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Abstract. We present an automated approach for the segmentation of
airways in CT datasets. The approach utilizes the Gradient Vector Flow
and consists of two main processing steps. Initially, airway-like structures
are identified and their centerlines are extracted. These centerlines are
used in a second step to initialize the actual segmentation of the corre-
sponding airways. An evaluation on 20 clinical datasets shows that our
method achieves a good average airway branch count (63.0%) without
any major leakage.

1 Introduction

Segmentation of airway trees in CT is of importance for various clinical appli-
cations, and several methods have been presented in the literature for this task.
An overview can be found in the survey of Sluimer et al. [1]. A summary of
newer approaches can be found in [2]. While some methods focus on accurate
segmentation of airways, others are primarily targeting the extraction of airway
tree skeletons that are of importance for applications like virtual bronchoscopy
[3] or airway tree labeling and anatomical matching [4].

In our previous works [5, 6], we presented a generic framework for the di-
rect extraction of complete curve skeletons of branched tubular structures from
gray-value images. The approach utilizes the Gradient Vector Flow (GVF) [7]
– an anisotropic edge preserving gradient diffusion method – to detect tubular
objects [5] and to extract their associated medial curves [6]. It does not require
a prior segmentation and extracts curve skeletons of comparable quality to so-
phisticated skeletonization methods applied to segmentations.

The GVF – that represents a core component of the approach – was originally
presented to guide snake based segmentations [7]. In the literature, properties of
the GVF (or similar gradient diffusion methods) have also been used differently,
for example to generate voxel accurate 2D and 3D segmentations without using
snakes [8–11], and issues related to initialization of the segmentation or defi-
ciencies of the GVF in case of boundary concavities, as they would occur with
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side branches in branched tubular networks, have been addressed. For example,
Li et al. [11] used a gradient flow tracking in the GVF field in combination with
a locally adaptive thresholding scheme based on gray value statistics to segment
blob like 3D structures. To our knowledge, none of the so far presented methods
is directly applicable for segmentation of tubular structures like airways.

In this work, we adapt our method such that an explicit segmentation is
derived and utilize it to automatically segment airway trees in CT data. The
method is generally applicable and may also be used in other application do-
mains. For evaluation of our approach, the airway trees in 20 clinical lung CT
datasets were segmented and evaluation results are reported.

2 Method

Our method consists of two main steps. First, centerlines of tubular objects are
extracted. Second, the tubular structures associated with these centerlines are
segmented. Intermediate processing results are depicted in Figs. 2, 3, and 4; ap-
propriate masks were used for better visualization of some intermediate results.

2.1 Gradient Vector Flow

Our method is based on the Gradient Vector Flow (GVF) [7] – an edge preserv-
ing gradient vector diffusion function – and specifically requires an appropriate
initial vector field where the vectors point towards the center of the structures
of interest (airways) and whose magnitude reflects an edge-likeliness (Fig. 1(b)).
Therefore, the inverted local derivatives F = −∇(Gσ � I) are computed and
normalized Fn(x) = F (x)

|F (x)|
min(|F (x)|,Fmax)

Fmax
for every voxel x = {x, y, z} , where

I is the original image and Gσ is a Gaussian filter kernel at scale σ. σ and Fmax

are application specific parameters reflecting the noise level and the expected
contrast.

(a) (b) (c)

Fig. 1. Illustration of the GVF using a 2D cross section of a 3D branching tubular
structure. (a) Branching 3D tubular structure. (b) Initial vector field F n(x) (gray-value:
vector magnitude; arrow: vector direction). (c) Resulting GVF field V (x) (gray-value:
vector magnitude; arrow: vector direction).
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Given this initial vector field Fn(x), the GVF is calculated which is defined
as the vector field V (x) that minimizes:

E(V ) =
∫∫∫

Ω

μ|∇V (x)|2 + |Fn(x)|2|V (x) − Fn(x)|2dx (1)

where μ is a regularization parameter. The variational formulation of the GVF
keeps vectors with large magnitude nearly equal, while it produces a slowly
varying field in areas with small vector magnitude. An initial vector field Fn(x)
and the GVF result V (x) are shown in Figs. 1(b) and (c), respectively. For
tubular objects, some characteristic properties can be observed. All vectors point
from the boundary toward the center of the tubular objects where the vectors
“collide”. The vector field shows a large variation in the cross-sectional planes of
the tubular objects, but almost no variation along the tubes tangent direction.
In addition, the magnitudes of the vectors show a medialness property: their
values decreases with increasing distance from boundaries. At the centers of the
tubular objects, the magnitude almost vanishes (it not necessarily becomes zero)
and forms local directional minima. Examples of the initial and the GVF vector
fields for a CT dataset are shown in Fig. 2. Below we will refer to the GVF
field’s normalized direction as V n(x) = V (x)/|V (x)| and to its magnitude as
M(x) = |V (x)|.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example showing some properties of the initial and the GVF’s vector fields mag-
nitudes on a real dataset. (a) Minimim Intensity Projection (MinIP) of the dataset.
(b) MinIP showing the Gauss-smoothed dataset with σ = 0.5 that was used to cal-
culate the initial gradient F (x). (c) MinIP of the GVF magnitude M(x) inside the
segmentation result. (d) Segmentation result; the axial cutting plane used in (e)-(h)
is indicated by a black line. (e) Axial slice of the dataset showing part of the trachea
and some thin low contrast airways. (f) Magnitude of initial vector field |F n(x)| before
applying the GVF. (g) Magnitude M(x) of the GVF field. (h) Segmentation result.

In the following sections, we will show how we utilize these properties for
airway centerline extraction and segmentation.
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2.2 Tube Centerline Extraction

To identify tubular objects and to extract their centerlines, the Hessian matrix
H(x) = ∇V (x) with its eigenvalues |λ1| ≤ |λ2| ≤ |λ3| and eigenvectors v1, v2,
and v3 is computed for all voxels in the image to obtain the tubes cross-sectional
plane spanned by v2 and v3. Based on this information, center points are iden-
tified as local directional minima in the medialness map M . In this way, center
points (colored points in Fig. 3(a)). To identify those center points that are re-
lated to tubular objects, a tube-likeliness T (x) is computed. For this purpose, a
circle is fitted to the data in the tubes cross-sectional plane. The quality of the fit-
ting determines the tube-likeliness. Compared to using a weighting of the eigen-
values of the Hessian matrix to determine a tube-likeliness [5, 6], this allows for
a higher selectivity. The fitting term [12] is computed as the mean flow through
the circle and depends on the radius r: T (x, r) = 1

2rΠ

∫ 2Π

α=0
〈V (α, r), D(α)〉 dα.

V (α, r) represents the GVFs vector at the circle point and D(α) defines a nor-
mal vector on the circle pointing towards its center. The integral is approxi-
mated by computing the sum over 32 discrete circle points. During the circle
fitting procedure, the radius is steadily increased until the circle touches an ac-
tual edge/surface of the object. Increasing r further results in a drop of T (x, r)
as the magnitude of the vectors drop off. Thus, the fitting is performed for in-
creasing radii as long as the fitting term increases. The best fit determines the
tube-likeliness T (x).

Applying this procedure to the GVF field results in a tube-likeliness measure
at the centerlines, as shown in Fig. 3(b). This information can be used for detec-
tion and centerline extraction of tubular objects. However, for thin low contrast
airways, the response may fall off strongly, if their gradient-magnitude is too
low so that they are not completely preserved in the GVF result (Figs. 2(f) and
(g)). Applying the same procedure with a radius of 0.5mm on the initial vector
field Fn(x) allows identification of these structures as shown in Fig. 3(b), and
therefore, the maximum of both responses is utilized to produce a combined
tube-likeliness volume. To extract the centerlines and to discard non-tubular ob-
jects, a hysteresis thresholding with th and tl is performed on the tube-likeliness
volume and neighboring centerline points are linked together into centerlines.
From these initial centerlines, short spurious centerlines with a length (below ts)
are discarded. In addition, centerlines with a mean tube-likeliness below tm are
removed. The resulting centerlines of the tubular objects are shown in Fig. 3(c).

2.3 Inverse Gradient Flow Tracking Tube Segmentation

After extraction of the airway centerlines, the associated image regions are seg-
mented. In the GVF field, the vectors flow towards the centers of the airways,
which correspond to the extracted centerlines (in case of tubular objects). By
following the direction of the gradient vectors, each voxel can be assigned to a
neighboring voxel and a path can be tracked for each voxel of the airway to its
centerline. Based on this assignment and the fact that the gradient magnitude
increases until the actual boundary is reached, the airways associated with the
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(a) (b) (c) (d)

Fig. 3. Intermediate results of the tube centerline extraction method. The tube likeli-
ness for the computed centerline points is shown as intensity value, and the extracted
centerlines are drawn in green. (a) Tube-likeliness for larger structures. (b) Tube-
likeliness for thin low contrast structures. (c) Extracted tube centerlines. (d) Segmen-
tation result showing the size of the airways.

individual centerlines are segmented by following the gradient flow tracking path
in the inverse direction. Starting from the points at the tubes center, neighboring
voxels fulfilling these criteria are merged iteratively to generate a segmentation
(Algorithm 1).

Algorithm 1 Inverse gradient flow tracking tube segmentation
input: GVF field V (x) with direction V n(x) and magnitude M(x)
input: centerline points C = {x1, x2, . . . , xn}
set S ← C
queue Q ← C
while Q �= {} do

x ← extract(Q)
for each voxel y ∈ Adj26(x) do

if y /∈ S and M(y) > M(x) and argminz∈Adj26(y)〈V n(y),−→yz〉 = x then
S ← S ∪ {x}
Q ← Q ∪ {y}

end if
end for

end while
output: segmented tube voxels S

Examples of segmented airway branches assigned to individual centerlines
generated with this algorithm are shown in Fig. 4. Note that the individually
segmented parts do not “leak” into side branches of the airway tree, and the
combination of all individually segmented airway branches provides a valid seg-
mentation of the complete airway tree. Another example segmentation is shown
in Fig. 2(h) where the segmentation of thin low contrast airways is clearly visible.

To discard non-airway structures and to assure a 6-connected segmenta-
tion result, the following post-processing was applied to the datasets. The ex-
tracted centerlines were dilated and added to the segmentation result to assure
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(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Illustration of the inverse gradient flow tracking tube segmenation. (a) Ex-
tracted centerlines showing 4 selected centerlines. (b)-(e) Segmentations associated
with the selected centerlines. (f) Combined results of all tubular structures. (h) MinIP
of smoothed dataset for comparison.

6-connectivity. The actual airway tree was identified as the largest connected
segmented component and other segmented tubular structures were discarded.

3 Evaluation

The approach was applied to 40 clinical CT datasets of the thorax (undis-
closed reference segmentations) which were provided by the organizers of the
“Extraction of Airways from CT 2009 (EXACT09)” workshop. The datasets
were split into two sets of 20 training datasets where parameters were adapted
and 20 testing datasets. The following set of parameters was used for seg-
mentation of all 40 datasets: σ = 0.5, Fmax = 200, μ = 5 th = 0.5, tl =
0.1, ts = 5, and tm = 0.5. The GVF was computed using an iterative up-
date scheme with 500 iterations [7]. The segmentation results were sent to
the organizers, who in return provided evaluation results for the 20 test cases
(see Table 1). For information about how the reference segmentations were ob-
tained and the exact definition of the used performance measures we refer to
http://image.diku.dk/exact/information.php. On average, 63.0% of airway
branches were detected with an average detected tree length of 58.4%. The mean
leakage count was 5.0, and the mean false positive rate was 1.44% (median:
0.61%).

4 Discussion

The evaluation results show that our method achieves a good average airway
branch count (63.0%) without any major leakage. One exception is CASE39,
where some leakage occurred (3577mm3).

In the following, we discuss some properties of our approach. Examples of
segmentation results are shown in Fig. 5 and Fig. 6. As can be seen, the seg-
mented surface shows a good correspondence with the image data. The tube
detection/segmentation method is also capable of handling cases where the air-
way shape deviates from a perfectly circular or purely convex shape (e.g., trachea
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Table 1. Evaluation results on the twenty test cases.

Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)

CASE21 114 57.3 68.5 62.0 3 35.2 0.31
CASE22 270 69.8 218.9 66.2 9 474.6 1.60
CASE23 187 65.8 134.0 51.5 5 43.5 0.20
CASE24 139 74.7 113.9 70.0 8 176.9 0.59
CASE25 158 67.5 123.1 48.8 4 98.6 0.32
CASE26 59 73.8 51.2 78.0 2 274.3 2.70
CASE27 77 76.2 58.1 71.7 4 353.5 3.06
CASE28 86 69.9 66.9 61.0 1 49.6 0.43
CASE29 120 65.2 81.2 58.8 4 118.9 0.85
CASE30 114 58.5 87.5 57.2 5 98.9 0.64
CASE31 96 44.9 70.5 40.2 1 59.8 0.34
CASE32 101 43.3 80.3 36.8 1 175.2 0.86
CASE33 117 69.6 90.4 61.5 1 32.0 0.29
CASE34 250 54.6 184.6 51.6 11 358.1 1.05
CASE35 168 48.8 110.9 35.9 5 69.8 0.30
CASE36 294 80.8 330.6 80.2 5 78.6 0.25
CASE37 112 60.5 87.9 49.5 2 102.9 0.48
CASE38 64 65.3 51.2 77.1 4 311.0 2.64
CASE39 291 56.0 250.6 61.2 13 3577.0 9.21
CASE40 225 57.8 187.7 48.5 11 959.0 2.65

Mean 152.1 63.0 122.4 58.4 5.0 372.4 1.44
Std. dev. 75.7 10.4 75.2 13.2 3.6 785.4 2.06

Min 59 43.3 51.2 35.9 1 32.0 0.20
1st quartile 96 56.0 68.5 48.8 2 59.8 0.31
Median 119 65.3 89.2 59.9 4 110.9 0.61
3rd quartile 250 73.8 187.7 71.7 9 358.1 2.65
Max 294 80.8 330.6 80.2 13 3577.0 9.21

EXACT'09 -197- 



of CASE18 in Figs. 5 and 6). Leakage into non-tubular structures is uncommon.
However, in case of emphysema some leakage was observed (e.g., CASE14 in
Fig. 5).

An additional advantage of our approach is that the presented centerline ex-
traction method may be easily extended to extract the complete curve skeleton
of the airway tree. This can be achieved by obtaining connections between the
individual centerlines based on the GVFs medialness property as we showed in
our previous work [6]. An example of the skeleton extracted with our method
from the already computed GVF field is shown in Fig. 7(a). For comparison,
we also extracted a skeleton with the skeletonization approach presented by
Palagyi et al. [13] based on the binary segmentation obtained with our pre-
sented GVF segmentation approach. A comparison with other skeletonization
approaches is provided in [6]. As can be seen, the skeleton extracted with our
GVF based approach has high quality.

Regarding computation time, we utilize a GPU (graphics processing unit) im-
plementation using the CUDA framework1 for computation of the GVF. Other
parts of the implementation are not optimized. On average, our algorithm re-
quires 6 minutes for segmentation of the airways using an NVIDIA Tesla C1060
card processing the whole dataset. This time can be reduced to 2 minutes when
the computation is restricted to an axis aligned subvolume surrounding the lung
area.

5 Conclusion

In this work we presented an approach for the identification and segmentation of
airway trees in CT data based on GVF. First, the method extracts centerlines of
the airways. This information is then utilizes in an inverse gradient flow tracking
step for the actual segmentation of individual airways. In addition, the utilized
GVF field may also be used for the extraction of a high quality skeleton.
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