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Abstract

Identity-invariant estimation of head pose from still im-
ages is a challenging task due to the high variability of fa-
cial appearance. We present a novel 3D head pose esti-
mation approach, which utilizes the flexibility and express-
ibility of a dense generative 3D facial model in combina-
tion with a very fast fitting algorithm. The efficiency of the
head pose estimation is obtained by a 2D synthesis of the
facial input image. This optimization procedure drives the
appearance and pose of the 3D facial model. In contrast to
many other approaches we are specifically interested in the
more difficult task of head pose estimation from still images,
instead of tracking faces in image sequences. We evaluate
our approach on two publicly available databases (FacePix
and USF HumanlID) and compare our method to the 3D
morphable model and other state of the art approaches in
terms of accuracy and speed.

1. Introduction

Automatically determining the head orientation from im-
ages has been a challenging task for the computer science
community for decades [19]. The head can be assumed to
be modeled as a rigid object, and therefore the pose of the
head can be characterized by pitch, roll and yaw angles as
illustrated in Figure 1. Head pose is also essential for un-
derstanding the eye’s gaze, i.e., to determine the viewing
direction of a person. In [15] it is shown, that the gaze di-
rection is a combination of head pose and eye’s gaze.

Many exciting and important application areas for head
pose estimation emerged in the last decade. One major in-
terest is human-computer interaction to determine the gaze
as well as interpreting head gesturing, i.e., the meaning of
head movements like nodding. This enables very direct
means to interact with virtual worlds, especially in the com-
puter gaming industry.

A second area of application is automotive safety. To
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Figure 1. The three degrees of freedom of a human head described
by pitch, roll and yaw angles.

avoid vehicle collisions, the driver’s head is monitored to
recognize driver distraction and inattention. A 3D head
tracking approach for a driver assistance system is presented
in [18].

Biometrics also utilizes the important task of head pose
estimation. One direction of impact is the rectification of
non-frontal facial images to the frontal pose to improve the
accuracy of face recognition [5]. Recently, extraordinary
attempts to person surveillance for far-field distance views
were announced.

Even though there is a broad area of applications and
a high demand for accurate systems, research on identity-
invariant head pose estimation shows fewer evaluated sys-
tems and generic solutions compared to face detection and
face recognition.

Related Work

Murphy-Chutorian and Trivedi [19] give a recent and ex-
tensive survey on head pose estimation in computer vision.
They arrange the methods published over the last 14 years
in several categories: appearance template based methods,
detector arrays, manifold embedding, flexible models, geo-
metric methods, tracking methods and hybrid methods.
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We focus on flexible model based head pose estimation
to overcome problems of other approaches of being not
adaptive to unseen facial images. Our proposed approach is
related to the well known Active Appearance Model (AAM)
of Cootes et al. [10]. The AAM is a widely used method for
model based vision showing excellent results in a variety of
applications. As a generative model it describes the statis-
tical variation in shape and texture of a training set repre-
senting an object. AAM model fitting is performed in a gra-
dient descent optimization scheme, where the cost function
is defined as the L2 norm of the intensity differences. For
optimization the Jacobian is often approximated either by a
regression to learn the dependency between model parame-
ter updates and intensity differences [10] or alternatively by
a canonical correlation analysis [13]. The fitting procedure
is very fast, but one major drawback is its non-robustness to
viewpoint changes. In the case of facial images, the AAM
fitting is not appropriate for adopting to faces which exhibit
pose variations. Cootes et al. [9] extend their AAM ap-
proach for multi pose fitting by combining a small number
of 2D AAM models.

Blanz and Vetter [6], [7] overcome the drawbacks of the
2D AAM by creating a 3D Morphable Model (3DMM). The
3DMM is a statistical model of shape and texture based on
data acquired from a laser scanner. The approach shows
amazing image synthesis results but the fitting procedure
is computationally very expensive. One attempt to fit a
3DMM more efficiently was proposed in [20], but the fit-
ting of one facial image still takes several minutes.

In [11] an extension to the classical AAM approach is
proposed. They build a 3D anthropometric muscle based
active appearance model using a generic 3D face shape.
They adopt the 3D shape model so that the projected 3D
vertices best fit to a facial 2D image. Using several adop-
tions to different facial images, these obtained shapes can be
taken to create a shape eigenspace using PCA. According
to the foregoing shape adoption the texture of the 2D facial
images is warped back onto the 3D model, i.e., they get sev-
eral textures to create a texture eigenspace. This generation
of training data is a cumbersome work. The model fitting
is similar to the original AAM fitting procedure. They ap-
ply their approach for head tracking and facial expression
recovery [12].

Xiao et al. [23] propose a real time combined 2D+3D
AAM to fit 3D shapes to images. They also investigate,
that the 2D AAM could generate illegal model instances,
which do not have a physical counterpart. They show how
to constrain an AAM by incorporating 3D shape informa-
tion so that the AAM can only generate valid model in-
stances. Their work focuses on tracking applications and
experiments show excellent performance, however, in their
setup the generative model is always built from the same
person that is tracked later. Chen and Wang [8] describe a
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similar model for human-robot interaction.

In the domain of medical image analysis, 3D Active Ap-
pearance Models are used with great success for segmenta-
tion [17], [21], [3] and modeling of shape or pathological
variations of a population. These approaches are specifi-
cally targeted to 3D volumetric data, where the notion of ef-
ficiency becomes even more important due to the increased
dimensionality.

Due to the two major drawbacks of model based vi-
sion, the non-robustness to viewpoint changes and the inef-
ficient fitting procedure, we present a novel 3D Morphable
Appearance Model (3D-MAM) for head pose estimation,
which utilizes the flexibility and expressibility of a dense
generative 3D facial model in combination with a very fast
fitting algorithm. The efficiency of the head pose estimation
is reached by a 2D synthesis of the facial input image. This
optimization procedure drives the appearance and pose of
the 3D facial model. In contrast to many other approaches
we are specifically interested in the more difficult task of
head pose estimation from still images, instead of track-
ing faces in image sequences. Much effort is undertaken
to build a fair evaluation scheme for our approach. That
is, the data for building and training of our 3D-MAM was
totally independent of the datasets used for the evaluations.

The paper is structured as follows: In Section 2 we intro-
duce and discuss our 3D-MAM approach in terms of model
building and model fitting. In Section 3 we present our re-
sults by evaluating the head pose estimation accuracy and
speed of our approach on two publicly available databases
(FacePix and USF HumanID) and compare our method to
state of the art approaches. Finally, we discuss our findings
and conclude our work in Section 4.

2. 3D Morphable Appearance Model

We build a generative 3D Morphable Appearance Model
(3D-MAM) based on registered laser scans of human heads.
The advantage of a dense 3D model is its flexibility to ex-
press generic faces and the ability to adopt to non-rigid de-
formations exhibited by faces. Only with a dense model,
normal vectors of the surface can be computed and there-
fore depth can be estimated correctly. This resembles hu-
man perception of 3D objects. A human is only able to esti-
mate depth correctly in the presence of shadowed surfaces.

To overcome the slow fitting performance exhibited by
many approaches using dense 3D models, we perform our
fitting step in 2D (Section 2.2). To sum up, we combine the
advantages of dense 3D models and the very efficient fitting
speed gained in the 2D domain.

2.1. 3D Morphable Appearance Model

We utilize laser scans of human heads and register them
using a nonrigid Iterative Closest Point (ICP) algorithm [1].
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Figure 2. 3D Morphable Appearance Model. Effect of varying the shape, texture and appearance parameters of the first and second mode

by +3 standard deviations.

The registered 3D laser scans form the basis for building
a parameterized generative 3D model, which will later be
used for head pose estimation.

2.1.1 3D Head Laser-Scans

The 3D facial model is built from 350 facial laser scans. The
scans were acquired by a Cyberware™ laser scanner, which
captures the 3D information (vertices) in cylinder coordi-
nates with radius r(h, ¢), 512 equally-spaced angles ¢ and
512 equally-spaced vertical steps h. Additionally, the RGB-
color information R(h, ¢), G(h, ¢), B(h, ¢) is recorded for
each vertex.

The obtained 3D database consists of 350 different sub-
jects exhibiting a wide variability in race, gender and age.
Most of the subjects show neutral facial expression. The
raw facial scans have to be post-processed to remove certain
parts of the scans, e.g., hair and shoulders. Often those areas
can not be captured very well, because of the fine structure
of the hair or due to self occlusions. More specifically, the
scans are cut vertically behind the ears and cut horizontally
to remove the hair and shoulders. Additionally, laser scan-
ning artifacts, like holes or spikes, are removed manually.

We reduce the amount of vertices from about 100,000
to 10,000 for the purpose of decreasing the computational
effort in the model fitting procedure, see Section 2.2. This
simplification of the 3D data at regions with little details is
performed by a structure preserving surface simplification
approach [14].

To build a generative model (Section 2.1.2), the individ-
ual laser scans have to be non-rigidly registered. Blanz and
Vetter [6] register their data using a modified gradient-based
optical flow algorithm. We use the more sophisticated op-
timal step nonrigid ICP method [1] to establish correspon-
dence between a pair of 3D scans. This method’s runtime
is slower compared to optical flow, but yields more robust
registration results, e.g., filling of holes due to missing data.
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2.1.2 Model Building

We create a statistical model of shape, texture and appear-
ance similar to [10] with the difference of using 3D laser
scanner data, instead of annotated 2D images. The laser
scanner data have to be registered (Section 2.1.1) to allow
the construction of a generative model utilizing Principal
Component Analysis (PCA).

The registered 3D shapes are composed of the 3D posi-
tions of the vertices, and the texture consists of the intensity
values of the vertices. Taking N training shape and texture
tuples with sample mean § and t correspondingly, they are
used to build statistical models of shape and texture by us-
ing PCA
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Here U, and U; are shape- and texture eigenvectors,
which describe the modes of variation derived from the
training set. By adjusting the parameters p; and p;, new
instances of shape s and texture t can be generated.

To remove correlations between shape and texture vari-
ations, we apply a further PCA to the data. The shape- and
texture eigenspaces are coupled through

>=Ucc

to get the statistical model of appearance (combined model),
where Wy is a diagonal scaling matrix to compensate for
the different measure units of shape and texture. Wy is de-
fined as the ratio of the total intensity variation to the total
shape variation [10]. This appearance model is controlled
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by parameter c to obtain new instances of facial shape and
texture

= 5+UW,!'U.,c “4)

= t+UU.c Q)
Uc,s

U, = <UC¢> (6)

Figure 2 shows the effect of varying the shape, texture and
appearance parameters of the first and second mode by +3
standard deviations obtained from the training set.

The pose of the appearance model in 3D can be altered
by six degrees of freedom (DOF), i.e., three angles of rota-
tion and the three directions of translation. We map the 3D
points to the 2D image coordinates by a weak perspective
projection. That is, the rendering of the 3D model to the
image plane is given by the two rotation angles 0., and
0yaw and the two translations u,, and u, in the image plane.
For linearity, the scaling and the roll angle is represented as
sry = (scale cos Opoy — 1) and sry, = scalesin 6. The
concatenation of those single parameters yields the pose pa-
rameter Vector Ppose = (57, STy, Opitchs Oyaw, Uz, Uy).

2.2. Model Fitting

The model is fitted iteratively in an analysis-by-synthesis
approach, see Figure 4. A direct optimization of the ap-
pearance model parameters ¢ and pose parameters Ppose
is computationally not feasible for real time applications.
Hence, we precompute a parameter update matrix [10],
which will be used to incrementally update the parameters
P = (€, Ppose) in the fitting stage. The patch used for syn-
thesizing a new input image is restricted to an area of the
head, where most of the vertices are visible for slight pose
variations (Figure 3).

Starting from the 3D mean shape, we project the posi-
tions of the vertices from the 3D patch to the 2D input image
using a weak perspective projection. The texture from the
input image underlying the projected points in 2D is then
warped to a shape free (mean shape) representation. Simul-
taneously, the texture of the model patch is rendered also to
the same shape free representation. Now, the texture from
the input image t¢ and the rendered texture from the model
patch t,,, (both in the same shape free representation) can
be subtracted to get a residual image

r (p) =t —tm. (7
A first order Taylor expansion of (7) gives
£ (p-+0p) = (p) + 5 0p ®)

In the fitting stage, ||r (p -+ 6p)||* is minimized by comput-
ing
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In a direct optimization scheme, the Jacobian matrix g—;
has to be recomputed in every iteration step yielding poor
runtime performance. Hence, the parameter update matrix
R is assumed to be fixed and can therefore be precomputed
by numeric differentiation. The numeric differentiation is
accomplished through a perturbation scheme, i.e., each pa-
rameter is displaced from a known optimal value. More
details can be found in [10].

In the fitting stage, texture residuals are computed in the
same way as in the training stage of the parameter update
matrix R. This residual in combination with the update ma-
trix gives the parameter update Jp for driving the parame-
ters p of the 3D model. That is, the appearance and pose of
the 3D model is iteratively fitted to the 2D input image. The
whole fitting procedure is illustrated in Figure 4.

(€))

Figure 3. Patch extracted from the whole head used for synthesiz-
ing a new input image.

3. Experimental Results

We build a 3D-MAM (Section 2.1.2) and keep 90% of
the eigenvalue energy spectrum for the shape, 85% for the
texture and 90% of the appearance variation to represent
our compact model. We precompute the parameter update
matrix (Section 2.2) with a resolution of the fitting patch of
60x80 pixels.

The head pose estimation is evaluated on two differ-
ent publicly available datasets (USF Human ID 3D face
database and FacePix). Those data sets are independent of
the data used for model building.

The USF Human ID 3D face database [22], [6] consists
of 136 individuals, which are recorded by a Cyberware™
laser scanner. Each facial model is composed of more than
90,000 vertices and 180,000 triangles. Images of the indi-
viduals can be rendered in arbitrary pose. Those rendered
images with arbitrary textured background added are used
as test images for our approach. First, we evaluated the
head pose estimation capability of our approach using the
rendered images of the first 50 individuals in the database
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by altering only the yaw angles from -16° to +16° in steps
of 4° while fixing the roll- and pitch angle of the rendered
test images to zero. The 3D-MAM’s 2D starting position
is roughly initialized manually. In the future, this initializa-
tion will be done by an automatic face- and facial feature
detection stage. Figure 5a presents the mean and standard
deviation of the absolute angular error for the single yaw
rotations. Table la summarizes the error measures for the
whole range of rotations.
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Figure 5. Mean and standard deviation of the absolute yaw angular

error for the (a) USF Human ID 3D face database and (b) FacePix
database.

We extend the previous experiment by altering the yaw-
and pitch angle by [-16°0° +16° ] and [-8° 0° +8° ] corre-
spondingly. These nine angle combinations and the 50 indi-
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Table 1. Mean, standard deviation, median, upper- and lower quar-
til of the absolute yaw angular error by only altering the yaw an-
gle for the (a) USF Human ID 3D face database and (b) FacePix
database. The results are compared to the 3DMM [6].

(

Absolute Error [°]

median | Q25 | Qs
Our Approach 430 351 3.35 1.71 6.08
(b)
m Absolute Error [°]
mean | std | median | Q2 | Qs
Our Approach 6.29 4.15 4.62 230 8.57
3DMM 489 3.15 448 2.15 7.06

viduals per combination yields 450 3D-MAM fitting runs.
The mean absolute angular error of the angle combinations
is shown in Figure 6(a,b). The error measures are summa-
rized in Table 2a. We compare our pose estimation results
with the well known 3D-Morphable Model [6]. We build
a 3DMM based on the same laser scanner data as used for
our 3D-MAM (Section 2.1.1). To speed up the 3DMM fit-
ting procedure, we use only the first 10 shape- and texture
modes, because we want to estimate head pose and do not
want to synthesize the test image in every detail. The results



for the 3DMM are shown in Figure 6(c,d) and summarized
in Table 2a. The 3DMM exhibits slightly better head pose
estimation results at the cost of a much higher runtime per
facial fit, see Table 2b.

The second database, CUbiC FacePix(30) database [4],
[16], consists of 30 individuals. For each individual, three
sets of images are available. The first set contains images
taken from the individuals’s right to left (only yaw angle
is annotated), in one degree increments. The second- and
third set is targeted to non-uniform lighting experiments.
We are specifically interested in the first set for our pose
estimation experiments. We take those images annotated
by -16° to +16° in steps of 4°. The mean and standard de-
viation of the absolute angular error is shown in Figure 5b.
Table 1b summarizes the error measures for the whole range
of rotations and compares the results to the 3DMM ap-
proach. In [2], they also conducted several experiments on
the FacePix(30) database using manifold embedding meth-
ods. They show better results, ranging from a mean absolute
error of 1.44° to 10.41° , but they performed the training and
testing on the same database in a cross-validation scheme,
which leaves serious doubts about the general applicability
of their method on unseen data. Second, they are limited to
only estimate the yaw angle of a given test image.

Our model fitting strategy is similar to the AAM ap-
proach [10], leading to an excellent runtime performance.
The average runtime' for our approach is 3.2s at an average
number of iterations of 14. We have a comparable imple-
mentation of an AAM in C++, which takes about 15ms per
facial fit. If we add about 5ms per iteration for a render-
ing of a facial image using OpenGL, and taking the aver-
age number of iterations into account, we would get an esti-
mated average runtime of 85ms per facial fit with an imple-
mentation of 3D-MAM in C++. This runtime would enable
the usage of our approach for real-time head pose estima-
tion.

Figure 7 shows frames from a 3D-MAM facial fit starting
with the mean model. During fitting the patch synthesizes
the face and adjusts the 3D model in appearance and pose.

4. Conclusion

Two major shortcomings of existing model based head
pose estimation approaches, the non-robustness to view-
point changes and the inefficient fitting procedure, moti-
vated us to generate a 3D-MAM. It utilizes the flexibility
of a dense 3D facial model combined with a very fast fitting
algorithm in 2D. In the experiments, we show the applica-
bility of our approach for head pose estimation on two pub-
licly available databases (USF HumanID and FacePix). We
compare our results to state of the art head pose estimation

I The runtimes are measured in MATLAB™ using an Intel Core 2 Duo
processor running at 2.4GHz. The resolution of the images is 60x80 pixels.
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Table 2. Evaluations for the USF Human ID 3D face database.
(a) Mean, standard deviation, median, upper- and lower quartil of
the absolute yaw and pitch angular error by altering the yaw- and
pitch angle. (b) Average runtime' per facial fit. The results are
compared to the 3DMM [6].

(@)
Absolute Error [°]
Pitch
mean | std | median | Q25 [ Q75| mean | std | median | Q25 [ Q75

Yaw

Our Approach 578 4.22 486 257 7.66 5.89 4.68 476 232 823
3DMM 390 331 281 155 521 514 3.66 4.08 211 7.55
(b)
|| AverageRuntime(s] |
Our Approach 3.2
3DMM 33.5

algorithms in terms of accuracy and speed.
In the future, we will extend our approach to multi-view
fitting to cover a larger range of head pose.
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