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Abstract

Facial image analysis is an important computer vision
topic as a first step for biometric applications like face
recognition/verification. The ICAO specification defines
criteria to assess suitability of facial images for later use
in such tasks. This standard prohibits photographs showing
occlusions, thus there is the need to detect occluded images
automatically. In this work we present a novel algorithm for
occlusion detection and evaluate its performance on several
databases. First, we use the publicly available AR faces
database which contains many occluded face image sam-
ples. We show a straight-forward algorithm based on color
space techniques which gives a very high performance on
this database. We conclude that the AR faces database is too
simple to evaluate occlusions and propose our own, more
complex database, which includes, e.g., hands or arbitrary
objects covering the face. Finally we extend our first algo-
rithm by an Active Shape Model in combination with a PCA
reconstruction verification. We show how our novel occlu-
sion detection algorithm outperforms the simple approach
on our more complex database.

1. Introduction
Analysis of facial images in a biometric context is an im-

portant research topic in computer vision with face recog-

nition being one especially prominent area of application.

There is a high interest in biometrics due to a large num-

ber of potential commercial and law enforcement applica-

tions (e.g., biometric authentication or surveillance) requir-

ing highly accurate recognition of biometric features like

the face. Besides accuracy, robustness to occlusions is an-

other very important aspect of facial image analysis and

recognition. The topic of face recognition has received sig-

nificant research attention over the last two decades [25] and

has also led to many commercial systems [17].

We are specifically interested in analyzing facial portrait

and near-portrait images in the context of the International

Civil Aviation Organization (ICAO) standard [9] for ma-

chine readable travel documents (MRTDs). The main in-

tention of this standard is to define how images of arbi-

trary people have to look like in order to perform robust and

highly accurate face recognition/verification. Studies show

that without proper registration of facial images face recog-

nition performance degrades significantly [18]. Therefore,

a part of the ICAO specification describes a standardized

coordinate frame based on eye locations for the purpose of

geometrical alignment. Starting with this standardized co-

ordinate frame, which is computed in a so-called canoniza-
tion step, one can derive criteria to define images with and

without occlusions. In this work we concentrate on occlu-

sions due to extraordinary glasses and objects covering parts

of the face (hands, hair, or other objects). See Figure 3 and

Figure 5 for some examples.

The problem of occlusions in the context of face recog-

nition has recently been studied in [7], where the authors

show different amounts of degradation in recognition per-

formance depending on the location of the facial occlusion.

A number of techniques have emerged to make the recogni-

tion algorithm itself robust to occlusions. Early work in this

direction has been proposed by Leonardis and Bischof [10]

who showed how to handle occlusions in an eigenface [21]

framework. Their key idea was to extract eigenspace coeffi-

cients by a robust hypothesize-and-test paradigm using sub-

sets of image points instead of computing the coefficients

by projecting the data onto the eigenimages. Li et al. [11]

presented a local non-negative matrix factorization (LNMF)

to learn spatially localized part based subspace representa-

tions from visual patterns. Their use of localization con-

straints showed good performance on the AR face database.

Extending this work, Oh et al. [16] proposed a selective

LNMF technique with a partial occlusion detection step on

a number of disjoint image patches. These patches are rep-

resented by a PCA to obtain corresponding occlusion-free

patches, followed by the LNMF procedure used exclusively

on the bases of the occlusion-free image patches. A differ-

ent direction was pursued by Martinez [14] who described

a probabilistic approach that compensates for imprecisely

localized, partially occluded faces under different facial ex-
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pressions. He divides the face into a number of local regions

and matches them to a single prototype by a probabilistic

scheme. He demonstrates robustness in the presence of oc-

clusion of 1/6 to 1/3 of the facial area at the cost of only

a slight decrease in accuracy. All of these presented ap-

proaches have in common that their goal is to perform face

recognition in the presence of occlusions. However, in our

task we explicitly want to detect occlusions to sort out un-

suitable images for a subsequent recognition step. This is

in accordance with the ICAO specification which prohibits

occluded facial images.

A tightly related topic is face hallucination which was

made popular in work by Baker and Kanade [1]. Here oc-

cluded parts of a face are recovered by using generative face

models. Different terms describing this area of research are

face recovery and regeneration or face image inpainting.

Some examples of recent work are presented in [12, 23].

Our face images are used for machine-readable travel docu-

ments, so we do not want to modify given occluded images.

Therefore we do not focus further on this research direction.

An obvious choice for an occlusion detection algorithm

is the widely used Active Appearance Model (AAM) [5].

Here the strategy is to use the generative AAM model fitting

algorithm starting with a suitable model initialization on a

face portrait image. By fitting the model to the occluded im-

age one could derive a quality measure (e.g., the final sum-

of-squared differences) to make a decision if an occlusion

is present or not. Here, the main problem is that the original

AAM model formulation is not very robust to occlusions.

Some extensions of the AAM model in the presence of oc-

clusions have been presented in the literature [8, 20, 24],

however their holistic approach poses a basic difficulty dur-

ing model fitting, since the quality measure driving the fit-

ting optimization always is influenced by the occluded part

to a certain degree and the non-convex optimization is prone

to get stuck in local minima. Due to their popularity and

widespread availability we will show where this class of al-

gorithms tends to fail in our occlusion detection task.

In this work we propose a novel system to automatically

detect occlusions from canonized facial images in Section 2.

This is an important pre-processing step for the training

of face recognition/verification, but could also be used for

the testing step. In Section 2.1 we start with a straight-

forward occlusion detection method based on color space

techniques and perform occlusion detection experiments on

the publicly available AR database [13]. We show why this

database is not sufficient to evaluate an algorithm for fa-

cial occlusion detection, and we present our own more chal-

lenging database which we created specifically for this task.

We extend our first algorithm and include an Active Shape

Model (ASM) [6] approach followed by a PCA based veri-

fication step described in Section 2.2. This second method

is able to solve the occlusion detection problem on our own

more difficult database. Finally, we discuss and summarize

our findings in Section 3.

2. Occlusion Detection
We start with a simple and straight-forward approach

for occlusion detection in Section 2.1 which we refer to as

Method 1. It is based on automatic color correction tech-

niques and on the HSV color space. It turns out that this

method is already well suited and sufficient to detect occlu-

sions on the publicly available AR face database [13].

We created our own collection of images which extends

the variations exhibited by the AR database in terms of fur-

ther illumination conditions and types of occlusions. We

show that the simple Method 1 does not perform very well

on this more challenging database. Hence, we exploit our

findings of our color experiments of Method 1 and extend

this first method by an Active Shape Model [15] in combi-

nation with a projection of facial parts to separate Principal

Component (PCA) subspaces. We refer to this extension as

Method 2 explained in detail in Section 2.2.

In our proposed system we make use of input images

in the canonized coordinate frame according to the ICAO

specification. In order to be able to analyze arbitrary facial

images we have to transform them first into this coordinate

frame based on eye locations. For this purpose we use a ro-

bust face and facial component detection stage followed by

a probabilistic voting scheme for the most probable face and

eye position [22]. The canonized image is finally derived by

warping the input image according to the eye locations.

2.1. Method 1

Our first approach is based on automatic color correc-

tion and on the H-channel of the HSV color space. Before

transforming the image into the HSV color space an auto-

matic color correction is applied. It reduces the effects of

global illumination and could also be referred to as auto-

matic white balancing based on color temperatures.

Our automatic color correction algorithm assumes that

the average surface color in a scene is gray. This means

that the shift from gray of the measured averages on the

three channels corresponds to the color of the illuminant.

Three scaling coefficients, one for each color channel, are

therefore set to compensate this shift [2, 3]. Every RGB-

pixel value is adjusted according to
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where Y is the mean value of the luminance channel and R,

G and B correspond to the mean values of the three planes

of an RGB-image.
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Figure 1. Method 1. The canonized and color adjusted image is

transformed to the HSV color space. After binarization of the H-

channel of the HSV color space, occlusion masks are used to cal-

culate the level of occlusion on the lower facial part and around

the eyes region.

Based on several experiments using different color

spaces, e.g., RGB, YUV, LAB, XYZ, YCbCr, we found that

the H-channel (representing the hue values of the image) of

the HSV color space is best suited for occlusion detection

on facial images. The H-channel image is binarized and

some morphological post-processing is applied to remove

small isolated regions. We define masks for the lower fa-

cial part and the eyes to obtain a final value for the level

of occlusion. This whole chain is illustrated in Figure 1.

Figure 2 shows some examples of extracting the H-channel

of an image and the final occlusion map after binarization.

Note that almost always the beards of male individuals are

part of the non-occluded facial region in the binarized H-

channel image, thus they do not contribute to an occlusion

area.

Experimental results

Using Method 1 we conducted experiments on the pub-

licly available AR face database [13]. The AR face database

consists of more than 3000 frontal view facial color images

of 135 people showing variations in gender, facial expres-

sion, illumination conditions and occlusions (sun glasses

Figure 2. Creation of an occlusion map based on the HSV color

space. (first column) original images, (second column) H channel

of HSV color space and (third column) the corresponding maps

gained after thresholding the H channel image.

and scarves). The size of the images is 768 × 576 pixels.

Those individuals wearing a scarf or sun glasses are labeled

as occluded. Some representative examples are presented

in Figure 3. With Method 1 we reached an equal error rate

(EER) of 4.5%. The corresponding ROC curve is shown in

Figure 4. Note that these results are slightly worse than the

results presented in Oh et al. [16], however, their method

explicitly trains on the occlusions of the AR face database,

which is rather unrealistic, since real occlusions occur in a

significantly larger variety, while our method works com-

pletely unsupervised. Given the very restricted set of possi-

ble occlusions present in the AR face database, we conclude

that one needs a database with more variation in order to as-

sess the occlusion detection performance realistically.

2.2. Method 2

Method 1 discussed in Section 2.1 is already well suited

to detect occlusions on the publicly available AR database.

We created a more challenging database of occluded and

non-occluded facial images (see Figure 5) where Method 1

does not perform very well. The main reason is that the oc-

clusion detection is exclusively based on color space tech-

niques. In our database we also have skin colored facial

occlusions, e.g., hands occluding the face. Examples are

depicted in Figure 5a and Figure 5f where Method 1 would

fail.

We start by improving the color detection branch as

shown in Figure 6. We transform our lowpass filtered can-
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(a) (b) (c)

(d) (e) (f)

Figure 3. Samples from the AR database. The images feature

frontal view faces with (a)-(b) different facial expressions, (c) sev-

eral illumination conditions, (d) occlusion of the lower facial part

by a scarf, (e) occlusion of the eyes by sunglasses and (f) combi-

nations of these variations.
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Figure 4. ROC curve of Method 1 evaluated on the AR database.

onized image to the HSV color space and extract the H-

channel. After binarization and some morphological op-

erations (as used for Method 1) we obtain the occlusion

map. We define an occlusion mask for the forehead and

the lower facial part. The eyes region will be considered as

the method proceeds. The forehead mask is used to calcu-

late the level of occlusion of the forehead. This is especially

important if e.g., somebody wears a cap (Figure 5b).

If the approach at that stage claims an occlusion of the

lower facial part, we validate this claim by finding similar

colors based on a given color mask, Figure 7. The color

mask C is defined based on the position of the canonized

image and is marked by the red lines in Figure 7a. We

pick up the H-pixel values hj ∈ C and form a unimodal

Gaussian model N (μ, σ2). It turns out that using only the

H-values for constructing the Gaussian model is superior

to a multivariate Gaussian model constructed from several

color queues. Using the Gaussian model we compute the

(a) (b) (c)

(d) (e) (f)

Figure 5. Samples from our own database. In addition to the varia-

tions exhibited by the AR database, our own database shows some

more variations, e.g. (a) occlusions by skin-similar color of the

lower facial part, (b) occlusions of the forehead, (c) variation of

the color tone of the overall image, (d) extreme lighting condi-

tions, (e) tinted glasses in several colors and (f) several colored

occlusions of the lower facial part (also skin-similar color).

probability map (Figure 7b) in the facial image domain Ω.

Therefore, we calculate the probability pi, i ∈ Ω, of every

pixel νi to determine how similar it is to the marked pixels

in Figure 7a:

pi =
1√
2πσ

exp

(
−1

2

(
νi − μ

σ

)2
)
. (2)

After binarization and some morphological operations we

get the final facial map (Figure 7c).

(a) (b) (c)

Figure 7. Determining similar colors. (a) The H-channel pixel val-

ues marked by the red lines are used to construct a Gaussian model.

(b) Probability map of similar colors, (c) probability map after bi-

narization and some morphological operations.

At the end of the color occlusion detection chain, the

images showing occlusions with colors similar to skin are

still classified as non-occluded. Hence, we create a second

occlusion detection step based on fitting an Active Shape

Model (ASM) [6], which should also detect non-facial

structures. Here we use the recently proposed STASM [15]
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Figure 6. Method 2. The left branch of the whole approach is based on color techniques. If there is no occlusion found by this color

occlusion detection, the ASM + PCA approach will be activated.

algorithm which is very robust against varying illumination

conditions or partly occluded facial images and showed ex-

cellent performance on our data. We also performed ex-

periments with Active Appearance Models [5, 19] but they

are by far inferior in terms of fitting accuracy for our task

compared to STASM, see Figure 8.

The STASM Algorithm

This publicly available algorithm extends the original

Active Shape Model [6] by a number of techniques like

two- instead of one-dimensional landmark profiles, extend-

ing the set of training landmarks and trimming the covari-

ance matrix by setting a large number of entries to zero. In

the following we will describe this algorithm which is an

important part of our system.

The original ASM makes use of a statistical formula-

tion to combine a set of user-specified landmark points in

a training set of annotated images into a generative model

of the object of interest. This generative model describes

the variation of the object shape from a mean object in-

stance. The ASM relies on a specified ordering of the n
landmarks {(x1, y1), (x2, y2), . . . , (xn, yn)} in a training

image. Given K suitably aligned training images we can

generate K vectors xk. These vectors

xk = (x1, . . . , xn, y1, . . . , yn)
T
k

form a distribution in a 2n dimensional space, and the

aim of the ASM is to generatively model this distribution.

Therefore, a Principal Component Analysis (PCA) is ap-

plied to the training data which results in the mean and the

main axes with their corresponding variances of the cloud

of points in the high-dimensional space. An approximation

of any training instance x can be calculated from

x ≈ x+Pb, (3)

where x is the mean of the distribution, P is the matrix

formed by the t eigenvectors of the covariance matrix of the

points and b is a t-dimensional vector of weights which re-

sembles a set of parameters of a deformable shape model.

Modifying this parameter creates different shapes restricted

by the information from the training data. In Cootes et

al. [6] the fitting of the shape model is performed by an iter-

ative algorithm that finds global pose as well as model pa-

rameters b. The fitting procedure is based on the matching

of a one-dimensional profile of gray-value and edge infor-

mation, derived from the training data, to profiles extracted
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from the current position of the landmarks in the test im-

age. This procedure is very sensitive to the initialization of

global pose and model parameters and is prone to get stuck

in local minima. The fitting process can be understood as it-

eratively moving landmark points independently from each

other to locations where the profile match is a better one

and regularizing the locations of all landmark points by the

global PCA shape model.

Figure 8. Comparison of the fitting quality of model based fitting.

(first row) AAM, (second row) STASM.

STASM [15] advances this basic model by a number of

important extensions. First, they increase the number of

necessary landmark points to add redundancy to the model

representation and they perturb the landmarks of the train-

ing data set by random noise to increase the number of

available training data. Second, instead of one-dimensional

profiles they use two-dimensional patches at the landmarks.

This increases the matching performance at the cost of

slightly more computational work. Third, during iterative

fitting the global shape model is used with an increasing

amount of variation. This means that at lower levels in

the image pyramid a small variance around the mean shape

is allowed and a more restricted set of eigenvalues is cho-

sen for shape regularization. As fitting proceeds and we

reach the original level of the image pyramid eigenvectors

are added and the maximal variance is increased in order to

loosen the regularization constraints imposed by the shape

model. Finally, the patch profile covariance matrix used for

matching is optimized by setting components resembling

distant points to zero and trimming the resulting approxi-

mated covariance in order to be positive definite again. The

main purpose of this step is to reduce matching time.

Combining STASM with a PCA sub-component
model

We manually annotated n facial images and aligned the

obtained facial shapes by applying Procrustes analysis for

shape registration. The mean shape is calculated from these

aligned shapes. We warp each annotated image to the

mean shape representation and split every warped image

into three parts, namely the left and right part of the lower

face and the eyes region, see Figure 9. We construct a sep-

arate color Principal Component Analysis (PCA) subspace

Uk =
[
uk1

, . . . ,ukp

]
, k ∈ [1, 2, 3] for every part. Usually

only p, p < n, eigenvectors u are sufficient.

Figure 9. ASM + PCA for occlusion detection.

In the occlusion detection with this ASM + PCA ap-

proach we first fit the ASM to the input image. We warp

the texture, enclosed in the found landmarks, to the mean

shape representation. This texture is split as in the training

stage of the PCA. The advantage of the split is the increased

robustness to bad illumination conditions compared to the

whole face. Every obtained facial part tk is projected into

the corresponding subspace obtaining the PCA coefficients

ck which correspond to distances from the mean on the axes

spanned by the subspace:

ck = UT
k

(
tk − tk

)
. (4)

We measure the Mahalanobis distance dk in every partial

subspace and thus determine which part of the face is oc-

cluded:

dk =
√

cTkΣ
−1
k ck, (5)

where Σk = diag (λk) is the diagonal covariance matrix
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consisting of the eigenvalues λk obtained from the construc-

tion of the PCAs.

A further nice property of this ASM + PCA approach is

that we can measure the fitting quality of the ASM, which

is an unresolved question in the literature. If the ASM fit is

poor, the warped and projected texture will lead to a large

Mahalanobis distance in the subspace, because this texture

is not represented in the facial subspace. On the other hand

a good ASM fit will result in a good reconstruction of the

facial parts. Hence, that combined approach is a good indi-

cator for the fitting quality of the ASM.

Experimental results

We performed experiments on our own database which

consists of 4930 color facial images and is more challeng-

ing compared to the AR database used in our first experi-

ments. In addition to the variations of the AR database, our

database exhibits further illumination conditions and more

types of occlusions, see Figure 5. The size of the images is

480× 640 pixels.

For our ASM + PCA approach, we manually annotated

427 facial images taken from the Caltech face database [4]

and our own collection (disjoint from our test database).

Taking also the mirrored versions of those images doubles

the amount of data. For the PCA model we keep 98% of the

eigenvalue energy spectrum for each of the three subspaces.

Method 2 gives a significant increase in performance

compared to Method 1 on our own database. The EER is

decreased from 30.9% to 6.6%. The corresponding ROC

curves are depicted in Figure 10. In Figure 11 some typical

failure cases of our approach are shown. The algorithm is

very fast, mostly depending on the runtime of the STASM.

The average runtime1 to analyze a facial image is 0.3s.
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Figure 10. ROC curve of Method 1 and Method 2 evaluated on our

own dataset.

1The runtime is measured using an Intel Core 2 Duo processor running

at 2.4GHz.

(a) (b) (c)

(d) (e) (f)

Figure 11. Typical failure cases resulting from (a)-(c) skin-similar

occlusion of the forehead, (d) larger deviations from frontal pose,

(e) extreme facial hair and (f) slight specularities exhibited on the

glasses.

3. Conclusion

Occlusion detection is an important part of the ICAO

specification for assessing suitability of facial images for

machine readable travel documents. We presented two ap-

proaches which detect occlusions on facial portrait images.

The first approach is straightforward and is based on color

techniques using the H-channel of the HSV color space.

It turns out that this first method is already well suited to

sufficiently detect occlusions on the publicly available AR

database. We created a more challenging database where

the first method showed significant shortcomings. Hence,

we improved our first method with a combination of an Ac-

tive Shape Model (ASM) and a component based PCA sub-

space reconstruction. This algorithm proved to be very suc-

cessful on our more difficult database. Furthermore, we can

use the combination of ASM and PCA reconstruction as a

measure of ASM fitting quality.
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