

In Eqn. (2) this biasing term is multiplied with the Euclidean distance from Eqn. (1). This ensures that
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Figure 3. Components of a descriptor based head pose estimation system

data points with a small pose distance p(i, j) for the images i and j lie close together on the resulting
manifold. Balasubramanian et al. use only the yaw angle φy(i) of the head in the image. For our
system we extend the definition of the pose distance by the pitch angle φp(i):

p(i, j) =

√
[φy(i)− φy(j)]2 + [φp(i)− φp(j)]2 (3)

The complete head pose estimation process is shown in Figure 2. With the help of Laplacian Eigen-
maps, the low dimensional manifold is created from the feature vectors of several thousand training
images (see Section 3.3.). We use two support vector regression machines to extract the yaw and pitch
angles from the low dimensional manifold. As there exists no direct way to map new feature points
onto an existing manifold, we learn the mapping from feature space to the manifold using a Gaussian
Regression Neural Network (GRNN) [16] in order to estimate the pose of previously unseen head
images.

3.2. Non-Linear Regression of Image Descriptors

Another approach that promises to support our requirements was initially published by Murphy-
Chutorian et al. [8] who calculated a localized gradient orientation (LGO) histogram on the facial
region of a normalized facial image. An LGO descriptor can be compared to a single SIFT descrip-
tor [6] with a fixed position, orientation and scale. The system, which can be seen in Figure 3, extracts
a scale normalized region around the face and calculated an LGO descriptor for it. Two support vector
regression machines then estimate the yaw and pitch angle for the LGO descriptor vector. With this
system pose angle estimation with a mean absolute pitch error of 5 degrees as well as 7 degrees in
yaw angles are possible [8].

For our system we require a better performance and therefore propose several improvements. In order
to reduce lighting effects, we enhance the shadow areas of the gray-level input image by a non-linear
gamma normalization by transforming each pixel I(x, y) to (I(x, y))γ with γ = 0.2. Instead of the
LGO descriptor we use a Histogram of Oriented Gradients (HOG) descriptor [4] which has proven
to be effective for object detection in images. Recent work has pointed out that HOG descriptors
are well suited for head pose classification tasks [10] but they have not been used for head pose
regression so far. The major advantages of the HOG descriptor over the LGO are that the orientation
of the gradients are weighted according to the gradient magnitude. In addition to that the descriptor
features a spatially selective normalization which stores a single histogram multiple times but with
different weights. Another important improvement deals with the scale normalization of the image.
While in [8] only a scaled down facial patch is used, we follow the recommendation of [4] to use the



(a) (φy, φp) = (30◦,−20◦) (b) (φy, φp) = (0◦, 0◦) (c) (φy, φp) = (−30◦, 10◦) (d) (φy, φp) = (20◦, 10◦)

Figure 4. Examples of generated head poses at different yaw and pitch angles (φy, φp) and light settings

largest scale possible without smoothing. As a result, many more gradient values are gathered in the
orientation histograms of the descriptor which increases its robustness.

The effects of these enhancements on the head pose estimation accuracy will be demonstrated in
Section 4. Before that we present our novel face image database which allows us to train and evaluate
the systems.

3.3. Facial Image Database

For training an image based head pose estimation system, a large database of facial images in different
poses and with multiple people is needed. A variety of databases are mentioned in the literature [8, 3]
but there is either not enough variation in the images or the database is not open to the public. This
is why we propose a method to create a face image database with a high flexibility at a very low
cost by rendering 3D models from existing laser scans. The Facial Expression database from the
Binghampton University [15] contains fully textured 3D heads of 100 subjects. We generate multiple
facial images from each head model by rotating it in 3D space with yaw within±50 ◦ and pitch angles
within±30 ◦. The background of each rendered image is set to an arbitrary image in order to simulate
a non-uniform background. In addition to that, we rotate a variable light source around the head in
order to generate a variety of lighting situations. Such training data allows the system to become more
robust and person independent. In all generated images the mid-point of the eyes is kept at a constant
position which allows us to eliminate the face detection prior to head pose estimation. Therefore our
training images are not influenced by the performance of the head localization step. Some of the
synthetic images can be seen in Figure 4.

4. Experimental Results

We performed an experimental evaluation on our artificial database (see Section 3.3.) as well as on the
publicly available FacePix database [3]. Three different implementations of a head pose estimation
system were evaluated: Biased Manifold Embedding [1], Local Gradient Orientations mapped by an
SVR [8] and our Histograms of Oriented Gradients based improvement described in this paper.

Training of the systems was performed by using a subset of head images from persons in our database
while keeping the remaining persons for testing. The optimal parameters for the descriptors and
machine learning algorithms were found by an exhaustive search over the parameter space. As the
performance measure we used the mean absolute pose angle estimation error. This measure is often
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(a) Performance on our database: Ey = 3.6◦
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Figure 5. Yaw angle estimation performance of the HOG descriptor with SVR learning for different yaw angles
(mean and standard deviation)

used in the literature and therefore allows comparison with other publications (e.g. [9]):

Ey =
1

N

N∑
i=1

|φy(i)− Py(Di)| Ep =
1

N

N∑
i=1

|φp(i)− Pp(Di)| (4)

It is defined as the absolute difference between the ground-truth pose angle of the i-th image (e.g.
φy(i)) and the predicted angle from the descriptor Di of the image. The mean over all N images in
the test-set yields the final value for either yaw or pitch estimation errors.

Method Ey our DB Ep our DB Ey FacePix
Biased Manifold Embedding 5.6 ◦ 6.5 ◦ 14.0 ◦

LGO / SVR 4.5 ◦ 4.4 ◦ 7.5 ◦

HOG / SVR 3.6 ◦ 3.1 ◦ 4.0 ◦

Table 1. Comparison of the Biased Manifold Embedding, LGO and HOG approach in terms of mean absolute pose
angle estimation error when trained and tested on our database and additionally tested on the FacePix database [3]

In Table 1 the performance of the systems on yaw and pitch angle estimation is compared using the
mean absolute error. It can clearly be seen that the HOG approach outperforms the other methods in
both pitch and yaw angle estimation performance. The biased manifold embedding approach shows
the worst results in our evaluation. This finding is somewhat contrary to what is stated in [1] where
mean absolute errors of around 2 ◦ are promised. The reason for this is that the original algorithm
is trained and tested on the FacePix database which only contains rotations around a single axis
(left/right). When used in a multi-dimensional pose estimation system or heterogeneous datasets, this
performance degrades due to ambiguities between neighboring poses.

A more detailed evaluation of the HOG descriptor based system in Figure 5(a) shows that the yaw
angle estimation performance has a U-shaped curve for different yaw angles with a minimum at the
0 ◦ yaw angle. This means that yaw angles are estimated more accurately in frontal pose head images.
Such behavior is beneficial in applications such as ours where we want to estimate the head pose in
near-frontal images. A similar evaluation in Figure 5(b) shows a good performance of the HOG based
system with an average yaw estimation error of 4.0 ◦ on the FacePix database [3] while still being
trained on our artificial database.

As the ICAO standard [5] allows only frontal head poses for passport images, we evaluate the perfor-
mance of the classification of head images into frontal and non-frontal poses as well. We do this by
thresholding the estimated yaw and pitch angles for a given head pose image. In Figure 6 we show
the Receiver Operating Characteristics (ROC) as true and false positive rates for different threshold
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(a) Thresholding of yaw angles
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(b) Thresholding of pitch angles

Figure 6. Evaluation of the frontal-pose classification performance of the three system using ROC plots

values on non-training images from our generated database. At a threshold of slightly more than five
degree we are able to classify over 90% of all faces correctly with less than 5% false positives when
using the HOG based HPES, which is due to the low estimation error in frontal poses. Other methods
do not show such a good performance for frontal pose classification. We obtain similar values for
the same evaluation of the FacePix database but with twice as many false positives (not shown in this
paper).

5. Conclusion

In this paper we presented a system for head pose estimation from monocular still images. We esti-
mated continuous pose angles from either localized gradient orientation (LGO) histogram descriptors,
histogram of oriented gradients (HOG) descriptors or manifold embedded pixel values. The main con-
tributions were the extension of the biased manifold embedding approach [1] towards pose estimation
in two DOF and use of the HOG descriptor [4] for head pose estimation. While the HOG descriptor
has become quite common in object detection, we showed that its advantages hold in regression tasks
as well. The biased manifold embedding approach did not show convincing results in our experiments
when used for the estimation of more than one pose angle.

For training the HPES a novel database was generated from 3D head models, also background clutter
and lighting variations were simulated. We showed that a system trained on our database also per-
formed well on different databases. In future work we intend to perform more experiments to test the
method on more complex data (e.g. face with eye glasses and/or different facial expressions).
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