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Abstract

We present an approach for unsupervised alignment
of an ensemble of images called congealing. Our algo-
rithm is based on image registration using the mutual
information measure as a cost function. The cost func-
tion is optimized by a standard gradient descent method
in a multiresolution scheme. As opposed to other con-
gealing methods, which use the SSD measure, the mu-
tual information measure is better suited as a similarity
measure for registering images since no prior assump-
tions on the relation of intensities between images are
required. We present alignment results on the MNIST
handwritten digit database and on facial images ob-
tained from the CVL database.

1. Introduction
Congealing is the alignment of an ensemble of mis-

aligned images. The only assumption in congealing is

the type of geometric misalignment, e.g., translation,

similarity, affine, and the assumption of a self-similar

appearance class, e.g., faces, cars. There are several ap-

plications for congealing, e.g., the registration of a stack

of images from different modalities in medical imaging

[11] or the alignment of a training database for machine

learning algorithms [4].

The seminal work of Learned-Miller [8] termed the

notion ”congealing”. They minimize parametric warp

differences between a stack of images by applying a

sum of entropies cost function. In recent work of

Cox et al. [1] some problems of Learned-Miller are alle-

viated, namely the slow convergence, the need to select

a stepsize and sensitivity on the warp parameterization.

In their work, they applied a sum of squared differences

(SSD) cost function to allow for an effective application

of a Gauss-Newton gradient descent approach. They

are able to simultaneously estimate warp parameter up-

dates and they do not need a pre-defined step size as

opposed to [8]. Their approach is similar to the well

known Lucas & Kanade image alignment with the ex-

tension to an ensemble of images rather than a single

image. Cox et al. further improved their results for a

larger amount of images [2]. In their work, they claim

that employing an inverse compositional formulation of

least-squares congealing is superior to their additive for-

mulation in [1] and thereby show an increase of align-

ment performance.

There are some other methods based on subspace

techniques for automatically aligning an ensemble of

images. Frey and Jojic [3] extended the Principal Com-

ponent Analysis (PCA) to cope with non-aligned im-

ages. They obtained a set of aligned basis images by

applying the EM algorithm. However, one major draw-

back was the need to define a discrete set of allowable

spatial warps affecting also computation time. De la

Torre and Black [7] and Schweitzer [13] proposed ex-

tensions on Frey and Jojic’s approach. They learn a sub-

space, which is invariant to affine or higher order geo-

metric transformations. The advantage is that the spatial

warp variation is modeled continuously rather than dis-

cretely. The major drawback is the need for estimates

of the basis images for the iterative algorithms which

limits the applicability of their algorithms.

In this paper we concentrate on the state-of-the-art

congealing methods of [1, 2]. They make use of the

SSD similarity measure. The SSD measure makes the

implicit assumption that the images differ only by Gaus-

sian noise after registration. Only in that case, the SSD

measure is optimal [17]. For congealing this is never

the case because we have a lot of intraclass variation,

e.g., in the case of congealing facial images, different

subjects, facial hair, gender or race. In other words, the

SSD is not an appropriate cost function for generic im-

age registration, hence we apply a more sophisticated

cost function based on the mutual information measure

[11, 15, 16]. This information-theoretic criterion is very

general and powerful, because it does not depend on

any assumption on the data (other than stationarity) and

does not assume specific relations between intensities

in a pair of images.

Based on the basic image registration method using

mutual information we build our congealing approach,
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which is explained in detail in Section 2. Section 3 ex-

hibits experiments congealing handwritten digit images

and a stack of facial images. Our approach shows very

good congealing results and is furthermore easy to im-

plement. Finally, we discuss and conclude our work in

Section 4.

2. Congealing
Congealing in our case is defined as an advanced

case of image registration. In image registration we

have one image called moving image IM (x) which is

deformed to fit the other image, the fixed image IF (x).
That is, we have to find a transformation Tθ(x) that

aligns IM (x) with IF (x), where θ are the transforma-

tion parameters. The optimal transformation is found

by minimizing a cost function C with respect to θ

θ̂ = argmin
θ
C (θ; IF ; IM ) . (1)

In the introductory section we noted that the SSD

is not an appropriate cost function for generic im-

age registration, hence we apply a more sophisticated

cost function based on the mutual information mea-

sure [11, 15, 16]:

C (θ; IF ; IM ) =

−
∑

m∈LM

∑
f∈LF

p (f,m; θ) log2

(
p (f,m; θ)

pF (f ; θ) pM (m; θ)

)
,

(2)

where p is the discrete joint probability, pF and pM
are the marginal probabilities, and LF and LM are sets

of regularly spaced histogram bins containing intensity

values of the fixed and moving image respectively. LF

and LM together span a 2D joint discrete histogram

h (f,m; θ) where the joint histogram values are esti-

mated using Parzen windows wF and wM representing

the fixed and moving image:

h (f,m; θ) =
1

σFσM

∑
xi∈ΩF

wF

(
f − IF (xi)

σF

)

·wM

(
m− IM (Tθ (xi))

σM

)
.

(3)

The scaling constants σF and σM must equal the in-

tensity histogram bin widths defined by LF and LM .

These follow directly from the grey-value ranges of IF
and IM and the userspecified number of histogram bins

|LF | and |LM |.
The joint histogram h (f,m; θ) is proportional to the

discrete joint probability p (f,m; θ) given by

p (f,m; θ) =
1

|ΩF |h (f,m; θ) (4)

where |ΩF | is the number of pixels in the fixed image

domain ΩF . The marginal discrete probabilities pF and

pM of the fixed and moving image are obtained by sum-

ming p over m and f , respectively

p (f ; θ) =
∑

m∈LM

p (f,m; θ)

p (m; θ) =
∑
f∈LF

p (f,m; θ).
(5)

The mutual information measure is very general;

only a relation between the probability distributions of

the intensities of the fixed and moving image is as-

sumed. This cost function is minimized iteratively by

a standard gradient descent method [6] in a multires-

olution scheme. The advantage of a multiresolution

scheme is to start the registration process at lower image

complexity to reduce the sensitivity to get stuck in local

minima of the cost function. Furthermore the overall

runtime is decreased.

In (3) we observe a loop over pixel coordinates xi

over the fixed image domain ΩF . In general, it is

not necessary to take all coordinates into account, but

a smaller amount of coordinates may already suffice

[6, 15]. This subsampling strategy leads to a lower com-

putational cost, especially for larger images. We use a

random selection of a user-specified number of coor-

dinates xi. Furthermore the sampling is performed by

taking samples off the pixel grid to improve the smooth-

ness of the cost function, as suggested by [10, 14].

The image registration functionality is provided by

the elastix package [5], which also allows to choose

some other cost functions, optimization techniques,

subsampling strategies and interpolation methods.

For congealing we extend the concept of image reg-

istration. Every image of the ensemble of unaligned im-

ages is taken once as a moving image. This happens in

an outer loop over all images. During one outer loop

iteration all other images serve as fixed images. We

register the moving image to every fixed image using

the entropy based registration described above obtain-

ing the transformation parameters θ. By averaging the

transformation parameters obtained from all those reg-

istrations we get the final transformation parameters for

the moving image. Note that this procedure is signifi-

cantly simpler and easier to implement than the compa-

rable approaches of [2, 8].

3. Experimental Results
First we evaluate our congealing algorithm on hand-

written digits obtained from the MNIST database [9]

in Section 3.1. The outcome of the experiments using

handwritten digits motivated us to apply congealing to a
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Figure 1. Average images before (first row) and after congealing (second row). The samples
were obtained from the MNIST database [9].

more difficult object class. Therefore we show congeal-

ing with an ensemble of facial images in Section 3.2.

3.1. Congealing Handwritten Digits
We show the applicability of congealing using sam-

ples from the MNIST handwritten digit database [9].

A total of 50 randomly selected images per digit are

used for our experiments. We allow an affine trans-

form Tθ(x) for this image registration task having six

parameters to optimize. The results are presented visu-

ally in terms of average images. Figure 1 (second row)

shows the sharpness of the average images generated

from congealing compared to the average images of the

unaligned digits in Figure 1 (first row). It can clearly be

seen that most of the spatial variation among the digits

is removed. The average runtime1 to congeal one sam-

ple of size 28x28 is 78s.

3.2. Congealing Facial Images
Motivated from the results of our congealing exper-

iments with handwritten digits in Section 3.1 we ap-

ply our algorithm also to facial images from the CVL

database [12], because the images of this database show

variation in gender, pose and facial expression and are

not aligned. The CVL database consists of facial color

images from 114 individuals of a resolution of 640x480

pixels. For our experiments we use the frontal pose im-

age of every individual. We crop the faces to a size of

270x270 pixels and perturb the images randomly by a

small amount of translation, scale and rotation to build

a strongly unaligned set of facial images. In contrast

to our first experiment in Section 3.1 we allow only a

similarity transform Tθ(x) for image registration, be-

cause we do not want to shear our facial images. The

unaligned facial images and the result of congealing is

shown in Figure 4.

To be able to perform also a quantitative evaluation

of congealing quality, we annotated all frontal images

manually with 19 landmark points at salient facial fea-

ture positions, shown in Figure 2. We will provide our

1The runtime is measured using an Intel Core 2 Duo processor

running at 2.4GHz.

Figure 2. Annotation of a facial image with
19 landmark points at salient facial fea-
ture positions.

annotations for the public research community. We cre-

ated a set of aligned landmarks used as groundtruth by

applying Procrustes Analysis. The Point-to-Point dis-

tance of the unaligned landmarks (corresponding to the

perturbed images) to the aligned landmarks is illustrated

in Figure 3. After congealing we used the obtained

landmarks and compared them also to the groundtruth

exhibited in Figure 3. It can clearly be seen that the

distribution of the Point-to-Point distances is shifted to-

wards smaller displacements emphasizing the applica-

bility of our algorithm. We also want to show the ben-

efits of our mutual information cost function by replac-

ing (2) by a SSD measure and compare the congealing

results in Figure 3. The SSD is clearly outperformed

by the mutual information measure, especially the SSD

exhibits many outliers. These findings substantiate our

claims from the introductory section.
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Figure 3. Point-to-Point distance of the
unaligned landmarks and the congealed
landmarks to the aligned landmarks.
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Figure 4. The spatial variation gets removed from the perturbed facial samples by our algo-
rithm. The samples are taken from the CVL database [12].

4. Conclusion
We presented an algorithm for unsupervised align-

ment of a stack of images. The commonly used SSD

measure for congealing is not appropriate for generic

image registration. Hence, we used the more sophisti-

cated mutual information similarity measure as a cost

function. This cost function is optimized by a standard

gradient descent method in a multiresolution scheme.

The congealing results on the MNIST handwritten digit

database and the results for congealing facial images

obtained from the CVL database clearly show the ap-

plicability of our algorithm. We also provide our anno-

tations on facial images of the CVL face database for

the public research community.
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