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Abstract

The segmentation of tubular tree structures like vessel systems in volumetric datasets is of vital interest for many medical
applications. We present a novel approach that allows to simultaneously separate and segment multiple interwoven tubular
tree structures. The algorithm consists of two main processing steps. First, the tree structures are identified and corresponding
shape priors are generated by using a bottom-up identification of tubular objects combined with a top-down grouping of these
objects into complete tree structures. The grouping step allows to separate interwoven trees and to handle local disturbances.
Second, the generated shape priors are utilized for the intrinsic segmentation of the different tubular systems to avoid leakage
or undersegmentation in locally disturbed regions. We have evaluated our method on phantom and different clinical CT datasets
and demonstrated its ability to correctly obtain/separate different tree structures, accurately determine the surface of tubular tree
structures, and robustly handle noise, disturbances (e.g., tumors), and deviations from cylindrical tube shapes like for example
aneurysms.
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1. Introduction

Blood vessels and airways of the human body form dense
tubular tree like structures. Analysis of their morphology
(structure, diameters, branching patterns, etc.) is of vital
interest for many clinical applications and facilitates diag-
nosis, quantification and monitoring of disease, preopera-
tive planning, or intraoperative navigation. Modern med-
ical imaging modalities depict tubular systems of the hu-
man body in great detail. However, the manual analysis and
quantification of these structures is impracticable in clinical
routine due to their complexity. Therefore, automated and
robust segmentation methods for tubular tree structures
are needed. For example, planning of liver surgery requires
the segmentation and analysis of portal and hepatic veins
shown in Fig. 1 (see Reitinger et al. (2006) for details). In
this context, a segmentation method has to address several
issues to be clinically applicable (Fig. 1):
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(a) (b)

Fig. 1. Portal and hepatic vessel trees of a diseased liver. (a) Maxi-
mum intensity projection (MIP) showing the vessel trees. (b) Axial
CT image showing a tumor in proximity to vessels and overlapping
vessel trees (arrows).

– Deliver correct 3d reconstructions of all vessel trees in a
volume of interest (we assume that vessel trees should be
free of loops).

– Provide an automatic separation of the different inter-
woven vessel systems (e.g, portal and hepatic veins) that
may have the same gray-values and can appear to be
overlapping in image data due to partial volume effects.

– Have the ability to segment thin vessels with low con-
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trast. This is necessary for an accurate determination of
the volume of liver segments (Selle et al., 2002).

– Differentiate vessels from other adjacent structures with
the same gray-values such as tumors.

– Handle cases where parts of the tubular tree structure are
locally disturbed; e.g. due to imaging artifacts or disease.

– Require only minimal user interaction.
Similar requirements to that outlined above can be found
in many other application domains (e.g., segmentation of
lung vasculature).

In the literature, many publications dealing with the seg-
mentation of tubular tree-like structures can be found. For
a survey we refer to the work of Kirbas and Quek (2003),
and a discussion of recent approaches can be found in Lee
et al. (2007) or Li and Yezzi (2007), for example. To our
knowledge, the so far proposed methods only partially ad-
dress the before mentioned issues. In the next paragraphs
we will briefly discuss conventional approaches to motivate
our approach, while other more closely to our work related
publications are discussed in Sections 2 and 5.2.

Conventional approaches may be roughly grouped into
top-down or bottom-up segmentation methods. Top-down
segmentation methods segment the targeted structures
starting from given seed points by iteratively merging
adjacent structures that fulfill a specified segmentation
criterion. In contrast, bottom-up segmentation methods
don’t require such an initialization and evaluate the given
segmentation criterion at every voxel of an image. Typ-
ical examples for top-down methods are region growing
or active contours like snakes or levelsets that require an
appropriate initialization such as e.g. (Yi and Ra, 2003;
Selle et al., 2002; Lorigo et al., 2001). Typical examples
of bottom-up methods are methods based on statistical
histogram analysis or methods based on local shape de-
scriptors such as tube detection filters; e.g. (Krissian et al.,
2000; Frangi et al., 1998; Soler et al., 2001).

For top-down as well as for bottom-up segmentation
methods, local disturbances such as low contrast or partly
overlapping image structures with the same gray-value are
challenging (e.g. adjacent tumors or multiple partly over-
lapping vessel trees; see Fig. 1). In case of failure the meth-
ods produce leakage or undersegmentation. In both cases,
the segmentation errors that result from such local distur-
bances may have a strong influence on the resulting struc-
ture of the segmented trees. The separation and segmen-
tation of multiple tubular trees is even more challenging
using conventional top-down or bottom-up approaches.

In this paper we present an approach for the separa-
tion and segmentation of interwoven tubular tree struc-
tures that addesses the above stated requirements. The
main processing steps are illustrated in Fig. 2. To achieve
a high robustness against local disturbances, our approach
initially identifies and analyzes the structure of the differ-
ent trees and utilizes this information as a prior for a con-
strained segmentation step. The utilized shape priors are
generated in two steps. Initially, a bottom-up tube detec-
tion filter combined with a centerline extraction method

Fig. 2. Method overview showing the individual processing steps of

the proposed approach and corresponding intermediate results.

is applied. The centerline representation facilitates a high-
level analysis of the structural relations between the dif-
ferent tubular objects. Based on this analysis, tree struc-
tures are formed in a top-down fashion by utilizing knowl-
edge about the blood or air flow direction in these tube
networks. The so obtained information is then utilized as
a shape prior for a constrained segmentation and preserves
the correct structure/topology of the different trees. This
approach allows our method to effectively separate multi-
ple tubular tree structures from one another and to handle
local disturbances (e.g., tumors).

The main contribution of our work is a robust method for
the simultaneous separation and segmentation of different
tubular tree structures including:

(i) a tube detection filter that is less prone to false pos-
itive reponses compared to other methods known in
the literature allowing for a bottom-up identification
of tubular objects in complex datasets containing dis-
turbances (Section 5.2(b)),

(ii) an approach for grouping of tubular structures into
complete trees that is able to separate multiple inter-
woven tree structures by utilizing information about
the blood flow in vessel systems, and

(iii) an intrinsic segmentation method that utilizes struc-
tural information about the tubular tree structures to
constrain the actual segmentation, and thus, reduces
segmentation errors like leakage or undersegmenta-
tion.

We have developed this method for the analysis and seg-
mentation of the vascular trees of the liver. However, we
demonstrate the general applicability of our approach on
several examples.
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2. Related work

In this section, approaches more closely related to our
approach are discussed as well as preliminary works.

Several methods for the identification/extraction of
tubular objects or their centerlines can be found in the
literature. Tracking approaches like that of Aylward and
Bullit (2002) or Wink et al. (2004) extract centerlines di-
rectly from gray value images but require an appropriate
initialization for each single centerline. In contrast, tube
detection/enhancement filters like the approaches of Sato
et al. (1998), Krissian et al. (2000), or Frangi et al. (1998),
don’t require such an initialization, because they perform
a shape analysis for every pixel in the image resulting
in a kind of medialness measure or vessel likelihood. To
generate centerline representations from tube detection
filter responses, a combination of hysteresis thresholding
and local directional non-maximum suppression was used
by Krissian et al. (2003) while Steger (1998) utilized an
efficient ridge tracking approach for processing 2d images.

For grouping sets of unconnected tubular objects into
completely connected networks, only a few methods can be
found in the literature like (Bullitt et al., 2001; Szymczak
et al., 2006; Lee et al., 2007; Risser et al., 2008; Beichel et al.,
2004; Pock et al., 2005). For this purpose, rather simple
criteria like distance or gray value evidence for example
were utilized. Such approaches are typically not suitable
to differentiate between different tubular tree structures as
those shown in Fig. 1.

To our knowledge, no method so far has addressed the si-
multaneous reconstruction and separation of multiple inter-
woven tree structures. One exception is the work of Agam
et al. (2005). They presented a method that is specially tai-
lored to lung vasculature and imposes constraints that are
only valid for this specific application. To separate (falsely)
connected tubular tree structures in an existing segmenta-
tion, an analysis of skeletons is typically utilized to iden-
tify splitting points by utilizing radius information (Selle
et al. (2002)) or additionally angle information (Soler et al.
(2001)). Such approaches are sensitive to segmentation er-
rors, especially to missing parts or leakage where the topol-
ogy of the extracted centerlines is incorrect.

Some authors denote a structure that is represented as
centerlines with corresponding radius information as seg-
mentation (e.g. Bullitt et al. (2001); Krissian et al. (2003)).
However, this information does not represent the actual ob-
ject surface accurately. To obtain accurate segmentations
in case of known structure, deformable models were used by
Frangi et al. (1999). Recently, Dou et al. (2009) presented
a globally optimal graph based segmentation approach for
single tree structures.
Preliminary works: Our developed tube detection fil-
ter (Section 3.1.1) builds on work of Krissian et al. (2000)
and Xu and Pycock (1999). Krissian et al. (2000) presented
a multi-scale tube detection filter that combines an esti-
mation of the tube tangent direction based on the Hessian

matrix with an offset medialness function to incorporate
boundary information, showing that this results in a higher
robustness compared to methods that only utilize the eigen-
values of the Hessiam matrix (e.g. Sato et al. (1998); Frangi
et al. (1998)). Later, they addressed problems related to the
inadequateness of the Hessian matrix for tangent direction
estimation away from the tube center by utilizing the struc-
ture tensor and a smoothing of tensor fields (Krissian et al.,
2003; Krissian and Farnebäck, 2005). They additionally in-
troduced parameterized constraints to reduce responses to
surface patches, while the same problem has also been ad-
dressed by Xu and Pycock (1999) for the 2d case by in-
troducing a confidence term for the boundary information.
One of the main contributions of Krissian et al. (2000) was
to derive the optimal relation between the radius of the
tube, the radius of the offset medialness function, and the
scale to use for computation of the Hessian matrix and the
boundary information, such that under the assumption of
a single perfectly circular tubular object with known cross
section profile the response at the center is maximized. For
the estimation of the tangent direction it is neccessary to
use a scale that incorporates the whole structure. However,
using this scale for obtaining boundary information is gen-
erally larger than neccessary what can result in a fusion
of smaller structures into structures which may be misin-
terpreted as tubular objects (false responses). We address
this issue by using two different scale spaces and obtaining
the boundary information on a smaller scale. Additionally,
we introduce an adaptive thresholding scheme to eliminate
responses away from the tube center in a computationally
efficient way. A comparison to Krissian’s approaches is pro-
vided in Section 5.2(b).

3. Methodology

As outlined in the introduction, our approach consists of
three main processing steps (Fig. 2). In the next sections,
the different parts of our method are described in detail.
Note that we assume that tubular structures are brighter
than the surrounding background and that the datasets are
isotropic. If this is not the case, the gray value range can
be inverted and datasets resampled, respectively.

3.1. Detection and extraction of tubular objects

The first step of our approach is identification of all tubu-
lar objects in the whole dataset. Therefore, a tube detec-
tion filter with a consecutive centerline extraction is used.

3.1.1. Tube detection filter
Our approach (Fig. 2) is based on a selective tube de-

tection filter that avoids responses from non-tubular struc-
tures. The individual processing steps are described in de-
tail in the following paragraphs.
a) Tube tangent direction estimation: For estimation
of the orientation of a tube element, the eigenvalues |e1| ≥
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(a) (b) (c)

Fig. 3. Tube detection filter response inside a liver for a contrast
enhanced CT dataset of the liver. (a) Thick slab MIP of axial slices
of the original dataset. (b) Response of the proposed tube detection

filter. (c) Related approach (Krissian et al., 2000) showing false
responses to high gradient edges (e.g. transition to the lung).
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Fig. 4. Information used by our tube detection filter. (a) Based on

the eigenvectors v1, v2, and v3 of the Hessian matrix the tubes cross
section plane orientation is estimated and gradient information B at
surface points x along a circle in this plane contribute to the offset
medialness computation. (b) Combination of medialness measures

for a symmetric cross-section of a tubular structure with a Gaussian
profile with standard deviation r.

|e2| ≥ |e3| and associated eigenvectors v1, v2, and v3 of
the Hessian matrix are used. For bright tubular structures
e1 < 0 and e2 < 0 has to hold. This information is used as
a preselection criterion, thus avoiding unnecessary compu-
tations at other locations. Then, the vector v3 represents
the tangent orientation of the tube, while v1 and v2 span a
cross sectional plane as illustrated in Fig. 4(a). For a tube
with known radius r, the Hessian matrix is computed most
stably if the characteristic width of the Gaussian convolu-
tion kernel corresponds to the radius r of the tube. Hence,
we define the Hessian scale space for estimation of the tan-
gent direction as

H(x) = σ2
H

[

∂2I(σH)

∂xi
∂xj

]

(1)

with σH = r where I(σ) = Gσ ⋆ I(x) corresponds to the
original image at scale σ.
b) Offset medialness: The offset medialness function
measures tube-likeliness by evaluating boundary informa-
tion along a circle of radius r in the cross sectional plane
of the tube given by the eigenvectors of the Hessian matrix
(Fig. 4(a)). Using a large scale for compution of the bound-
ary information can result in undesired fusion of nearby im-
age structures what can cause false responses. To address
this problem we introduce the use of a second (smaller)
scale space to compute the boundary information and de-

fine the boundariness scale space

B(x) = σB∇I(σB)(x) (2)

with σB = rη where the parameter 0.0 ≤ η ≤ 1.0 describes
the relation to the tubes scale. Note, that by setting η = 1.0
the same scale would be used for obtaining the boundary
information as for obtaining the Hessian matrix similar to
Krissian’s method while setting η = 0.0 would result in no
noise suppression at all and the method could not account
for deviations from a perfectly circular cross section (e.g.
ellipsoid). An initial offset medialness is given by averaging
the boundariness contributions bi = |B(x + rvαi

)vαi
|:

R+
0 (x, r) =

1

N

N−1
∑

i=0

bi . (3)

where N is the number of samples and is calculated by N =
⌊2πr +1⌋ and αi = (2πi) /N , respectively. The inner prod-
uct of the boundariness contributions bi measures the con-
tribution of the boundariness information in the radial di-
rection vαi

= cos(αi)v1 +sin(αi)v2. However, (3) also pro-
duces responses for isolated edges and non-tube-like struc-
tures of high intensity variation (Figs. 3 and 19). To avoid
this and facilitate the detection of circular symmetric struc-
tures, a criterion that takes the symmetry property of the
object into account is used. Considering the distribution
of the values bi, symmetric structures have a low variance
compared to non-symmetric structures as all the bound-
ariness samples along the circle should be approximately
equal. To take this information into account, a symmetry
confidence based on the variance of the boundariness sam-
ples s2(x, r) = 1

N

∑N−1
i=0

(

bi − b
)2

is used:

S(x, r) = 1 −
s2(x, r)

b
2 . (4)

For circular symmetric structures, s2 is very low compared

to b
2

and hence, S(x, r) is approximately one. For smaller
deviations from a perfectly circular cross section (e.g., an
ellipsoidal cross section profile) s2 is still low and S(x, r)
decreases only slightly. The larger s2, the smaller the value
S(x, r), which results in a reduction in the response to
non circular symmetric structures. Thus, the final offset
medialness is computed as:

R+(x, r) = R+
0 (x, r) S(x, r) . (5)

In Fig. 4(b) the response of the offset medialness R+ for
a tube with a Gaussian cross-section profile is shown. Ide-
ally, the response is maximal at the center of the tube and
vanishes with increasing distance from the tube center.
c) Center medialness: To suppress responses near
boundaries (away from the tubes center), we propose the
use of an adaptive threshold based on gradient information:

R−(x, r) = σH|∇I(σH)(x)| . (6)

Here, the scale σH is used such that the information of
the whole structure is included. In Fig. 4(b) the response
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of the offset medialness R− for a tube with a Gaussian
cross-section profile is shown. Its response is maximal at
the surface of the tube element and vanishes at the center.
d) Combination of medialness responses: R−(x, r) is
used in combination with R+(x, r) as an adaptive threshold
that suppresses responses near boundaries (Fig. 4(b)) and
avoids artifacts:

R(x, r) = max{R+(x, r) − R−(x, r), 0}. (7)

e) Computation of the multiscale medialness response:
To take into account the varying sizes of the tubes, the
scale-dependent medialness function R(x, r) is computed
for varying radii for all points x of the image domain. The
radii are discretized values between rmin and rmax, using
a linear scale. The multiscale medialness response is ob-
tained by selecting the maximum response over the range
of all scales:

Rmulti(x) = max
rmin≤rsingle≤rmax

{R(x, rsingle)} . (8)

The scale at which the response is maximal is further used
to estimate the radius r = {rsingle|R(x, rsingle) = Rmulti(x)}
and tangent direction t = v3 associated with the tube.
This information is utilized in subsequent processing steps.

3.1.2. Centerline extraction
Based on an analysis of the multiscale medialness re-

sponse Rmulti(x) of the tube detection filter (Fig. 3(c)), a
centerline description for every tube element is extracted
(Fig. 2) using a height ridge traversal with hysteresis
thresholding. The centerline based description enables the
structural analysis of the tube elements which is required
for the consecutive reconstruction and separation of biolog-
ically reasonable trees (Section 3.2). All centerlines {lj}m

j=1

consist of an ordered set of centerline points lj = {xj
i}

o
i=1,

where x
j
i corresponds to the ith centerline point of the jth

centerline with associated tangent direction t
j
i and radius

estimate rj
i . m denotes the number of centerlines and o the

number of centerline points of the jth centerline segment.
After extraction of the centerlines, the tube elements are
analyzed and postprocessed.
a) Height ridge traversal: For height ridge traversal,
all local maxima in the medialness map with a value above
a threshold thigh are extracted and treated as candidate
starting points that are processed in descending order of
their associated medialness value. Starting from a candi-
date point x0 with associated positive tangent direction
t0 and negative tangent direction −t0, the height ridge is
traversed independently in both directions. For a current
centerline point xi with known tangent direction ti, all lo-
cal neighbors xn

i with
−−→
xix

n
i · ti > 0 are considered, and

the neighbor point with the highest medialness response
is chosen as the next centerline point xi+1 on the height
ridge. The tangent direction ti+1 of xi+1 is set to ti+1 =
sign(−−−−→xixi+1 · ti+1)ti+1 to maintain the direction during
traversal. The procedure is stopped when the medialness

response falls below a given threshold tlow or an already
processed centerlinepoint is reached. The second stop con-
dition is necessary to avoid that the same height ridge is
traversed several times.
b) Analysis and postprocessing: The initially extracted
tube elements are analyzed and postprocessed. This is nec-
essary to remove short spurious responses that may result
from image noise and to guarantee that only endpoints of
centerlines have to be considered for the consecutive tree
reconstruction. To discard noise responses, tube elements
with an accumulated medialness response of all points along
the centerline below the confidence threshold tconf are dis-
carded. To assure that only endpoints of the centerlines
have to be considered for the tree reconstruction step, the
centerlines are split at local angle maxima above 90◦. This is
in particular necessary for trifurcations or higher order fur-
cations. Further, to become robust to outliers the radii and
tangent directions of the centerline points are reestimated
by averaging along the final centerlines over the ±5 local
neighbors (the value of 5 was determined heuristically).

The parameters thigh, tlow, and tconf have to be adapted
only once for a specific application domain and not for each
dataset, as our experiments will show (Section 4).

3.2. Tree reconstruction and separation

Having identified all potential tubular structures in the
volume of interest, the tube elements are grouped into bi-
ologically reasonable trees and interwoven tree structures
are separated from one another (Fig. 2). For this purpose
the tubes centerlines, tangent directions, and radii are uti-
lized. Additionally, gaps in the initial centerline description
which separate parts of the trees are closed. As a result,
valid skeletons for the individual trees are reconstructed.
During this process, high-level structural representations of
the whole trees are derived which describe the parent-child
relationships between the tube elements.
a) Structural representation of the trees: The structural
representation of the different trees is based on a directed
acyclic graph. All trees together form a forest. The nodes
in this graph represent branchpoints of the trees and the
edges correspond to tube elements connecting these branch-
points. For all tube elements lj the centerline points x

j
i with

associated tangent direction t
j
i , radius rj

i , and the flow di-
rection in tube element dj ∈ {+1,−1} are known. If the
flow direction is from the first centerline point of the tube
element to the last, we set dj = +1; otherwise dj = −1. In
addition, for every tube element the average radius rj and
gray-value Ij is known.
b) Reconstruction and separation: Our tree recon-
struction and separation approach utilizes characteristics
of biological tree structures and therefore incorporates be-
sides gray-value and distance information also radius and
branching angle information. Incorporation of branching
angle information is in particular of importance in case of
multiple interwoven tree structures where tube elements

5



tangent each other and seem to overlap due to partial
volume effects (Fig. 1(b)). Considering an afferent ves-
sel system, the following characteristics can be observed.
Starting from a root element, blood flows into a recur-
sively branching vessel tree. The diameters of the vessels
decrease and the direction does not change abruptly. Our
reconstruction strategy tries to preserve the flow direction
in the trees by taking geometrical properties into account.
Starting from given root elements of the trees with known
flow direction, tube elements are grouped and connected
iteratively using a confidence function. This strategy al-
lows to reconstruct and separate the different trees. During
this process, the trees are expanded by iteratively merg-
ing unconnected tube elements. Therefore, the endpoints
of unconnected tube elements x

j
i are considered as candi-

dates for connection to one of the centerline points xl
k of

the known trees. First, based on geometric properties, pos-
sible connections are identified and preferences based on
a confidence function are computed. Second, the connec-
tion with the highest confidence is determined and verified
based on gray value evidence in the image data. Third,
the connection with the highest confidence is inserted
into the graph and the procedure is repeated as long as
the highest connection confidence stays above a threshold
cmin. Determination of the set of possible connections and
the confidence for a connection are based on above stated
flow preservation constraint (Fig. 5(a)) and primarily uti-

lizes the distance d = max
(

0, |
−−−→
xl

kx
j
i | − rl

k

)

and the angles

αl = ∠
(−−−→
xl

kx
j
i , d

ltlk
)

and αj = ∠
(−−−→
xl

kx
j
i , d

jtji
)

. The follow-
ing hard constraints have to be fulfilled to form biological
reasonable tree structures, and therefore, to determine the
set of possible connections:

(i) There must not be sharp turns in the flow direction:
αj ≤ γa and αl ≤ γa.

(ii) The radius of the parent tube element must not be
smaller than the radius of the connection candidate:
rj ≤ γrr

l.
(iii) The connection distance must not be too large: d ≤

γdr
j . Incorporation of the radius rj as an additional

factor makes the formulation independent of the scale
of the actual application domain (e.g. airways of men
or animals).

To yield correct connections in case of tangenting or over-
lapping tubular structures, a combination of distance and
angle is used to compute the connection confidence for all
possible connections:

conf(xj
i ,x

l
k) = e

− αj

2ρ2
1

1 + 1
rj d

. (9)

The pair of points x
j
i and xl

k with the highest connection
confidence is determined and a connection path in the im-
age domain is obtained using linear interpolation. After de-
termining the path, the gray values of the pixels along this
path are analyzed to verify the correctness of the connec-
tion. Therefore the maximal gray value difference between
the path points and the average gray value of the consid-

(a) (b)

Fig. 5. Information used for (a) calculation of the confidence function
for tree reconstruction (Section 3.2(b)) and (b) obtaining the shape
prior for the constrained segmentation (Section 3.3).

ered tube elements is determined: diff = max
x∈path |I(x)−

(Ij + I l)/2| . A connection candiatate with too large devi-
ations diff > γdiff is discarded as invalid and the next most
plausible connection canditate is considered for reconnec-
tion. Setting this parameter to twice the standard devia-
tion of the image noise is a good choice. Note, that this
step only serves to verify the plausibility of the connection.
This plausibility verification is not incorporated into the
confidence function directly as verification for all possible
connections would be computationally expensive.

After determination and verification of the best possi-
ble connection, the tube element is connected to the cor-
responding tree and the structural forest description is up-
dated. During this step the flow direction of the newly
added tube element of the tree is determined, dependent
on the endpoint of the tube element that is connected.

3.3. Constrained segmentation

To accurately delineate the boundary of tree structures,
the gathered information about structure (skeleton and es-
timated radius) is utilized as shape priors to guide the seg-
mentation process (Fig. 2). The actual segmentation is con-
strained to an image region in proximity of the expected
surface by defining object and background seed regions as
shown in Fig. 5(b). Therefore, the information about cen-
terline point locations x

j
i and associated radii rj

i are used to
calculate the signed distance to the shape prior (tube) sur-
face Dsurface(x) and the distance to the closest centerline
point Dcenterline(x) using fast marching methods. Based on
Dsurface(x) and Dcenterline(x), the object (Dsurface(x) <
−dm or Dcenterline(x) < dmin) and background seed re-
gions (Dsurface(x) > dom) are defined. Additionally, the
signed distance Dsurface(x) determines the assignment of
individual pixels to different trees in case of multiple trees.
This also guarantees non-overlapping segmentation results
in case of partly overlapping tubular objects.

The objective of the segmentation step is to find the opti-
mal surface that separates the object from the background
seed regions. This is done by finding a closed surface S
in between, whose associated energy E(S) =

∮

S
g(x)dx is

minimized. The term g with g ≥ ǫ > 0 represents the costs
and is based on edge information. A globally optimal solu-
tion to a discretized formulation of this minimization prob-
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(a) (b)

(c) (d)

Fig. 6. Rigid plastic “vessel” tree and image slices of the result-
ing phantom datasets for varying backgrounds and scanning resolu-
tions. (a) The plastic “vessel” tree. (b) Ground truth of the phan-

tom vessel tree showing thin branches that are not visible in some
of the CT scans. (c) Background: water & contrast agent. Reso-
lution: 0.59 × 0.59 × 1.5 mm. (e) Background: water. Resolution:
0.59 × 0.59 × 3.0 mm.

lem is determined using the graph cut algorithm (Boykov
and Jolly, 2001). Therefore, the voxels of an image are rep-
resented as nodes of a graph. Nodes representing adjacent
voxels in the image are connected by an edge with associ-
ated costs g(x) (the costs are computed as the average costs
of the values computed at the discrete voxels). The uti-
lized cost term g(x) incorporates the gradient magnitude
|∇Gσ ⋆ I| and a soft shape prior based on Dsurface that
emphasizes edge information in proximity of the expected
tube surface:

g(x) = e
−

|∇Gσ⋆I(x)|2

2σ2
edge

(

1 − αe
−

Dsurface(x)2

2σ2
shape

)

(10)

where 0 ≤ α ≤ 1 can be used to control the influence of
the shape prior. σ depends on the image noise level, while
σedge depends on the contrast and is application specific.
The value of σshape depends on the maximally expected
variation from a perfectly tubular shape.

4. Evaluation and case studies

In general, the evaluation of tubular tree segmentation
methods is a difficult problem due to the complex topology
of tubular systems (e.g. vessel systems). Usually, reference
segmentations are generated and utilized for evaluation,
but with complex interwoven tree structures this is practi-
cally infeasible. To overcome this problem, our evaluation
is based on three parts, each of them evaluating different
aspects of our method. The first part is based on CT scans
of a plastic phantom. Using a digital model of the plastic
phantom as ground truth, we quantify the methods tube
detection performance and segmentation accuracy under

Table 1
Measured contrast difference between phantom and background and
standard deviation of the noise for different background types and
scan resolutions.

Resolution Background

water water & contrast agent

contrast noise contrast noise
[HU] [HU] [HU] [HU]

0.59 × 0.59 × 0.5 mm −44.03 40.31 −55.83 39.68
0.59 × 0.59 × 1.5 mm −43.28 17.25 −55.51 19.60
0.59 × 0.59 × 3.0 mm −42.62 13.11 −55.57 14.77

varying imaging conditions. The second part of our evalua-
tion is based on clinical contrast enhanced liver CT datasets
containing multiple interwoven vessel trees. Based on an
assessment by a radiologist, we quantify the ability of our
method to correctly obtain the structure of the different
trees. In addition, the segmentation accuracy is evaluated
based on a qualitative scoring scheme. In the third part the
robustness of our method is assessed.

4.1. Phantom datasets

To evaluate the performance of our approach under the
influence of varying noise levels, scan resolutions, contrast
situations, and tube diameters, we produced a plastic phan-
tom “vessel tree” with known digital ground truth. The
design of the “vessel tree” (Fig. 6(a)), that was manufac-
tured with a rapid prototyping machine, is inspired by the
branching pattern of the human portal vein tree of the liver
and consists of about 600 cylindrical branches with varying
orientation and diameter (1 mm to 16 mm). The phantom
was scanned with a Siemens Somatom Sensation 64 CT
scanner with various resolutions to produce different noise,
partial volume effects, and image reconstruction artifacts.
To generate different contrast situations, different “back-
grounds” were used: water and water enriched with contrast
agent (Fig. 6(c) and (d)). In Table 1, estimates for the con-
trast (gray value difference between homogeneous regions
inside the phantom and the background) and the noise level
(standard deviation in a homogeneous background region)
are summarized. With decreasing resolution, the noise level
decreases due to the averaging effect of the larger volume of
a single voxel. For some datasets, the noise level is almost
as high as the contrast difference.

All CT scans of the phantom were segmented with the
proposed method after adaption of the parameters on one
single dataset (the high resolution dataset with water as
background). The parameters used for processing of all
datasets were: rmin = 0.5mm, rmax = 8.5mm, rstep =
1.0mm, η = 0.7, thigh = 5.0, tlow = 3.0, tconf = 300 for the
detection and extraction of tubular objects (Section 3.1),
cmin = 0.1, ρ = 0.5, γd = 3.0, γa = π

2 , γr = 1.3 for the tree
reconstruction (Section 3.2), and σ = 2.0, α = 0.5, dm =
3.0mm, dmin = 0.5mm for the segmentation (Section 3.3).
The remaining parameters were set to the default values
listed in the methodology section.

The surfaces of the resulting segmentations were regis-
tered to the ground truth (rigid transformation) before er-

7



ror measures were calculated. The error measures are based
on the centerline descriptions of the ground truth and on
the binary segmented volumes. To establish a relationship
between an arbitrary point x of the segmentation and a
centerline point x

j
i of the known ground truth, x is assigned

to the point that minimizes |
−−→
xx

j
i |−rj

i . This allows a correct
assignment in proximity of branch points. For the compu-
tation of average errors, tubes with similar diameter were
grouped together into discrete diameter bins.
a) Tube detection: Based on the centerline descrip-
tion and the registered segmentations, tubes of the refer-
ence model were classified as detected or undetected, and
the false negative rate and the false positive rate were cal-
culated. We counted a ground truth tube as detected, if
at least 80% of its centerline points have a corresponding
centerline point in the result within a maximal distance of
2 mm. This formulation is necessary to tolerate inaccura-
cies of the centerline description that result from the not
uniquely defined centerline descriptions in proximity of fur-
cations. Fig. 7 summarizes the percentages of undetected
tubes for the varying contrast situations, scan resolutions,
and tube diameters. In all datasets, all tubes with a diam-
eter above or equal to 3 mm were detected. As expected,
the detection rate decreases with decreasing contrast and
scan resolution, but even some of the very thin tubes can
be detected in cases of low contrast and low inter-slice res-
olution. We also tested for false positive responses of the
tube detection filter, but none were found.
b) Segmentation accuracy: For quantification of the seg-
mentation accuracy, the relative tube diameter error is
used, because typical volume- or distance-based segmenta-
tion accuracy measures would be influenced by the remain-
ing registration error. For computation of the tube diame-
ter, every voxel of the final segmentation was assigned to its
corresponding centerline point in the ground truth. Based
on the volume of the tube elements and the lengths of the
centerlines, the diameter dm was calculated for every de-
tected tube under the assumption of a perfect cylindrical
shape. Based on dm, the relative diameter error |dm−dk|/dk

was calculated, where dk denotes the known (true) tube di-
ameter. Fig. 8 summarizes the results for varying contrast,
tube diameter, and scan resolution, averaged over all tubes
with a similar diameter. As can be seen, the segmentation
error decreases with increasing scan resolution. For very
thin tubular objects, performance seems to be slightly bet-
ter for the datasets with water as background (Fig. 8(a)).
However, only very few tubes were detected (Fig. 7(a)) and
consequently the resulting statistic is not very meaning-
ful. In absolute numbers, the largest diameter error found
over all datasets was 1.24 mm for a tube with a diameter of
3 mm scanned at a voxel resolution of 0.59×0.59×3.0 mm
with water as background.

4.2. Clinical liver datasets

A quantitative assessment of our method on CT phan-
tom data was presented in the previous section. In this sec-
tion, an evaluation of our approach on clinically acquired
contrast enhanced liver CT datasets is presented. The main
focus of this evaluation was to assess, if all liver vessels are
detected and if the structures of the different vascular trees
is correct. In addition, the vessel segmentation quality was
also assessed in terms of suitability for clinical application
(e.g., planning of surgery) by using a scoring scheme. Basi-
cally, the liver has three vessel systems consisting of portal
veins, hepatic veins, and hepatic arteries. Depending on the
used imaging protocol, different parts of the liver vascula-
ture can be visible due to contrast enhancement.

Our method to separate multiple interwoven vessel trees
has been evaluated using 15 clinical contrast CT datasets
that show at least portal and hepatic veins. In 10 out of
the 15 cases, livers included tumors or metastases. In one
case, the right liver lobe was resected. For segmentation,
the same set of parameters as on the phantom data (Sec-
tion 4.1) was used on all datasets. The root elements of the
different vascular trees were selected manually. This infor-
mation is required for the tree reconstruction (Section 3.2)
and allows the user to select the vascular systems to be
segmented.

For evaluation, an expert radiologist was asked to assess
the above outlined evaluation criteria. To facilitate this pro-
cess, we provided the radiologist an interactive visualiza-
tion system. The user interface allows to visualize the CT
datasets as MIPs or cutting planes (multiplanar reconstruc-
tion). In addition, the segmentation results of the different
trees can be visualized as colorized skeletons, meshes, or as
contour outlines displayed on the cutting plane. The user
interface also allows to: interactively change the visualiza-
tion by moving the cutting plane, manipulate the display
gray-value range as well as transparency, display the differ-
ent vessel trees individually or together, and overlay differ-
ent visualizations among each other. Such overlays provide
an effective way to judge the correctness and quality of ves-
sel segmentations. In the following paragraphs, we present
the results of this assessment (Table 2).
a) Completeness/correctness of vessel branches: The
radiologist was asked to identifying false positive (non-
existing vessel branches) or false negative (missing vessel
branches) branches in the 15 segmented datasets. Note that
we denote the vessel parts between bifurcations or the ves-
sel parts at the end of the tree structures as branches. While
no false positives were generated by our method, 11 (0.26%)
vessel branches were identified as missing in the segmenta-
tion results (Table 2). Overall, 4159 vessel branches out of
the 4170 true vessel branches were correctly identified. The
majority of the missing vessel branches have a small diam-
eter and low contrast. The largest missing vessel is shown
in Fig. 9, and an example concerning the portal artery is
shown in Fig. 10. Examples for the successful segmentation
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(a) (b)

Fig. 7. Percentage of undetected tubes (false negatives) for varying contrast situations, scan resolutions, and tube diameters. (a) Background:

water. (b) Background: water & contrast agent.

(a) (b)

Fig. 8. Segmentation error (relative tube diameter error) for varying contrast situations, scan resolutions, and tube diameters. (a) Background:

water. (b) Background: water & contrast agent.

Table 2
Summary of evaluation results on clinical liver CT datasets. The qualitative scores are on a scale of 1 to 3 with 1=“poor“, 2=“ok“, and
3=“good“. The ”-“ sign indicates that no vessels in these generations were visible.

dataset
# detected # missing # mis- # affected data # visible segmentation quality in generation data # visible
branches branches connections branches quality generations  0/1  2/3  4/5 quality generations proximal medial distal

d1 524 2(0.38%) 0 0 3 4 3 3 3 3 3 3 3 3
d2 210 0 0 0 2 2 3 2 - 3 3 3 3 3
d3 162 0 0 0 3 3 3 3 - 3 3 3 3 3
d4 625 0 0 0 3 5 3 3 3 3 3 3 3 3
d5 566 0 0 0 2 5 3 3 3 1 3 2 2 2
d6 224 0 1(0.45%) 3(1.34%) 3 4 3 3 3 3 3 3 3 3
d7 304 0 0 0 2 3 3 2 - 1 3 3 3 3
d8 212 3(1.40%) 0 0 2 3 3 2 - 1 3 3 3 3
d9 453 0 0 0 3 5 3 3 3 3 3 3 3 3

d10 138 0 0 0 2 4 3 3 2 1 2 3 3 -
d11 117 0 0 0 3 3 3 3 - 3 3 3 3 3
d12 102 0 2(1.96%) 5(4.90%) 3 3 3 3 3 3 3 3 3 3
d13 70 0 0 0 2 2 2 2 - 1 2 3 3 -
d14 380 3(0.78%) 0 0 2 4 3 3 3 2 3 3 3 3
d15 72 3(4.00%) 0 0 2 3 3 3 - 1 2 2 2 -

average 277.27 0.73 0.2 0.53
(0.26%) (0.07%) (0.19%)

portal vein tree hepatic vein tree
segmentation quality

of poorly contrasted vessels and vessels in close proximity
to a tumor are shown in Figs. 11 and 12, respectively.
b) Correctness of connections/tree separation: The abil-
ity to reconstruct and simultaneously separate different in-
terwoven vessel systems is one of the key features of our
approach. For evaluation, all branch connections were as-
sessed and judged as “correct” or “incorrect”, similar to the
work of Bullitt et al. (2001). In addition, we quantified the
effect of each single misconnection by counting the number
of affected branches as measure for the size of the affected
subtree. Out of the 4159 branches that were assessed dur-
ing the evaluation, only 3 (0.072%) connections were classi-

(a) (b)

Fig. 9. Unsegmented vessel (arrow) found by the radiologist. (a)

Axial cutting plane through the dataset. (b) Coronal cutting plane
indicated by the white line in (a) showing anisotropy.
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(a) (b) (c)

Fig. 10. Unsuccessfully detected portal artery. (a) Segmentation re-

sult showing the hepatic artery (bright) in proximity of the portal
vein (dark). (b) Cutting plane through the dataset indicated by the
black line in (a), showing two hepatic arteries (1 & 2) close to the
portal vein (3). (c) While artery (2) was successfully detected, artery

(1) was too close to the portal vein such that no centerline was de-
tected/extracted. Instead, this part of the artery was segmented as
part of the portal vein.

(a) (b) (c)

Fig. 11. Successful segmentation of poorly contrasted hepatic vessels
(arrow). (a) Cutting plane through the dataset showing the trunk of
the hepatic veins. (b) MIP of the dataset. (c) Segmentation result.

(a) (b)

Fig. 12. Successful segmentation of vessels in close proximity of a

bright tumor. (a) MIP of dataset. (b) Segmentation result.

(a) (b) (c)

Fig. 13. Wrong vessel connection identified by radiologist. (a) Identi-
fied vessels; black arrow indicating vessel that was falsely connected
to the wrong parent vessel. (b) Segmentation result showing falsely

reconstructed vessel trees. (c) The black line indicates the correct
vessel structure.

fied as incorrect, with a total number of 8 (0.19%) affected
branches. An example is shown in Fig. 13. All errors af-
fected distal trees which consisted of up to 3 branches. No
misconnection of larger vessels was observed.
c) Data and segmentation quality: CT data quality and
segmentation quality were assessed qualitatively by the ra-
diologist, ranking them as “poor”, “ok”, or “good”. A sum-
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Fig. 14. Relation between image contrast and length of the extracted

portal veins and hepatic veins of the liver.

mary of all scores is given in Table 2. For evaluation, re-
sults of several individual hepatic vessel trees of a liver
were combined. Note that we have excluded results for por-
tal arteries, because they were only visible in 3 of the 15
utilized datasets (imaging protocol). Data quality is pri-
marily related to the noise level, scan-resolution, and con-
trast between vessels and liver parenchyma. Note that dif-
ferent vascular systems can have a different score for the
same dataset. The segmentation quality measure is utilized
to evaluate the quality/accuracy of the identified vessel
boundaries. As part of this evaluation, we took the non-
uniform contrast agent distribution in different generations
of the vessel systems into account. Consequently, we as-
sessed the number of visible generations and the segmenta-
tion quality related to different vessel generations. In case of
“good” data quality the segmentations were always scored
as “good” in all generations, while cases with “poor” data
quality and only a few visible generations, the segmenta-
tion quality tended to be scored as “ok”. This is in par-
ticular the case towards the distal parts of the portal vein
tree where the contrast vanishes completely. None of the
segmentations was scored as “poor”. A plot of the contrast
of the main vessel trunk versus the combined centerline
length for each dataset is shown in Fig. 14. As can be seen,
the contrast varies considerably and has a strong influence
(correlation) on the resulting centerline length.

4.3. Assessment of robustness

a) Impact of flow direction: Contrary to other ap-
proaches, our method incorporates flow direction informa-
tion for reconstruction and separation of trees from uncon-
nected tubular objects (Section 3.2). To assess the impact
of this approach on robustness, we removed all parts in our
tree reconstruction step that utilizes flow direction (angle)
information. We applied this simpler algorithm to five of
the liver datasets utilized in Section 4.2. The selection was
made based on the accumulated centerline length, and the
five datasets with the longest centerlines were selected. If
no flow direction information was used, 23 misconnections
occurred. The missconnections affected combined 98 ves-
sel branches. The largest affected subtree consisted of 18
branches. With flow direction, only 1 misconnection oc-
curred that affected 3 branches which corresponded to one
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(a) (b) (c)

Fig. 15. Effect of incorporating flow direction information into the
tree reconstruction and separation. (a) MIP showing two interwo-

ven vessel systems. (b) Segmentation result without using flow di-
rection information, showing some misconnected vessel branches. (c)
Segmentation result using flow direction information, showing a suc-

cessful separation.

(a) (b) (c) (d)

Fig. 16. Example of the reconstruction of the portal (bright) and
hepatic (dark) vein trees from detected tube elements/centerlines.

(a) MIP of the dataset using a liver mask; some vessels are only
barely visible because of low contrast to the background and high
image noise. (b) Extracted tube elements/centerlines before tree

reconstruction; In the area adjacent to the tumor the portal veins
were not detected (arrow). (c) Reconstructed trees without using
flow direction information showing larger areas of the portal veins
attached to the hepatic vein tree. (d) Reconstructed trees using

flow direction information showing a successful reconstruction of the
vessel systems including the vessel adjacent to the tumor.

subtree. Two examples showing errors resulting from omit-
ting flow direction information are shown in Figs. 15 and 16.
As can be seen, flow direction information enhances the ro-
bustness robustness of our algorithm considerably.
b) Abnormal tube shape: To test the robustness of our
method regarding variations in tube shape, we utilized it to
segment four pathological abdominal aortas in contrast en-
hanced CT datasets. The aortas had stenosis or aneurysms
as well as calcifications (Fig. 17(a)), thus the shape deviated
significantly from a standard cylindrical tube shape. For
each dataset, a semi-automatically generated reference seg-
mentation in a subvolume around the aneurysm/stenosis
was available for comparison. Segmentation results showed
an average unsigned surface distance error of 0.5±0.1 mm,
which is lower than the average intra-slice resolution of the
datasets. The average unsigned volume error was 2.1±1.8%.
A segmentation result is depicted in Fig. 17(b) and the cor-
responding reference is shown in Fig. 17(c).

(a) (b) (c)

Fig. 17. Segmentation of an abdominal aorta tree. (a) MIP of the
complete aortic tree after segmentation with the proposed method.

The dataset contains larger aneurysms and calcifications. (b) Sub-
volume showing the segmentation result of our approach. (c) Sub-
volume showing the reference segmentation.

5. Discussion

5.1. Performance and robustness

We have evaluated our method in Section 4 on sev-
eral different datasets to assess the ability to: a) correctly
obtain/separate different tree structures (e.g., vessel sys-
tems), b) accurately determine the surface of tubular tree
structures (segmentation accuracy), and c) robustly han-
dle noise, disturbances (e.g., tumors), and deviation from
cylindrical tube shapes (e.g., aneurysms). In this section,
we discuss different aspects of the evaluation.
a) Structural correctness: On experiments with phan-
tom and clinical data, we demonstrated our method’s abil-
ity to identify tubular objects (Section 4.1 and 4.2). In all
experiments, no false positives were detected, demonstrat-
ing the robustness of our method to imaging artifacts and
noise. With decreasing contrast and scan resolution, the
detection of thin tubular objects becomes increasingly dif-
ficult, and at some point, tubes become indistinguishable
from the image background. Using phantom datasets, we
quantified the effect of contrast and resolution on the de-
tectability of tubular objects. On clinical liver CT datasets,
we showed the correlation between contrast and the cen-
terline lengths of the extracted vessel trees (Fig. 14). For
clinical liver datasets, the radiologist identified only a few
missing vessel branches (11 (0.26%) out of 4170). On phan-
tom data, far more missing tubes were identified (Fig. 7). In
case of the phantom datasets, the location and number of
tubular branches was known a priori, because of the avail-
able ground truth. Note that most of the unidentified tubes
in the phantom datasets can not be visually detected in the
image data by humans (Fig. 6). Clearly, for clinical data,
no such ground truth was available. Overall, our method
performed well even in case of poor data quality.

We demonstrated the ability of our method to separate
and segment multiple interwoven vessel trees on clinical CT
datasets (Section 4.2). As shown in our experiments, utiliz-
ing information about flow direction in the tree structures
(e.g., blood flow in vessel systems) was an important factor
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in obtaining the correct structure of multiple overlapping
(vessel) trees (Sections 4.2 and 4.3(a)).
b) Segmentation accuracy: On phantom datasets we
quantified the segmentation accuracy for tubular objects
with different radius under varying imaging conditions
(Section 4.1). Investigated contrasts and scan resolutions
showed almost no effect on the accuracy in case of vessels
with larger diameter. For thin tubular objects the statis-
tics was not very meaningful, because only a few tube
elements were detectable (about 90% undetected) due to
low contrast, noise, and low resolution. For all successfully
identified vessels, the absolute radius error stayed within
an one voxel range (inter-slice resolution). Note that the
used graph cut segmentation is only able to produce voxel
accurate segmentations. We also scored the segmentation
accuracy on liver CT datasets in terms of clinical usability
for surgical planning (Section 4.2). The majority of seg-
mented branches were scored as ”good“ and no branch
was scored as ”poor“, even for datasets with ”poor“ data
quality. For low quality datasets with only few visible gen-
erations, the segmentation tended to be scored as ”ok“ to-
ward the distal parts of the vessel trees where the contrast
almost vanishes.
c) Robustness: Our method performed robustly on the
clinical datasets of the liver CT data as shown in our evalu-
ation. For example, it produced correct results in disturbed
regions caused by adjacent tumors (Figs. 12 and 18). All
liver datasets utilized in our evaluation contained multiple
overlapping vessel trees that had to be separated, and 11
out of the 15 datasets had pathological variations where
other methods are likely to fail, as discussed in Section 5.2.
Our method also performed well in case of abnormal tube
shapes, as our evaluation of the segmentation accuracy on
abdominal aorta datasets showed (Section 4.3(b)). On all
phantom, clinical liver, and abdominal aorta datasets, one
common set of parameters was used, although the datasets
show a large variation in data quality and contrast. Only for
the abdominal aorta some parameters had to be adapted
to account for the much larger size.

5.2. Comparison to other methods

a) Vessel segmentation and separation: In this section,
we compare our method with two different vessel segmen-
tation approaches proposed by Selle et al. (2002) and Man-
niesing et al. (2006) on liver CT data (Section 4.2). The
first method (Selle et al., 2002) was specifically designed for
liver vessel separation and segmentation. It is a refined top-
down region growing approach combined with a method
for the separation of overlapping vessel trees based on the
analysis of skeletons after segmentation. Selle et al. (2002)
did not present a performance evaluation, but mentioned
the need to manually adapt parameters for each dataset.
In addition, they utilized a tool to correct errors in the
tree separation. The second method is based on level sets
and was originally utilized for cerebral vessel segmentation

(Manniesing et al. (2006)). Both methods require a liver
mask for preprocessing and the segmentation. Figs. 18(b)
and (c) show segmentation results of these methods on a
typical contrast enhanced liver CT dataset. Both meth-
ods utilize primarily gray-value information for segmenta-
tion. Consequently, the tumor shown in Fig. 18(a) is in-
cluded in the segmentation results. Selle’s approach to tree
separation was able to remove major parts of the hepatic
veins from the initial portal vein tree segmentation result.
However, some errors still remain in the segmentation re-
sult (Fig. 18(b)). The result achieved with the algorithm
of Manniesing et al. (2006) contains some parts of the hep-
atic vein and the tumor is connected to the portal vein
tree (Fig. 18(c)). In comparison, our approach resulted in
a correct segmentation shown in Fig. 18(d). Our high-level
analysis step during the tree reconstruction allows to re-
solve problems as explained in Fig. 16, and a valid shape
prior is generated such that leakage or undersegmentation
is avoided. The ability to consider local disturbances in a
more global context contributes to the robustness of our
approach and is one of the major advantages.
b) Tube detection: One key factor for the robust perfor-
mance of our approach is a reliable tube detection method.
Our tube detection filter suppresses responses to surface
patches and allows avoidance of responses between closely
adjacent objects by computation of the boundary informa-
tion on a smaller scale (Fig. 19(d)). A comparison to the
methods of Krissian et al. (2000, 2003) is show in Figs. 19(e)
and (f), respectively. For the default case of a single tubu-
lar objects all methods perform similarly well. While the
original formulation of Krissian et al. (2000) produces re-
sponsed to surface patches (Fig. 19(e) on the very right),
their later approach (Krissian et al., 2003) allow reduction
of this effect. Both methods produce undesired responses
between the closely tangenting tubular objects (Figs. 19(e)
and (f)).

5.3. Future work

The development of our method was motivated by the
need to reliably segment the different vascular systems
of the liver in order to facilitate liver surgery planning
(Reitinger et al., 2006). However, the concepts developed
are generally applicable. For example, preliminary re-
sults achieved with the method for segmentation of lung
vasculature and airway trees were promising and adap-
tion/evaluation of our method for these tasks will be part
our of future work. Further, we will develop appropriate
visualization and interaction techniques for the proposed
method to deal with detected subtrees that cannot be con-
nected automatically in case of too severe disturbances.
One example of such a case is shown in Fig. 20. In this
case, a tumor infiltrates and blocks one airway branch of
the lung completely. The segmentation result of our ap-
proach after selecting the trachea as root of the airway tree
is shown in Fig. 20(c) where the lower left airway branch
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(a) (b) (c) (d)

Fig. 18. Separation and segmentation of liver vessel trees in a contrast enhanced CT dataset (dark: portal veins, bright: remaining vessels).
The dataset contains a tumor in close proximity to the portal vein tree and hepatic veins that overlap in the image with the portal vein tree
due to partial volume effects. An image slice of the datasets is shown in Fig. 1(b). (a) MIP of the dataset using a liver mask. (b) Segmentation

results generated with Selle’s approach (Selle et al., 2002) showing erroneous portal vein and hepatic vein separation. (c) Segmentation result
of the level set based method (Manniesing et al., 2006) showing isolated vessel segments and leakage of the portal vein tree into hepatic veins
and the tumor. (d) Segmentation result of the proposed method.

(a) 3d volume rendering.

(b) 2d cross sections.
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(d) Response of proposed method (η = 0.5).
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(e) Response of Krissian et al. (2000) method with suggested
parameters.
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(f) Response of Krissian et al. (2003) method with suggested

parameters. Additionally the paramters cH and cE were varied
(suggested: cH = 1.0, cE = 0.7).

Fig. 19. Tubular structures with varying cross section profile rep-

resenting situations found in typical CT datasets and responses of
the proposed tube detection filter and other methods with similar
objectives. Note that for some plots logarithmic scales are used to

capture the full value range of values.

is missing in the segmentation result because of conflicting
gray value evidence between the airway branches. Con-
trary to conventional approaches, our approach enables
an identification of this problem as the missing airway

(a) (b) (c) (d)

Fig. 20. Segmentation of an airway tree with a large tumor infiltrating
the airway (arrows). (a) Coronal slice of the dataset showing the
tumor. (b) Volume rendering of the dataset. (c) Segmentation after
specifying a root point inside the trachea. (d) Segmentation after

selecting the root of the remaining airway branch.

branches are detected. This allows a proper reaction to
this situation, either by segmenting the remaining airway
branch separately or by connecting the two parts of the
airway tree.

6. Summary and conclusion

In this paper, we presented and validated an approach
for simultaneous 3d separation and segmentation of mul-
tiple interwoven tubular tree structures in medical image
data. In contrast to conventional approaches, our approach
does not solely rely on low-level information like gray value
or local shape description for segmentation. Instead, our
approach initially performs an identification of tubular ob-
jects followed by a high-level analysis to obtain the struc-
ture of the different trees. This structure information is then
utilized as a prior to constrain the intrinsic segmentation
process. By using this strategy, problems like separation of
different tubular trees/systems or handling of local distur-
bances are addressed on a global level by utilizing infor-
mation about all identified tubular objects and the flow di-
rection in the biological tree structures. Consequently, our
approach outperforms other methods that only consider lo-
cal information. We evaluated our approach on phantom
and clinical datasets. Results show a high robustness of
our approach against disturbances, the methods ability to
successfully reconstruct, separate, and accurately segment
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multiple interwoven tubular tree structures. Experiments
demonstrate that the proposed concept is well suited for
several different application domains.
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Krissian, K., Farnebäck, G., 2005. Techniques in the enhancement of

3D angiograms and their applications. In: Leondes, C. T. (Ed.),
Medical Imaging Systems Technology: Methods in Cardiovascu-

lar and Brain Systems. Vol. 5. World Scientific Publishing Co.,
Singapore, pp. 359–396.

Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.,

2000. Model-based detection of tubular structures in 3D images.
Computer Vision and Image Understanding 2 (80), 130–171.

Lee, J., Beighley, P., Ritman, E., Smith, N., 2007. Automatic seg-
mentation of 3d micro-ct coronary vasular images. Medical Image

Analysis 11 (4), 630–647.

Li, H., Yezzi, A., 2007. Vessels as 4-d curves: Global minimal 4-d
paths to extract 3-d tubular surfaces and centerlines. IEEE Trans.
Med. Imag. 26 (9), 1213–1223.

Lorigo, L., Faugerasa, O., Grimsona, W., Kerivenc, R., Kikinisd, R.,
Nabavid, A., Westin, C., Sep. 2001. Curves: Curve evolution for

vessel segmentation. Medical Image Analysis 5 (3), 195–206.
Manniesing, R., Velthuis, B., van Leeuwen, M., van der Schaaf, I.,

van Laar, P., Niessen, W., Apr. 2006. Level set based cerebral
vasculature segmentation and diameter quantification in CT an-

giography. Medical Image Analysis 10 (2), 200–214.
Pock, T., Janko, C., Beichel, R., Bischof, H., 2005. Multiscale medi-

alness for robust segmentation of 3D tubular structures. In: Com-

puter Vision Winter Workshop 2005. pp. 93–102.
Reitinger, B., Bornik, A., Beichel, R., Schmalstieg, D., Nov. 2006.

Liver surgery planning using virtual reality. IEEE Comput. Graph.
Appl. 26 (6), 36–47.

Risser, L., Plouaboue, F., Descombes, X., 2008. Gap filling of 3-d
microvasculature networks by tensor voting. IEEE Trans. Med.
Imag. 27 (5), 674–687.

Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller,

T., Gerig, G., Kikinis, R., Jun. 1998. Three-dimensional multi-
scale line filter for segmentation and visualization of curvilinear
structures in medical images. Medical Image Analysis 2 (2), 143–

168.
Selle, D., Preim, B., Peitgen, H., Nov. 2002. Analysis of vasculature

for liver surgical planning. IEEE Trans. Med. Imag. 21 (11), 1344–
1357.

Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N.,
Koehl, C., Dourthe, O., Malassagne, B., Smith, M., d. Mutter,
Marescaux, J., Aug. 2001. Fully automatic anatomical, patho-
logical, and functional segmentation from CT scans for hepatic

surgery. Computer Aided Surgery 6 (3), 131–142.
Steger, C., Feb. 1998. An unbiased detector of curvelinear structures.

IEEE Trans. Pattern Anal. Machine Intell. 20 (2), 113–125.

Szymczak, A., Stillman, A., Tannenbaum, A., Mischaikow, K., Aug.
2006. Coronary vessel trees from 3d imagery: A topological ap-
proach. Medical Image Analysis 10 (4), 548–559.

Wink, O., Niessen, W., Viergever, M., 2004. Multiscale vessel track-

ing. IEEE Trans. Med. Imag. 23 (1), 130–133.
Xu, M., Pycock, D., Dec. 1999. A scale-space medialness transform

based on boundary concordance voting. Journal of Mathematical

Imaging and Vision 11 (13), 277–299.
Yi, J., Ra, J. B., 2003. A locally adaptive region growing algorithm for

vascular segmentation. International Journal of Imaging Systems
and Technology 13 (4), 208–215.

14


