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Abstract 

This paper presents an approach for real-time remote detection of eye-

blink parameters. First, a combination of boosted classifiers and Lucas-

Kanade tracking is used to follow the movement of face and eyes. Then, 

detailed eye movement is described by normal flow. Finally, a discrete 

finite state machine is used to detect eye-blinks. The proposed approach is 

evaluated on a series of short video sequences. It shows promising eye-

blink detection capabilities that could be used for software-based 

prevention of workplace-related disorders.  

1 Introduction 

In the European Community more than 40% of the today's working population use 

computers in their daily work. Computer use is related with static work, constrained 

sitting and vision problems. For example, approximately 70% of computer workers 

worldwide are reported to having vision problems leading towards Computer Vision 

Syndrome. The number of computer-related jobs is expected to increase significantly in 

the next decade, along with the number of workplace-related illnesses. 

One of primary causes of vision problems during computer use is insufficient eye 

movement, caused by long periods of gazing at computer screen. Distance between the 

screen and the user’s head usually doesn’t change much and as a result the muscles 

involved in adaptation of the eye are not exercised for long periods of time, leading to 

their weakening. This is usually accompanied by decrease in eye blinking frequency, 

which leads to excessive dryness of the eye surface (cornea and sclera) and can be 

harmful to the eye. Chronic dry eyes can eventually lead to scarring of the cornea and 

sight loss. 

With preventive measures like regular breaks, eye exercises and relaxational activities 

most of those disorders can be avoided. Unfortunately, the majority of population is 

reluctant to change their workplace habits until first signs of health issues appear. To 

help users become aware of the problem and assist them in prevention, we propose to 

use a simple monitor mounted camera (webcam) for capturing video of user at his 

workplace and estimating his eye blinking patterns. When potentially harmful behaviour 

is detected, the user can be alerted and informed about suitable actions. 



Remote detection of eye-blinks from video is not as accurate as head-mounted eye 

trackers, but this is usually compensated by greater ease of use, non-invasiveness and 

much lower cost. For our purpose, the eye tracking must run in real-time, without any 

additional hardware (like IR illumination for example), using low quality input video, 

and be capable of operating under varying indoor conditions (typical office 

environment). Several eye tracking approaches that address those issues were already 

published, but few address all of the mentioned constraints and most are not suitable for 

precise evaluation of eye blinking movements. For example, Morris et al. [1] proposed a 

blink detection system based on variance map calculation and eye corner analysis. It 

runs in real-time on 320 × 240 images. They report good blink detection results (95 % 

true positives), but head movements affect the variance map computation and cause a 

sharp drop in performance.  

Sirohey et al. [2] presented an approach for determining eye-blinks by locating eye 

corners, eyelids and irises and analyzing their movements. Motion information is 

estimated using normal flow. Head motion is modelled separately by an affine model 

and is used to decouple eye movements from the head movement. Authors claim their 

algorithm can track iris and eyelid motion correctly more than 90 % of the time, but not 

in real-time. In a later paper [3] they added a deterministic finite state machine (DFSM) 

with three states to analyze the normal flow and calculate eye blink characteristics.  

Chau and Betke [4] describe a system that detects blinks in real-time using correlation 

with an open eye template. If large head movement occurs, the system is automatically 

reinitialized. For 320 × 240 images obtained from a webcam they report 95 % overall 

blink detection accuracy. Downside of this approach is that it distinguishes only 2 eye 

states, open and closed. Any movement in-between is not well defined.  

Pan et al. [5] use a boosted classifier to detect the degree of eye closure. The changing 

of eye states is modelled by a Hidden Markov Model. The method operates in real time 

on 320 × 240 webcam images, detecting more than 96 % of eye-blinks. Since examples 

of typical eye motion are used for training the model, the method should face difficulties 

when non-standard eye motion occurs, such as partial blinks.  

Recently, Orozco et al. [6] proposed using two appearance-based trackers: the first 

one tracks iris movements while the second one focuses on eyelids and blinking. Using 

low resolution input video and a simple appearance model, the method reportedly runs 

in real-time, achieving good tracking results. Authors didn’t try to detect eye-blinks, 

however the method could be used for this purpose. 

Most of the described approaches detect blinks by locating separate eye parts such as 

iris, eyelids and eye corners. Quality of detection is directly linked to accuracy of feature 

localization. When low quality webcam images are used as input, sufficient accuracy is 

very difficult to achieve. Additionally, real-time constraint prevents us from using 

sophisticated eye localization techniques.  

Therefore, our approach doesn’t depend on locating specific eye features. Instead, it 

is based on general appearance of the eye and its motion. We use a combination of 

appearance-based and feature-based tracking to follow the motion of face and eyes in 

real-time (Section 2). Eye motion parameters are estimated using normal flow (Section 

3). For analysis of the flow we upgrade the DFSM-based approach presented by Sirohey 

et al. [2] by adding another state and including both magnitude and direction of the flow 

(Section 4). Performance of our approach is demonstrated on several video sequences in 

Section 5. 



2 Detection and tracking of eyes 

To detect the eyes we must first detect the face. If the camera is mounted on a computer 

monitor, user’s face is often visible in a frontal pose. We detect it using a boosted 

classifier which is part of the OpenCV library [7], and was trained on a large set of 

frontal face images. Variations in the training set (illumination, facial expressions, 

glasses, body hair) provide adequate level of robustness for our purpose.  

Because it is very fast, this classifier can be used for initial detection of the face as 

well as subsequent tracking of the face, but it cannot detect faces if they deviate 

significantly from the frontal pose. When this happens, we track the position of the face 

by a well-known Lucas-Kanade (LK) feature tracker [8]. However, tracking doesn’t rely 

on specific facial features like eye corners, but uses a set of currently visible points with 

strong local contrast, detected by FAST feature detector [9]. Their position is tracked 

from previous to the current video frame by the LK algorithm. Displacement of feature 

points describes the displacement of the face. This procedure is repeated for every frame 

until face enters the frontal pose again, where it is detected by the face classifier. To 

additionally reduce the processing time, we run the classifier once for every 5 frames 

and track the other 4 frames by the LK tracker. 

The same approach is adopted for detection and tracking of the eyes inside the facial 

region. Left and right eyes are detected separately by a boosted classifier. If detection is 

unsuccessful, the eye is tracked from its last know position using the LK tracker. We 

trained the eye detector ourselves using OpenCV’s implementation of AdaBoost [7]. 

From several facial image datasets [10][11][12] with available ground-truth information 

for eye position we generated a positive training set of 10,000 eye images. Negative 

training set consisted of 13,000 facial images with eye regions removed. Figure 1 shows 

an overview of both training sets. 

This procedure enables us to track most of the facial and eye motion performed by a 

computer user. One exception is when face is visible from the side, but such cases are 

not suitable for blink detection anyway. Very fast movements of the head are another 

exception, because LK tracker is not capable of following large movements and may 

start to lag behind the actual face location. However, the situation is corrected as soon as 

face enters the frontal pose again.  

 

    

    
 

Figure 1:  An overview of positive (left) and negative (right) training set for a boosted 

eye classifier. 

3 Eye movement evaluation 

Once eye regions are located we can estimate the eye movement parameters. Eye 

movements detected on a 2D image are composed from two independent components: 

global movement of the face and local movement of the eye. Since face movement is 



known by now, we can compensate for its effect to obtain the actual eye movement. The 

compensated eye motion can then be used to detect blinks.  

Object motion is usually described by optical flow. Reliable estimation of optical flow 

is a complex procedure, not suitable for real-time operation. Following the example of 

Heishman and Duric [3], we calculate normal flow of the eye region in the direction of 

intensity gradients, where it is well defined. Then, facial movement is subtracted from 

the estimated normal flow. An example of such compensation is depicted in Figure 2. 

Twenty frames showing a person moving his head upwards while blinking at the same 

time were extracted from the Talking Face dataset [13] and processed by our algorithm. 

Left side of Figure 2 shows the estimated dominant orientation, along with X and Y 

components of average magnitude of the non-compensated normal flow. Facial 

movement clearly dominates as the direction is strongly downwards (approx. 270°) for 

all frames and vertical component of the flow is dominating (Figure 2, left side). 

However, when facial movement is compensated, the orientation reveals a dip indicating 

a blink, and magnitude also shows the blinking motion in X as well as Y directions 

(right side of Figure 2). 

The size of the user’s face in the input image can vary greatly, affecting the magnitude 

of the estimated normal flow. To prevent this, we normalize the normal flow vectors by 

dividing them with the size of the current face region. This makes flow from small 

(distant) faces comparable with the flow from large (close) faces.  

Since we are only interested in closing and opening of the eyes, we focus our analysis 

only on flow in the direction perpendicular to a line connecting centers of left and right 

eye regions. The angle between this line and the horizon is calculated and flow vectors 

are rotated correspondingly. Corrected and normalized flow n is then used to calculate 

mean flow magnitude of the eye region, denoted as nMAG. To detect dominant flow 

direction nDIR, vector orientations are stored in a histogram with 36 bins, each bin 

representing a 10° arc. The bin with the most contributions represents the dominant 

orientation of the flow. If histogram has multiple peaks, their average is used. 

4 Blink detection 

Information from eye’s normal flow enables us to detect eye blinks together with all the 

intermediate states such as partial blinks, squints, etc. Flow magnitude (nMAG) is our 

main indicator, but direction of the flow (nDIR) is also important. Detecting blinks by a 

simple thresholding of the magnitude doesn’t give good results. Different speeds of 

blinking will give very different flow magnitudes, but the general sequence of 

movements will remain largely the same.  

Heishman and Duric [3] use a deterministic finite state machine (DFSM) to estimate 

blink parameters. The three states used are: Steady (Open), Closing and Opening. This 

enables detection of blinks, but doesn’t allow a lot of variations in eye movement, like 

holding eyes closed for a period of time. They also have to manually adjust several 

thresholds for each user. This gives the best detection results, but is inappropriate for 

our application since it burdens the user. 

 



 

Therefore, we extend this idea and use two separate states for open and closed eye. 

Our DSFM thus has 4 states: Open, Closing, Closed and Opening. Transitions between 

states are based on two parameters: mean magnitude of the normal flow nMAG and 

dominant orientation of the flow nDIR. Structure of our DFSM is showed in Figure 3. To 

move out of a steady state, flow magnitude must exceed a certain threshold. This 

threshold T is set to T = 6 · standard_deviation (n*), where n* is normal flow, estimated 

only during stationary eye states. Experiments show this is suitable for well-behaved eye 

movements. Persons with significantly different eye dynamics need to adjust this 

threshold, but since it’s the only important parameter it’s relatively easy to do so. Left 

side of Figure 4 shows changing of the DFSM states and estimated T value for a simple 

video sequence with one slow, long blink. Selecting a threshold for flow direction is 

easier. Since we are only interested in upwards/downwards movement, all flow vectors 

with directions between 20° and 160° are classified as upward motion, and all vectors 

with directions between 200° and 340° are classified as downward motion. Those limits 

are depicted on the right side of Figure 4.  

Such DFSM enables us to detect separate eye states; however, those states are often 

not reliable due to noise in flow data. This is particularly true for Opening and Closing 

states and during periods with low flow magnitude. If flow direction fluctuates, the 

DFSM can make incorrect transitions between states. To address those fluctuations, 

additional post-processing step is added that analyses the state transitions and removes 

spurious “blinks”. This post-processing step could also be used to detect other types of 

eye motion besides blinking. 
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Figure 2:   An example of removing head motion from the estimated normal flow of the 

eye region, shown on frames 1190 – 1210 of the Talking face video [13]. Left: 

dominant flow orientation and mean flow magnitude of initial normal flow. Right: 

dominant flow orientation and mean flow magnitude after subtraction of the head 

motion. In this sequence, the user blinks while his face is moving upwards. 



 
 

Figure 3: Structure of our discrete finite state machine for identification of eye-blinks 

from normal flow data. Notation: mag = mean flow magnitude, dir = dominant flow 

direction, T = mean flow magnitude threshold. 
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Figure 4:   An example of mean flow magnitude and dominant flow direction for a video 

sequence showing one very slow blink. Left: mean flow magnitude nMAG with marked 

threshold and DFSM states. Right: Dominant flow direction nDIR with marked threshold 

for upward/downward movement. 

 

Finally, eye-blink parameters are calculated and statistically evaluated. Currently, we 

observe the duration of blinks and the duration of pauses between blinks (blink 

frequency). If duration of blinks is significantly lengthened and blink frequency is 

reduced, this signals the unwanted staring at the computer screen and triggers a warning 

for the user. By tracking eye-blink statistics for longer time periods, users could be 

forewarned of hazardous working habits and assisted in timely prevention of computer-

use related illnesses. 

5 Experimental results 

Presented approach for detection and analysis of eye-blinks was tested on several video 

sequences. No standard test sets exist for this purpose, so we recorded a few test videos 

ourselves. Additionally, the Talking Face video [13] and recently presented ZJU 

Eyeblink Database [5] were used. All video frames are 320 × 240 pixels in size. Ground 

truth data for blink detection was obtained manually by marking the starts and ends of 

blinks.  



5.1 Face and eye tracking 

Face and eye tracking accuracy is sufficiently good for our purpose, and illumination 

changes or presence of glasses don’t affect the performance significantly. Face pose can 

change up to approx. 40° away from the frontal pose without much ill-effect. This is 

demonstrated in Figure 5.  

 

 
 

     
 

Figure 5: Two examples of input video with detected face and eye positions. Top: 

natural light, glasses. Bottom: Talking Face video [13]. 

5.2 Blink detection 

Eye-blink detection is evaluated on 15 short videos. We use our own recordings and a 

subset of the ZJU Eyeblink Database. Videos are very varied: they include static as well 

as moving faces, dynamic backgrounds, other people walking behind the user, different 

illumination conditions, on several videos users are wearing glasses. Blinks are detected 

by a two-stage analysis described in Section 4. In all tests the same value of threshold T 

was used. Table 1 presents the resulting eye-blink parameters.  

On our computer (Intel Core 2 Duo, 2.66 GHz, 2 GB RAM) the unoptimized C++ 

program typically processes one 320 × 240 image in 35 ms (28.6 fps). Approximately 

20 ms is spent for detection and tracking, and 15 ms is spent for normal flow 

calculation. 

 

Eye-blink parameter Estimated mean value ± std 

Frames with detected blinks 87.3 % ± 8.7 % 

Frames with missed blinks 12.7 % ± 8.7 % 

Correctly detected blinks 94.2 % ± 14.9 % 

Incorrectly detected blinks 5.8 % ± 14.9 % 

Mean blink duration 239 ms ± 191 ms 

Mean blink frequency 783 ms ± 672 ms 

 

Table 1: Numerical results for eye-blink analysis on a set of 

test video sequences.  

 



Results show that it is possible to obtain realistic eye-blink parameters using the 

proposed method. With long-term tracking of average blink duration and frequency 

values it is possible to detect signs of eye fatigue and to help the user in preventing it. 

Unfortunately, it’s very difficult to compare those results with previously published 

work, because there are no standard evaluation datasets and authors report very different 

performance metrics. If we compare our results with those from [3] we notice that 

despite using different video sequences the reported mean blink duration (220 ms – 390 

ms) is very close to our value of 240 ms, while duration between blinks is much longer 

in their case (2.7 s – 4.8 s). Our improvements to the DFSM proposed in [3] are not very 

noticeable when detecting simple eye-blinks, but we believe the difference is more 

significant when analysing complex eye behaviour. Additionally, our approach runs in 

real-time and uses only 1 parameter that must be adjusted only if person’s eye dynamics 

deviates a lot from default values, while approach from [3] requires 3 parameters that 

need to be changed across subjects and scenarios and was tested off-line. 

Pan et al. [5] recently presented the ZJU Eyeblink Database that is to our knowledge 

the only promising attempt to provide the community with standard eye-blink evaluation 

data. Unfortunately, they provide only one performance metric: the mean eye-blink 

detection rate when using their algorithm is 95.7 % with false alarm rate < 0.1 %. 

Duration of blinks or blink frequency are not reported. When our program is evaluated 

on the whole ZJU dataset with 80 videos, the mean blink detection rate is 70 % with 

additional 13 % wrong detections. Those numbers are largely affected by the fact that 

several videos from ZJU contain eye-blinks that appear shortly after the start of the 

video. This confused our algorithm which needs stationary eyes at the beginning of the 

analysis to correctly determine the standard deviation of normal flow for threshold T. 

Therefore, several videos gave no detected blinks, which significantly skewed the 

results.  

Conclusion 

We presented an approach for video-based detection of eye-blinks that could be used to 

alert the computer user if potentially dangerous blinking behaviour is detected. We 

believe this approach could be much more effective than currently available preventive 

software, which is usually based on keyboard and mouse activity. The proposed two 

level analysis of eye’s normal flow enables us to detect blinks as well as various other 

kinds of eye movements. To improve the performance, we plan to use GPU-based 

implementation of optical flow estimation instead of simple normal flow calculation. 

Additionally, an upgrade to the Lucas-Kanade tracker would allow for better tracking of 

fast, significant face movements.  
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