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Abstract

The research interest in nonlinear image registration for medical intra-modality applica-
tions is a topic of constantly growing interest in the medical image analysis community.
Areas of application include fusion of anatomical and functional data by angiography
techniques, development of physiologic models of dynamic processes, investigation of or-
gan/tumor growth or motion compensation in surgery. In the present thesis we review
the large body of literature on nonlinear intra-modality registration with a special focus
on CT image registration applications involving brain and thorax. Our contributions to
the state-of-the-art reflect this variety by spanning from partially rigid over shape- and
landmark-based feature registration using shape context and SIFT descriptors and full-
grown anisotropic image-driven optic flow intensity-based methods to a hybrid nonlinear
registration approach that effectively combines feature and intensity information. We also
touch the important area of registration evaluation by proposing a framework to compare
algorithms on synthetically deformed and clinical data. The necessary trade-off between
algorithm efficiency and accuracy in the presence of important high-frequency informa-
tion (vascular structures in thorax and brain) is thoroughly investigated, since we and
our project partners from Siemens MED CT are interested in practically applicable algo-
rithms. Our results show effective methods both from a theoretical and practical point of
view.

Keywords. medical image analysis, nonlinear image registration, intra-modality appli-
cations, bone subtraction CT Angiography, partially rigid registration, thoracic perfusion
imaging, surface-based matching & registration, landmark-based matching & registration,
intensity-based nonlinear registration, hybrid landmark- and intensity-based registration,
evaluation framework for nonlinear registration
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Chapter 1

Introduction

Contents

1.1 The Image Registration Problem . . . . . . . . . . . . . . . . . . 2

1.2 Medical Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Imaging Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 A Formal Definition of Image Registration . . . . . . . . . . . . 9

1.5 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Structure & Contributions of the Thesis . . . . . . . . . . . . . 14

Image registration is a prerequisite for a large number of applications
in computer vision and image processing especially in medical image analy-
sis [Maintz and Viergever, 1998]. Informally image registration is the process of aligning
two images of the same or similar objects such that identical structures in both
images are brought into correspondence thereby minimizing an application-dependent
dissimilarity (or distance) measure under the assumption of a specific transformation (or
deformation) model [Hajnal et al., 2001]. There exists a large body of research literature
on image registration, the main distinction typically is made between registration using
rigid/affine and nonlinear transformation models. While rigid registration is considered
a solved problem in most application areas, research on nonlinear image registration
techniques is still a ”hot topic” and there are no signs that this will change in the near
future [Crum et al., 2004].

There are various open questions and tasks in the area of nonlinear registration. One
problem is a lack of general-purpose techniques which leads to a large number of slightly or
significantly differing approaches and application-dependent solutions. However, there is
currently no agreement in the research community if the problem-specific design of nonlin-
ear registration algorithms might ever be replaced by a generic algorithm. Another issue is
the large computational effort that is necessary to apply nonlinear registration techniques
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2 Chapter 1. Introduction

on real-world data especially in the medical domain. Efficient registration very often goes
at the expense of tolerating lower accuracy for smaller (i.e. high frequency) information.
The fact that evaluation of nonlinear registration is only possible in a rudimentary way
due to the lack of ground truth data further complicates the situation. Consequently it is
difficult to compare algorithms objectively in order to separate suitable from unsuitable
methods. This has lead to an increasing interest in evaluation methods over the recent
years [Crum et al., 2003, Schnabel et al., 2003]. Most of these challenges boil down to the
notion of nonlinear registration being an ill-posed problem, where one has more unknowns
in the transformation model than one has constraints.

Even if restricted to medical imaging, the research literature on nonlinear registra-
tion shows a vast and extensive amount of publications concerning both methods and
applications [Maintz and Viergever, 1998]. This variety comes from the large number of
medical applications needing nonlinear registration, and it also indicates that the research
community is not yet fully satisfied with both the practical solutions and the theory be-
hind it. In accordance with this diversity we also investigate a wide range of nonlinear
registration techniques in the present thesis. The contributions of this thesis range from
rigid registration as a building block for partially rigid bone registration over surface and
landmark-based feature registration to intensity-based approaches. A hybrid approach
combining feature and intensity-based registration tries to fuse the contrarious strengths
of these disciplines. An evaluation that compares state-of-the-art methods with our con-
tributions on our specific medical image data sets concludes this work.

The remainder of this introductory chapter defines the image registration problem
in more detail, motivates a number of medical applications where rigid and especially
nonlinear registration is essential, and describes the imaging modality which is used in this
work. Afterwards formal definitions of the general and the nonlinear image registration
problems are given to define a common mathematical language for the later chapters.
Finally the goals and contributions of this thesis are summarized.

1.1 The Image Registration Problem

Image registration is a method to establish spatial correspondence between two images.
Images to be registered may be taken at different times or with different imaging sensors
(modalities). In traditional computer vision, image registration is needed e.g. for 3D recon-
struction from two several camera images of a scene, tracking of objects in video sequences,
model-based object recognition from databases or registration and fusion of different imag-
ing sensors. General surveys can be found in [Brown, 1992] or [Zitova and Flusser, 2003].

Over the last 25 years especially medical image analysis, which has been selected
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one of the 11 most important medical developments over the last 1000 years by the
New England Journal of Medicine [NEJM-Editors, 2000], was a driving force for image
registration research [Hill et al., 2001]. The main reason for this progression was the
growing number of imaging modalities complementing one another (X-ray Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography
(PET), Single Photon Emission Computed Tomography (SPECT) or Ultrasound (US))
which are nowadays routinely used in clinical practice. Various demanding applications
like fusion of anatomical and functional information, surgery and radiotherapy planning,
studies of tumor growth, correction of motion artifacts, statistical investigation of
population-dependent anatomical differences or segmentation and classification by
atlas registration have emerged and are getting used by physicians for diagnosis.
General overviews and seminal surveys of medical image registration can be found
in [Maintz and Viergever, 1998], [Lester and Arridge, 1999], [Crum et al., 2004] or the
book [Hajnal et al., 2001].

In medical image analysis one distinguishes intra- (mono-) and inter- (multi-) modal-
ity registration. Intra-modality registration is the case where two patient scans have to
be aligned which were acquired with the same modality, e.g. CT-CT or MRI-MRI regis-
tration. In contrast inter-modality registration intends to align structures depicted with
different imaging modalities, e.g. CT-PET or CT-MRI. This sub-discipline is more demand-
ing since identical anatomical structures may or may not be present on both images.
Another important distinction has to be made concerning intra- and inter-patient reg-
istration. While intra-patient registration deals with the same anatomy, inter-patient
registration further introduces difficulties due to population-dependent shape variations
of anatomical structures, an emerging sub-discipline which is also known as Computational
Anatomy [Miller et al., 2002, Li et al., 2003].

The notion of spatial correspondence, which is at the heart of image registration (com-
pare Figure 1.1), involves the search for a transformation that relates the information
given in one image to the information in the other one. The number of parameters needed
to define this transformation is denoted as its Degrees of Freedom (DoF).

In general a minimal amount of a priori knowledge about the registration problem
has to be provided by selecting the kind of geometric transformation one wants to esti-
mate during the alignment procedure [Hajnal et al., 2001]. We distinguish between affine
and nonlinear transformations. The frequently encountered rigid transformations are a
special case of affine transformations. In the rigid case the number of DoF is restricted
to translational and rotational parameters, i.e. 6 DoF for 3D volumes, while the affine
case leads to at most 12 DoF. On the other hand nonlinear transformations may easily
involve thousands of unknowns (like e.g. when deriving a spline transformation given a
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Figure 1.1: Illustration of spatial correspondence in image registration using two MR
brain images with differing imaging protocols. Spatially corresponding structures of the
anatomy, like the four landmarks A,B,C and D, should match each other after registration.

large number of corresponding landmarks) or several hundreds of thousands DoF (like e.g.
when modeling the transformation with a regular B-spline grid). Obviously this leads
to substantially differing registration methods, since general nonlinear registration is an
ill-posed problem in the Hadamard sense [Hadamard, 1902]. Hadamard states the three
properties of well-posed problem, the existence of a solution, the uniqueness of a solution
and the continuous dependency of the solution on the data (in some reasonable topology),
with the latter two properties generally being violated in nonlinear registration problems.
If a problem is not well-posed one needs regularization (e.g. a smoothness assumption on
the searched transformation) to derive stable numerical solution algorithms. In this case
there exists a large number of possible nonlinear transformations which may lead to similar
registration results. Some of these transformations will make no sense at all, while others
will be meaningful. This has to be considered in algorithm design and during evaluation.
Note that in literature the term non-rigid is often used for nonlinear registration as well,
however we will denote every registration technique that models a transformation with
more DoF as an affine transformation as nonlinear.

In the nonlinear registration case, the idea of spatial correspondence might be envi-
sioned by thinking of a patients thorax who is imaged twice with a CT scanner under
breath-hold, where the two images differ by the respiratory state. Consequently the pro-
cess of nonlinear registration will establish which point on one image corresponds to a
particular point on the other image, where correspondence means that points represent
measurements at the same anatomical locations within the patient. The correspondence
comes from a specific choice of the parameters of the transformation model, most often
established by an optimization procedure defined on a dissimilarity (objective) function.
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With this transformation model it is possible to warp one image into the coordinate frame
of the other image, thereby enabling the direct comparison or the fusion of the informa-
tion of the two input images. Figure 1.2 shows an example input for a nonlinear image
registration problem involving coronal slices of two thoracic CT data sets which differ in
their breathing state.

(a) (b)

Figure 1.2: Example input for an image registration problem. Corresponding coronal two-
dimensional slices of two three-dimensional thoracic CT data sets without registration,
(a) at exhalation and (b) at inhalation. Note that breathing motion occurs in three
dimensions, thus not all anatomical structures correspond on these slices.

1.2 Medical Motivations

Medical image registration is necessary in a variety of application areas, the number of
applications is constantly growing with the development and improvement of imaging
modalities. Modalities depict shape, structure, size and spatial relationships of anatomical
structures as well as information about function and pathology. Combination of these
different types of information also contributes to the large number of application areas.
From the large range of possible areas we are specifically interested in brain and soft-tissue
CT Angiography (CTA) applications to fuse anatomical and functional data, therefore we
will lay more emphasis on the description of these areas.
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1.2.1 Rigid Body Image Registration Applications

When being confronted with patient images from one or several modalities, the physician’s
task is to build a combined model of this information to be able to derive a diagnosis. Here
it becomes necessary to mentally compensate for changes in subject or object position with
the help of computer-aided image registration. Nowadays, many clinical applications for
image registration involve brain images due to its rigidity constraint, other areas like heart,
thorax or abdomen are still more in the research stage due to the complexity of soft-tissue
deformations. One such brain imaging example is the 3D imaging of perfused cerebral
blood volume in acute stroke using CT [Ditt et al., 2003]. A good overview on further
clinically relevant rigid body image registration applications can be found in Chapters 7
to 12 of [Hajnal et al., 2001]. Registration of serial MRI brain images are used to detect
changes in the brain and allied structures for the purpose of disease progression analysis
and monitoring of treatment response [Oatridge et al., 2001]. MRI or CT images (depicting
morphological information) are combined with PET or SPECT images (showing functional
information) to successfully locate tumors. Here the main registration problem is patient
movement during the scans, this application area is also currently restricted to the brain
in a clinical setting [Pietrzyk, 2001], however there is research going on for other areas like
thorax and abdomen [Bailey, 2001] as well. Fusion of MRI and CT images is interesting for
brain applications since MRI images depict the different soft tissue structures in the brain
(white matter, gray matter, cerebrospinal fluid) with more contrast, while CT is useful
since the cortical bone structures are invisible on MRI images. This is especially important
in brain surgery planning [Hill and Jarosz, 2001].

The emergency evaluation of stroke and intracranial hemorrhage is nowadays primarily
performed using multi-spiral CT [Lell et al., 2006a] and bone-subtraction CTA techniques.
Patient movement during and between individual scans often lead to insufficient image
quality due to motion artifacts. Rigid registration methods with high accuracy therefore
are a basic building block in bone-subtraction CTA studies. Figure 1.3 shows an example
of a Maximum Intensity Projection (MIP) visualization in a head CTA study.

1.2.2 Soft Tissue Image Registration Applications

Rigid body registration is very suited to applications in the brain, however, other organs
are more prone to soft tissue deformations which have to be taken into account when
relating images taken at different times. Sources of motion typically are respiration or
heart-beat. Interestingly, even in brain imaging there is the necessity for nonlinear regis-
tration. In neurosurgery a brain shift occurs due to pressure changes, cerebrospinal fluid
leakage, gravity effects and the mass of resected tumors consequently leading to nonlinear
deformations [Clatz et al., 2005].
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Figure 1.3: Example for a CTA head data set. a)-c) show the CT images with and
without skull structures. d) is a MIP with and e) without skull structures. Taken
from [Lell et al., 2006a]

One of the most important application of nonlinear image registration is the registra-
tion and fusion of anatomical and complementing functional data. The bone subtraction
CTA application from the previous section might also be seen as a fusion application, where
the contrast-enhanced scan is the functional image data. Many intra-modality fusion ap-
plications exist where the need to compensate for respiratory and cardiac motion artifacts
is necessary, like registration of thoracic PET and CT images [Mattes et al., 2003] (see Fig-
ure 1.4). Also other time-consuming imaging modalities like SPECT require assessment of
motion artifacts if one wants to relate these scans to CT or MRI.

Soft-tissue images from thoracic and abdominal data sets are the most prominent
candidates for nonlinear registration applications since the organs of interest are highly
deformable. According to the European Respiratory Society, lung diseases rank second
behind cardiac diseases in terms of mortality and cost of treatment∗. Computerized
methods for objective, accurate and reproducible analysis of lung structure and func-
tion can provide important insights into these problems. However, due to the complexity
of the breathing motion, investigations and applications working with thoracic but also
abdominal images are often very complicated. There are several areas of application that
could benefit from a proper treatment of problems due to breathing motion. Accurate
fusion of highly-dynamic but spatially restricted functional (i.e. lung perfusion, lung ven-

∗http://www.ersnet.org
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Figure 1.4: Example for a registration and color-coded fusion of a PET and a CT data
set. Taken from the ITK public-domain courseware [ITK, 2006].

tilation) and anatomical data sets [Hoffman et al., 1995, Hoffman and McLennan, 1997,
Maki et al., 1999a, Gefter, 2002] requires knowledge about the data sets’ positions in the
breathing cycle and about the possible soft-tissue deformations that are induced by di-
aphragm and rib cage movement. Anatomical data is here acquired over a single respi-
ratory cycle, while functional data is acquired over several respiratory cycles with spa-
tial resolution being restricted to just a small slab of a few slices. Based upon fusion
of function and anatomy possible clinical applications using thorax data are studies of
Chronic Obstructive Pulmonary Disease (COPD), a group of diseases with fatal influ-
ence on gas exchange (e.g. Pulmonary Emphysema, Asthma), leading to a decrease in
lung elasticity [Hoffman et al., 1995], or support studies for the clinical diagnosis of Pul-
monary Embolism which can be investigated by detecting pulmonary perfusion distur-
bances [Wildberger et al., 2005].

In radiotherapy planning, which is an essential technique for the treatment and cure of
thoracic or abdominal tumors and other lesions, the goal is to use different CT scans
to track the location and growth of a tumor and to use these scans for very accu-
rately determining the volume that confines it. After determining the tumor region
high-energy radiation beams are focused precisely on the volume of interest to apply a
high dose on the tumor only. Obviously it is very important to accurately compensate
for physiological movement of the organs and the patient to prevent damaging healthy
tissue [Weruaga et al., 2003]. Another method of dealing with cancer is surgical re-
section, which may or may not be effective depending on the cancer stage. Location
of metastases and lymph nodes is an essential information for the accurate determina-
tion of the cancer stage, and might be used in surgery planning systems. Again the
physiological movement of organs and patient involve complications in this planning ap-
proach [Tai et al., 1997]. Surgery planning systems often lead to decisions on the feasi-
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bility and risk of lung volume reduction surgery [Slone et al., 1997, Maki et al., 1999b]
or liver surgery planning [Bornik et al., 2003]. Diagnosis and prognosis of cancer gen-
erally also depend upon growth assessment, repeated CT studies are used to assess the
growth of pulmonary nodules. This leads to the issue of nonlinear nodule registra-
tion [Betke et al., 2003] to diagnose pulmonary metastases in oncology patients.

1.3 Imaging Modalities

While there is a large variety of imaging modalities in clinical practice, we are focusing
on CT images. However, many of the developed algorithms are applicable to other imag-
ing modalities as well with a slight adaptation effort. More specifically the CT modality
delivering the image data is a Multi-slice Spiral CT (MSCT) scanner [Beutel et al., 2000].
MSCT is the current state-of-the-art in CT imaging, an imaging discipline that has its roots
in the work of Allan M. Cormack and Godfrey N. Hounsfield, who were awarded with
the Nobel Prize in Physiology and Medicine in 1979. MSCT scanners like the Siemens
SOMATOM SensationTMare equipped with 64 x-ray detector rows, making it possible to
scan the whole thorax in 20 to 30 seconds with an isotropic resolution of around 0.5 mm.

We are working with three kinds of medical image data. First, there are human brain
images from 64-slice MSCT. The acquisition protocol of the brain images is a CTA protocol
(in order to perform bone subtraction CTA) that involves a native image and an image with
non-ionic iodinated contrast medium injected. Second, there are human thorax images at
different breathing states between inhalation (Total Lung Capacity (TLC)) and exhalation
(Functional Residual Capacity (FRC)), either with or without contrast medium injected.
Both kinds of images were provided by Siemens MED CT, Forchheim, Germany. The
last group of image data comes from MSCT sheep scans. The sheep CT data was provided
by Prof. Eric Hoffman, University of Iowa, IA. The data was acquired with 64-slice
scanners at five different breathing states between inhalation (TLC) and exhalation (FRC)
by a protocol where breath is held at fixed inspiration levels during the 30 sec scan time
leading to a static breathing scheme, which has to be considered for the interpretation of
derived motion models from matched and registered shapes.

1.4 A Formal Definition of Image Registration

For later reference we now give a formal definition of the general image registration prob-
lem. We use a framework that was inspired by [Modersitzki, 2004]. Given two images,
we refer to the target (reference) image as fixed image IF (x), representing the coordinate
frame of reference, and to the source image (template) as moving image IM (x). IF (x) and



10 Chapter 1. Introduction

IM (x) map spatial coordinates x, belonging to a certain set Ω, to intensity values. The
dimension of the spatial domain is given by d ∈ N, where d = 3 in this work.

IF (x) : ΩF → R, ΩF ⊂ Rd

IM (x) : ΩM → R, ΩM ⊂ Rd

We define Img(d) as the space of d-dimensional images, with IF (x), IM (x) ∈ Img(d).
In image registration one is trying to determine a spatial transformation ϕ(xF ) : ΩF →
ΩM , which defines the mapping between fixed and moving image coordinate frame (see
Figure 1.5), such that the dissimilarity between fixed image IF (x) and deformed moving
image IM (ϕ (x)) is minimized. To measure dissimilarity the notion of distance measures
has to be introduced. A distance measure D takes two images as input and computes a
dissimilarity score. The registration problem therefore translates to the following mini-
mization problem:

Problem 1.1. Given a distance measure D : Img(d)2 → R and two images IF (x), IM (x) ∈
Img(d), find a mapping ϕ : Rd → Rd such that D(IF (x), IM (x)) = min.

Very often this minimization problem has no direct solution, such that an optimization
algorithm has to be applied as the numerical backbone of the registration procedure. Note
that the transformation ϕ is defined in the fixed image coordinate frame, i.e. it maps points
xF to locations in the moving image coordinate system xM . From an implementation
point of view the resampling of a warped moving image is often performed in the inverse
direction, a so-called backward mapping to avoid holes and ambiguities in the warped
image (see the excellent explanation of this concept in the ITK software guide [ITK, 2006]).

Figure 1.5: Image registration is the task of finding a spatial transform mapping the
moving image into the fixed one. Taken from the ITK software guide [ITK, 2006].

We basically distinguish between affine and nonlinear transformations. In the following
we will formally define the affine transformation and show simple extensions to a nonlinear
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transformation. In later sections of this thesis we will show further definitions of nonlinear
transformations, which are more suitable in different areas of application. Affine transfor-
mations allow for rotation, translation, scaling and shearing. A 3D affine transformation
ϕ(xF ) can be represented in homogeneous coordinates as:

xM =


xM

yM

zM

1

 = ϕ(xF ) = A · xF =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1




xF

yF

zF

1


Here the elements a14, a24, a34 model the translation, while the remaining 3x3 matrix

models rotation, scaling and shearing.
The obvious extension to the nonlinear case would be to model the nonlinear transfor-

mation with second- or higher-order terms, however these models are rarely used in medical
imaging, since their ability to recover shape changes is very global, while in practice defor-
mations occur rather localized, and higher order polynomials tend to oscillate. From now
on we will also refer to a nonlinear transformation ϕ as a deformation or displacement
field. Instead of using a polynomial as a linear combination of higher-order terms, one can
use a linear combination of n basis functions θi (e.g. trigonometric functions, wavelets or
spline functions) to represent the nonlinear transformation:

xM

yM

zM

1

 =


a11 · · · a1n

a21 · · · a2n

a31 · · · a3n

0 · · · 1




θ1(xF , yF , zF )
...

θn(xF , yF , zF )
1


So far the transformations have been defined in a parametric framework, note that

regularization is implicitly incorporated by the choice of the basis functions in the exam-
ple stated above [Rueckert et al., 1999]. However, in nonlinear registration one is often
interested in non-parametric techniques. The basic idea is to come up with an appro-
priate measure both for the similarity of images as well as for the likelihood of a non-
parametric transformation. This leads to a variational formulation [Lanczos, 1986] of the
image registration problem consisting of a similarity measure term and a transformation
regularization term. The minimizer of the functional boils down to a partial differential
equation that stems from the Euler-Lagrange equations. Note that the displacement field
ϕ now is treated independently for the whole image domain (no parameterization). In the
variational setting [Modersitzki, 2004] the general nonlinear registration problem reads:

Problem 1.2. Given two images IF , IM ∈ Img(d), a positive regularizing parameter α ∈
R+, a distance measure D and a regularization method S, find a deformation ϕ : Rd → Rd
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such that J [ϕ] := D[IF , IM ;ϕ] + αS[ϕ] = min.

Note here that the terms are functionals instead of functions, i.e. J [ϕ] is an expression
that depends itself on an unknown function ϕ. In later chapters we will present distance
measures, regularization methods and numerical solution strategies for this general frame-
work.

1.5 Aims of the Thesis

In this thesis we concentrate on nonlinear (deformable) intra-modality intra-patient regis-
tration of large volumetric data sets for CTA applications. If one considers the constantly
growing size of volumetric data sets like e.g. modern CT scanners are producing, there
clearly exists the need to come up with more efficient algorithms in practice, that still per-
form accurate nonlinear registration. State-of-the-art algorithms for nonlinear registration
often show runtime and memory efforts that scale with the size of the input data sets,
which is an unwanted behavior given constantly growing data set sizes. As a consequence
the challenging memory and runtime requirements have to be considered very early in the
design stage of registration algorithms.

More specifically we aim for the development of fast and accurate registration algo-
rithms that range from applications in the brain to soft-tissue thorax applications. Our
investigated transformation models range from rigid over partially rigid to fully nonlinear
models. The most important application of our work is in the area of fast and accurate
thoracic CT data registration, where one typically is confronted with large data-sets on the
order of 5123 voxels and there is the need for accurate registration of vessel structures in
the lung (vascular and airway tree) in the presence of large breathing deformations. Fur-
ther complications are due to contrast agent application, partial volume effect and disease
structures in the images. Standard algorithms from the literature either take on the order
of hours to perform accurate nonlinear registration or they fail in vessel registration if
terminated too soon. In this case our goal is to investigate automated methods that scale
with the number of features extracted from a data set. Another important issue we focus
on is the need to create standardized evaluation frameworks and to compare registration
algorithms given a specific task. This is an issue that is not yet dealt with in literature
sufficiently.

There are three different application areas we are especially focusing on. First, the
registration of head and neck CTA images that introduce several independent but rigid
movements which have to be compensated for in order to allow MIP visualization of vascu-
lar structures. Second, the nonlinear registration of large thoracic CT data sets at several
different breathing states in order to extract breathing motion of diaphragm, lung sur-
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face or airway tree. Third, the fast and memory-efficient nonlinear registration of large
thoracic CT data sets in CTA applications for perfusion studies, where a large amount of
breathing motion difference may exist in the two (native and contrast-enhanced) data sets.
A compact summary of our aims looks as follows

From an application point of view our project aims are

Partially Rigid Bone Registration Develop a registration method for modeling the
motion of bones in head and neck CTA studies. The task is to find a partially
rigid registration that matches bones of one image with its counterpart in the other
image even in the presence of individual bone movements. This application can be
used to visualize vessel structures without disturbing bone structures in MIP or in
orthopaedic surgery to register pre-operative CT to intra-operative C-Arm images.

Assessment of Breathing Motion Develop a nonlinear registration method for mod-
eling the breathing motion of the lung from several different static breathing states.
The input for this task consists of native CT thorax scans at two or more different
breathing states between TLC and FRC. In this task segmentation methods will be
used to locate thoracic structures. Registration methods will be developed to find
the nonlinear deformation fields that occur due to breathing. This task is intended
to provide insights on and create models of breathing motion.

Nonlinear Registration of Thorax CTA Images Develop a nonlinear registration
method to be able to fuse lung images from different image acquisition protocols
which were taken at distinct breathing states. The input for this application
consists of native anatomical lung CT scans and lung CTA scans which have
to be combined in an accurate way. Therefore, it is necessary to revert the
influence that breathing has on the deformable lung tissue by using nonlinear
registration techniques. This application is intended as an extension of previous
anatomical and dynamic CT fusion work for diagnosing brain images for
acute ischemic stroke patients [Ditt et al., 2003] or for diagnosing pulmonary
embolism [Wildberger et al., 2005].

Nonlinear Registration Evaluation Framework The evaluation of the accuracy and
the consistency of nonlinear registration algorithms is a hard problem. Typically
this requires synthetically transformed data sets that are put into the registration
algorithm to compare registration results with the synthetic ground truth. This
can be performed by comparing warped images, therefore a standardized evaluation
framework should be created to support this task. For evaluation the notion of ill-
posedness has also to be kept in mind, nonlinear registration techniques often include
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implicit regularization assumptions, this makes it necessary to compare resulting
transformations as well.

1.6 Structure & Contributions of the Thesis

The remaining chapters of this thesis are structured as follows. Chapter 2 investigates the
current state-of-the-art in rigid and especially nonlinear image registration, and gives a
general overview on widely used methods as well as a detailed description of related work
on the specific problem domains we are focusing on. Chapter 3 describes an algorithm
for partially rigid bone registration which is used to remove bone structures from brain
CTA images. Further, an evaluation of the algorithm on several data-sets is presented.
In Chapter 4 a surface-based registration algorithm using the shape context approach
is presented and evaluated on thoracic CT data sets. Chapter 5 generalizes the surface-
based registration approach to become independent of a required pre-segmentation step
by directly extracting, matching and registering features from the images. The topic of
Chapter 6 is a hybrid registration method that combines the advantages of the feature-
based registration method with an intensity-based algorithm formulated in a variational
framework. Here the best of both worlds (feature- and intensity-based registration) are
effectively combined to form a flexible solution of our registration problem. Chapter 7
takes some of the proposed algorithms and compares them with each other and with several
widely-used algorithms from the literature in an evaluation framework using several types
of synthetic and real clinical data sets. Finally Chapter 8 discusses the results of the
evaluations, summarizes the contributions of this thesis and concludes with an outlook on
future work. A list of publication that arose from the work on this thesis can be found in
Appendix D.
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To perform a full review of the state-of-the-art on image registration would be an
enormous task, even the restriction to medical image registration leaves an extremely
large number of publications from the last two decades. An important survey paper for
image registration techniques in computer vision, image processing, medical imaging and
remote sensing is [Brown, 1992]. A more recent survey on image registration methods in
computer vision can be found in [Zitova and Flusser, 2003], where approaches relating fea-
tures extracted from the images are dealt with more extensively than area- (i.e. intensity-)
based methods.

Concerning medical imaging there are a few standard books that provide overviews
on image registration for medical applications. The book [Hajnal et al., 2001]
is a standard compendium focusing specifically on medical image registration,
while [Sonka and Fitzpatrick, 2000] and [Bankman, 2000] focus more generally on
medical image analysis techniques, however they also include several chapters on medical
image registration. An important, frequently cited survey on medical image registration
has been published in [Maintz and Viergever, 1998]. There one can also find references
to older surveys on medical image registration. In this work a large number of relevant
papers are reviewed and a classification of registration methods according to nine distinct
criteria (dimensionality, nature of registration basis, nature of transformation, domain of
transformation, interaction, optimization procedure, modalities, subject and object) is
given, a scheme which was adapted in other review papers later-on.

There are other survey papers which focus more specifically on sub-disciplines in med-

15
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ical image registration. [Audette et al., 2000] give an algorithmic survey on automatic
3D surface registration techniques, i.e. methods to relate segmented 3D structures from
different data sets. Surface registration is broken into three building blocks (choice of
transformation, surface representation & similarity criterion, matching & optimization).
Their most important distinction is according to the type of surface representation (sets of
sparse, discriminative features, dense point clouds, physically deformable 3D models and
global shape models). A survey on Mutual Information (MI) based registration methods
can be found in [Pluim et al., 2003]. MI is an important similarity measure derived from
information theory that recently gained lots of attention in the medical imaging commu-
nity. MI methods are classified according to methodological aspects, implementation issues
and applications. [Lester and Arridge, 1999] focus on the importance of hierarchical meth-
ods in nonlinear medical image registration. Coarse-to-fine strategies improve execution
speed and robustness against local minima significantly. The classification of hierarchical
methods shows three groups, hierarchical data representation (e.g. Gaussian pyramid),
hierarchical deformation model representation (e.g. grid size of B-spline transformation)
and hierarchical model complexity (e.g. rigid - affine - nonlinear strategy). A very recent,
extensive overview paper of the state-of-the-art in nonlinear medical image registration
can be found in [Crum et al., 2004]. A critical comment on validation strategies in non-
linear medical registration is given in [Crum et al., 2003] with the main conclusion that
current clinical validation studies in the literature are not thorough enough. For more re-
view articles dealing with the application of medical image registration methods in several
areas one may follow the references in [Crum et al., 2004].

After reading these seminal survey papers we decided to classify methods according to
their type of transformation into affine and nonlinear techniques. On the next finer classi-
fication level we distinguish between feature- and intensity-based methods, the difference
being that intensity- (or voxel-) based methods always work on whole image volumes while
in feature-based methods a pre-processing step either extracts point(s) of interest (POI)
(fiducial markers, anatomical landmarks) or segments structures which are to be matched
prior to registration.

2.1 Rigid and Affine Registration

Based upon the formal definition of image registration in Section 1.4 we now introduce
the main concepts of 3D rigid and affine registration. See the book [Hajnal et al., 2001]
for additional details about this topic. We split this overview into two parts, feature-
based registration methods involving extracted points and surfaces and intensity-based
registration methods involving whole volumes. Two additional sections deal with multi-
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resolution hierarchies in image registration and a literature overview on bone removal
techniques in CTA applications.

2.1.1 Feature-Based Methods

Feature-based registration is usually dealing with structures of interest that have to be
extracted from a volume. This might be fiducial markers, i.e. artificial objects attached to
the patient which are well visible in a scan, anatomical point landmarks, i.e. manually or
automatically derived points of interest representing prominent locations in the body, or
segmented surfaces, i.e. an exact delineation of a structure of interest. Since rigid/affine
feature-based registration is not of large interest for our later investigations, we will only
present the basic ideas by describing a standard method in both categories, respectively.

2.1.1.1 Point-Based Methods - The Procrustes Alignment Problem

The simplest case of medical image registration uses fiducial markers which can easily
be detected in 3D volumes from scanning modalities. A set of several corresponding 3D
point pairs thus can be identified and used for a least-squares solution to estimate the
unknown rigid or affine transformation parameters. So given a set of points {xF } from
the fixed image IF (x) and a set of points {xM} from the moving image IM (x), one wants
to estimate the unknown transformation ϕ(xF ) which is restricted to the space of rigid
or affine transformations only. For the purpose of rigid registration this is called the
Procrustes Alignment Problem and it leads to a least-squares solution giving an optimally
fitting transformation that minimizes the cost function G(ϕ) = |ϕ(PF )−PM |2 where
PF is a matrix containing row-wise the coordinates of the point set {xF } and PM the
coordinates of {xM}. Procrustes alignment makes use of the special structure of a rigid
transformation, as being composed of a rotational and a translational part. The translation
is determined by computing the means of the point sets and the rotation is derived by a
Singular Value Decomposition (SVD) in an instance of the orthogonal Procrustes problem.
If ϕ is an affine transformation this kind of approach leads to a standard least square
estimation. In principle the same approach can be used for anatomical landmarks instead
of fiducial markers.

2.1.1.2 Surface-Based Methods - Iterative Closest Point

If the scanning modality allows for segmentation of the structures of interest a surface
matching algorithm can be used for registration. Probably the most widely used sur-
face matching algorithm for rigid/affine registration is the Iterative Closest Point algo-
rithm [Besl and McKay, 1992]. This iterative algorithm has two stages. Given two sets
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of points {xF } and {xM} representing surfaces SF and SM respectively, the first stage of
the algorithm involves identifying for each point xM,i in {xM} the closest point on surface
SF . This is the point xF for which the distance d between xM,i and xF is minimal.

d(xM,i,SF ) = min
xF∈SF

‖xF − xM,i‖

As a result one gets a set of closest points xF,i. The second part of the algorithm
estimates the transformation parameters ϕ by relating these two sets xM,i, xF,i in a least
squares manner. A standard way for this estimation is a Procrustes Alignment (see Sec-
tion 2.1.1.1). After a transformation ϕ has been found, it is applied to {xM} and the
algorithm continues with the next iteration. A distance tolerance threshold is used such
that the algorithm converges to a local minimum. A drawback of the method is its ten-
dency to reach local minima. Initialization of the transformation therefore becomes an
important issue. In practice the algorithm may be started multiple times with distinct
initializations and the minimum of the distance threshold minima resembles the optimal
solution.

2.1.2 Intensity-Based Methods

In contrast to feature-based registration, intensity-based methods do not extract corre-
sponding points or structures of interest from volumes in a pre-processing stage. Instead
they always work on the intensities of the whole volumes that are to be registered, there-
fore they are also referred to as voxel similarity-based registration techniques. By using all
(or a large proportion of) the available voxel data, these methods have the advantage of
averaging errors caused by noise fluctuations in the image data. Historically these methods
have evolved from intra-modality applications to more demanding inter-modality appli-
cations, where in the first case a brightness constancy assumption between the volumes
holds. Therefore, we will also present the different methods according to this development.
Basically intensity-based methods have a structure which is composed of four main compo-
nents, a similarity metric, an optimization method, a transformation and an interpolation
method. Figure 2.1 shows the work-flow of these components.

The transformation is determined by the number of degrees of freedom that are to
be estimated during registration. In rigid 3D registration, the transformation is modeled
with 6 degrees of freedom, three to determine the unknown translation and three for
rotation. An affine transformation is modeled with up to 12 degrees of freedom, adding
scaling and shearing to the rigid case. The interpolation method is a crucial building
block in terms of computational efficiency, since image interpolation due to changing
transformation estimates is a very frequent task during the registration process. Nearest-
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Figure 2.1: The basic image registration framework composed of the four components
similarity metric, optimization method, transformation and interpolation method. Taken
from the ITK public-domain courseware [ITK, 2006].

neighbor interpolation is simple and efficient but seldom used, while tri-linear optimization
gives the best trade-off between accuracy and runtime. More elaborate interpolation
methods (e.g. B-spline, windowed sinc) can be used but in practice are very inefficient
in terms of runtime and memory consumption. Interpolation (i.e. resampling) and the
direction of the estimated transformation are tightly connected. Figure 2.2 shows this
connection more explicitly, there it can be seen that the ”space transform” ϕ has to be
performed in the physical fixed image coordinate system, as opposed to the discrete fixed
image grid, and it leads to a point in the moving image coordinate system, where the
interpolation has to be applied.

The choice of optimization method has to be carefully considered, very often stan-
dard gradient descent techniques are applied, however, these techniques are very slow in
practice, more elaborate Quasi-Newton [Nocedal and Wright, 1999] approaches are much
more appropriate. Finally the choice of similarity metric is very application-dependent,
this choice will be the way how we distinguish methods in the following subsections.

2.1.2.1 Intensity Differences

A very simple similarity measure is the intensity-based Sum of Squared Differences (SSD)
between images. During registration this measure is minimized. For voxels xF and xM =
ϕ(xF ) the SSD measure is:

SSD =
1
N

∑
xF

|IF (xF )− IM (ϕ(xF ))|2

The SSD needs to be normalized by the number of voxels N that lie in an overlap domain
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Figure 2.2: Different coordinate systems involved in the image registration process. The
transformation being optimized is the one mapping from the physical space of the fixed
image into the physical space of the moving image. Taken from the ITK public-domain
courseware [ITK, 2006].

of IF and IM according to the transformation ϕ. It can be shown that this is the optimum
measure when two images differ by Gaussian noise [Viola and Wells III, 1997]. However,
in practice images do not simply differ solely by Gaussian noise, in case of injected contrast
agents or due to metal artifacts there are many ”outlier” intensity differences which the
SSD is very sensitive to. Another measure which should be favored in theses cases is the
Sum of Absolute Differences (SAD):

SAD =
1
N

∑
xF

|IF (xF )− IM (ϕ(xF ))|

An example application that uses the SSD measure for clinical registration can be found
in [Hajnal et al., 1995].

2.1.2.2 Normalized Cross Correlation

The SSD measure implicitly assume the images to differ by Gaussian noise, however, one
can also think of less strict assumptions for intra-modality registration. If one only assumes
a linear relationship between the image intensities in two images, the theoretically optimal
similarity measure is the Normalized Cross Correlation (NCC):
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NCC =
∑

(IF (xF )− IF ) · (IM (ϕ(xF ))− IM ){∑
(IF (xF )− IF )2 ·

∑
(IM (ϕ(xF ))− IM )2

}
Here IF is the mean voxel value in image IF within the overlap region, and IM is

the mean of IM (ϕ(xF )) within the overlap region. Example applications using NCC for
registration are mentioned in [Hajnal et al., 2001], however, this measure has problems if
there is partial occlusion of the structures of interest in both images.

2.1.2.3 Information Theory

With the emerge of functional imaging devices and the growing number of different scan-
ning modalities used for clinical diagnosis, the need for inter-modality registration algo-
rithms has been constantly growing over the recent years. The problem in inter-modality
registration is, that the sensitivity to the same tissue might differ significantly between
modalities, i.e. CT images show bones with very large intensity values while MRI images
are not sensitive to bones at all. For this purpose [Woods et al., 1992] derived a similarity
measure called Ratio Image Uniformity working with a derived ratio image calculated
from IF and IM . Later, they refined this technique in the form of a voxel similarity mea-
sure that was used for MRI-PET registration [Woods et al., 1993]. This measure was called
Partitioned Intensity Uniformity and it involved the distributions of the intensity values
of the two modalities, assuming that ”all pixels with a particular MR pixel value represent
the same tissue type so that values of corresponding PET pixels should also be similar to
each other”. This measure was never widely used except for MRI-PET registration, however,
it inspired follow-up research in the area of information-theoretic measures.

Information-theoretic similarity measures were independently proposed in the semi-
nal papers of [Wells III et al., 1996] and [Maes et al., 1997]. An excellent review of these
methods can be found in [Pluim et al., 2003]. The information-theoretic registration ap-
proach tries to maximize the amount of shared information in the two images. It can
be thought of as reducing the amount of information in the combined image, leading to
the use of information as a measure. A very commonly used measure of information in
signal processing is the Shannon-Wiener [Shannon, 1948] entropy measure H which is the
average information supplied by a set of N symbols whose probabilities are pi. In other
words, if an image IF is regarded as consisting of a string of symbols, with each symbol
having a certain probability of appearance. The expected amount of information H(IF )
one can obtain from image IF by probing the gray value of one (random) pixel is measured
in bits and given by
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H(I) = −
N∑

i=1

pild(pi).

In image registration two images IF and IM have to be aligned. There are two symbols
at each corresponding voxel location linked by a transformation estimate ϕ. In this case
joint entropy measures the amount of combined information. If the two images are totally
unrelated, joint entropy is equal to the sum of the individual entropies of the images. The
more similar the images are, the lower the joint entropy H(IF , IM ) compared to H(IF )
and H(IM ):

H(IF , IM ) ≤ H(IF ) + H(IM )

The joint entropy H(IF , IM ) is defined as

H(IF , IM ) = −
N∑

i=1

N∑
j=1

pϕ
FM (i, j)ld(pϕ

FM (i, j))

and resembles the amount of information obtained from both images when probing
pairs of gray values from the two images. pϕ

FM (i, j) resembles the joint Probability Dis-
tribution Function (PDF) of the two images in their overlap domain. Joint entropy is
not directly taken as a measure for image similarity in registration, since the estimated
probabilities depend on the overlap of volumes which changes during registration. In the
worst case it might happen that in medical images regions containing air are brought into
correspondence without an overlap of image structures, since overlapping air minimizes
the joint entropy. As a consequence, joint probability has to be measured in relation to
the individual entropies. The mutual information (MI) measure

MI(IF , IM ) = H(IF ) + H(IM )−H(IF , IM ) =
N∑

i=1

N∑
j=1

pϕ
FM (i, j)ld

(
pϕ

FM (i, j)
pF (i) · pϕ

M (j)

)

overcomes this problem. pF (i) here resembles the marginal PDF of the fixed image IF and
pϕ

M (j) the marginal PDF of the moving image IM . MI can qualitatively be thought of as
measuring how well one image explains the other, it is maximized at optimal alignment.

The standard MI measure does not fully solve all overlap problems during registration.
[Studholme et al., 1999] proposed the Normalized Mutual Information (NMI) measure to
get rid of overlap problems. NMI is defined as

NMI(IF , IM ) =
H(IF ) + H(IM )

H(IF , IM )
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It is currently regarded as the state-of-the-art MI similarity measure for inter-modality
registration.

2.1.3 Multi-Resolution Strategies for Practical Registration

Intensity based image registration often consists of a large number of parameters to opti-
mize. Especially in nonlinear registration [Lester and Arridge, 1999] we will see that large
parameter spaces lead to local extrema solutions which are undesired. As a consequence
hierarchical multi-resolution approaches are always used in practical image registration
algorithms, even in the comparably low-dimensional rigid/affine case [Pluim et al., 2003].
Input images are smoothed and down-sampled to coarser resolutions leading to Gaussian
pyramids [Sonka et al., 1999]. Figure 2.3 shows the principle of a Gaussian pyramid as an
input to a multi-resolution approach.

Moving ImageFixed Image

Level 0

Level 1

Level 2

Level 3

Figure 2.3: The principle of a hierarchical multi-resolution approach. It consists of Gaus-
sian pyramids that resemble several resolution levels of the input images from coarse to
fine. Registration starts with the lowest resolution and provides initial solutions for finer
levels.

For each resolution level of the Gaussian pyramid, the registration process is repeated
starting with the coarsest level. The estimated transformation parameters in a coarser
level provide the input for the next finer level, while the coarsest level itself is initialized
with a zero or identity transformation. Besides avoiding local extrema, an additional
benefit of hierarchical approaches is the speed-up of the registration process since coarse
levels provide low-frequency components of the desired transformation very efficiently due
to the lower number of voxels to look at.

2.1.4 Bone Removal in Head CTA Applications

In this section we will summarize existing research work for highly accurate bone removal
in head and neck CTA applications, which is a specialized area of medical imaging. CTA ap-
plications consist of native and contrast-enhanced CT images. In contrast-enhanced images
vascular structures and bones have very similar intensities, such that simple segmentation
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algorithms like thresholding do not work which are frequently used for CTA images. The
intended strategy for the removal of bone structures is to take a simple (threshold-based)
bone segmentation taken from the native image and register it to the contrast-enhanced
image. Registration is necessary instead of simple subtraction, since small patient move-
ments may occur between the acquisition of both kinds of images. Especially in the neck
area, these patient movements are too large for naive subtraction. Registration has to
be very accurate in this area, since there are vessel structures that lie inside the bone
structures as well. An accuracy that lies in the range of a half voxel is desired for this
purpose. To perform accurate registration rigid intra-modal registration has to be used.
It can be assumed that the bones themselves are rigid but the relative position of bones
to each other may change due to small patient movements. Therefore each pair of bones
are registered rigidly but the relative movements are taken into account, therefore leading
to a partially rigid registration scheme.

A seminal overview on image registration techniques in Digital Subtraction Angiog-
raphy (DSA) can be found in [Meijering et al., 1999]. In the literature there are mainly
three directions to solve the problems in CTA studies where the accurate removal of bone
structures is necessary to get rid of obstructed vessels. The first kind of approaches are
rigid registration methods which are especially optimized for the bone removal application
and may or may not incorporate nonlinear refinements. The second type of approaches
are nonlinear registration techniques with or without rigidity constraints. The two kinds
of approaches will be presented in the next sections in more detail. Finally, there are
approaches which use segmentation algorithms in the contrast-enhanced and the native
images to either detect bone structures and remove them or detect vascular structures
and highlight them. In [Felkel et al., 2001] an extensive overview on vessel tracking al-
gorithms is given which might be used for the segmentation of vessel structures in CTA

images. [Alyassin and Avinash, 2001] propose a semi-automatic bone segmentation in-
volving thresholding, region growing and morphological operations. [Kang and Shin, 2003]
also show a bone segmentation involving region growing based on local adaptive thresh-
olds and morphological operations followed by a boundary refinement. [Snel et al., 2002]
and [Sebastian et al., 2003] show segmentation algorithms based on deformable models
for wrist bones which might be adaptable for the problem at hand. However, all of these
approaches are prone to typical difficulties inherent to segmentation algorithms like leak-
ing, unstable threshold selection procedures and the need for parameter tuning. This is
especially true if structures of interest have similar intensities and tend to intersect. Semi-
automatic methods somehow overcome these problems but they add a lot of expert effort
to each investigation. For these reasons we decided not to follow this direction any further.
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2.1.4.1 Rigid registration approaches with or without nonlinear refinement

An influential paper in this area has been published by [Venema et al., 2001]. In this paper
CTA was proposed for brain images by matching native and contrast-enhanced data sets
and removing the bone structures by a rigid registration procedure. The Matched Mask
Bone Elimination (MMBE) is a technique that finds for a native data set the corresponding
bone structure voxels in a contrast-enhanced data set. The two 3D data sets therefore
are matched by automatically registering the images with a rigid registration algorithm
involving a gray value correlation measure and a downhill simplex optimizer. With this
method, the mean of the squared differences between voxel values of native and contrast-
enhanced image is minimized. Only pixels with a CT value between 600 and 800 Hounsfield
Unit (HU) are used for registration. The matched images are combined to form a mask
image. Finally the masked pixels in the contrast-enhanced image are set to a different
gray-value, such that a MIP only shows the vessel structures.

[Jayakrishnan et al., 2003] propose a similar procedure like that
from [Venema et al., 2001]. Yet, their setup is simpler than the Venema
setup. Brain CTA is performed by simply subtracting native and contrast-enhanced
studies and there is no software registration of the studies, since the head of the patient
is held fixed physically. The authors argue that due to this fixation a registration
post-processing is not necessary. Another difference is that here the images are
subtracted, leading to a slight increase in noise levels in contrast to masking identified
bone structures in the contrast enhanced image which leaves the noise level intact.

The paper of [Yeung et al., 1994] presented one of the first approaches for CT Angiog-
raphy using 3D registration. Their proposed 3D registration algorithm consists of several
steps. After isotropic resampling of the 2D slices, the resulting 3D volume is put into a
feature identification and selection procedure (Moravec corner detector). This step pro-
duces a number of feature points in the images. Now, in a 3D image flow computation
step, for each feature point a local correlation window is set up to find correspondences
in the second image. The search window is searched for the voxel that minimizes the sum
of squared differences. This feature point is regarded as matching point and the distance
to this point is the flow vector. Then the algorithm tries to estimate the global motion
parameters from the derived flow vectors. An iterative algorithm calculates a least squares
solution for rotation and translation taking outliers into account by randomization. Fi-
nal steps are applying the transformation and resampling the image to match the second
one. No more discussion is given concerning local nonlinear movements that might occur
between scans.

In [Luboldt et al., 1997] an ”elastic” subtraction algorithm for the display of vessel
structures in CTA is described. The paper does not go into detail concerning this algorithm,
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only a very general description is given. The authors state that their algorithm bases on a
matching step that analyzes native and contrast-enhanced CT scan for common structures.
Matching volumes and areas are given higher weights in the algorithm than matching edges
and points. After identification of possible matching structures a rigid registration step
is performed followed by a nonlinear ”elastic” registration step of sub-structures. The
nonlinear step is performed iteratively, however no further information on this step is
given. Due to the short computation times of 5 minutes (1997) stated in the paper it
may be supposed that this elastic registration step is quite simple. However the need for
manual post-processing is also mentioned, which takes approximately 25 minutes per data
set, yet no further information is given on the kind of post-processing that is performed.

[Kwon et al., 2004] propose a 3D registration scheme based on normalized mutual in-
formation to remove bone structures from CTA images. The 3D registration step is followed
by a subtraction step and a final refinement step. The registration is performed by using
the normalized mutual information measure on both images. A speedup is proposed by
(obviously) using a multi-resolution technique. After rigid registration, there are still some
unwanted residuals of the bones which are removed in a post-processing refinement step.
Refinement is performed using several masks of bones and air. The paper is very interest-
ing, since it shows a registration based solution for the problem, yet the fact that single
bones behave rigidly while all bones together may behave different (and in a nonlinear
fashion) is not exploited.

[van Straten et al., 2004] extend the work of [Venema et al., 2001] by presenting a bone
removal method that uses an additional, non-enhanced scan to create a mask of the bone
by thresholding and dilation. After registration of the CTA scan and the additional scan,
the bone in the CTA scan is masked. As the cervical area contains bones that can move with
respect to each other, these bones are separated first using a watershed algorithm, and
then registered individually. A phantom study was performed to evaluate and quantify the
trade-off between the removal of the bone and the preservation of the arteries contiguous
to the bone. The influence of algorithm parameters and scan parameters was studied.
The method was clinically evaluated with data sets of 35 patients. Best results were
obtained with a threshold of 150 HU and a dilation of 8 in-plane voxels and two out-of-plane
voxels. The mean width of the soft tissue layer, which is also masked, was approximately
1 mm. The mAs value of the non-enhanced scan could be reduced from 250 mAs to
65 mAs without a loss of quality. In 32 cases the bones were registered correctly and
removed completely. In three cases the bone separation was not completely successful,
and consequently the bone was not completely removed. The piecewise matched mask
bone elimination method proved to be able to obtain MIP images of the cervical arteries
free from overprojecting bone in a fully automatic way and with only a slight increase of
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radiation dose.

[Maksimov et al., 2004] present a registration based bone removal technique applied to
CTA images of the lower extremities. Two problems are specifically addressed in this work,
separation of vessels near bones and removing calcifications from vessels. Their method
starts with native and contrast-enhanced images. A 200 HU threshold segments roughly
the objects of interest. A classification of objects due to their size gives bone structure
candidates. An assumption of slow intra-scan patient movement is made, therefore stacks
of 10 slices are built and compared to each other. A matching step matches classified
bone structures of stacks to each other for native and contrast-enhanced scan. The details
of the matching step are a surface extraction and a iterative closest point determination.
After matching all objects of the native image are transformed into the contrast-enhanced
image and establish a bone mask. The mask is locally refined by at most 3 pixels to
adapt to the underlying segmented structure. Reported results show that the algorithm
is still in a work in progress state, since there are still problems with vessel detection and
calcifications.

2.1.4.2 Nonlinear registration approaches with or without rigidity constraints

In the work of [Little et al., 1997] a registration algorithm is presented that combines rigid
and nonlinear registration. Structures that are known to be rigid are treated as rigid for
the registration while all other structures are treated as nonlinearly deformable. The
nonlinear registration is performed by using manually selected landmarks and radial basis
functions for interpolation (e.g. the thin-plate spline as a special instance of a radial basis
function). The nonlinear registration model is weighted by using a distance map that
specifies the distance to the rigid anatomical structures. For points of the rigid structures,
the influence of the nonlinear registration is zero, while the rigid registration model is fully
performed there. This scheme is called an inverse distance weighted interpolation and it
needs a predetermined rigid registration transform.

Separation of rigidly and nonlinearly transformable parts is performed by a segmen-
tation of the rigid structure of interest. The algorithm is applied to MR images where
the vertebra is segmented and rigidly registered while the surrounding tissues are treated
in an elastic scheme. Disadvantages of the method are the need for manual selection of
corresponding landmark points, the need for manual segmentation of the rigid structures
and the choice of the elastic model that interpolates the elastic registration between land-
marks. The approach is very interesting due to the weighting of the nonlinear registration
with a distance map defined by the rigid structures. However, no information is given on
the used rigid registration method or any registration accuracy, be it rigid or nonlinear.

[Pitiot et al., 2003] address the problem of accurately registering two images when the
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images consist of independent components subject to rigid or affine transforms embed-
ded in a deformable medium. The algorithm rigidly registers two images, computes a
dense similarity map and a displacement field by a block matching technique, applies a
hierarchical clustering to partition the correspondence field into a number of classes and
extracts independent pairs of subimages. Pairs of subimages are then rigidly registered.
Finally the non-linear interpolation scheme that is also used in Little et al. is applied for
deformable registration. The difference to Little et al. is, that no a priori information
like landmarks, segmentations or transformations are required, these are derived in the
clustering approach.

The work of [Rohlfing et al., 2003, Rohlfing and Maurer Jr, 2001] is an extension of
the nonlinear registration algorithm from [Rueckert et al., 1999]. Nonlinear deformations
are modeled by B-splines on a grid of equally distant points overlaid on the images to
register. Local deformations are calculated by using a NMI similarity metric and optimizing
a cost function over the B-pline parameters derived from the NMI measure. A special
regularization constraint is used to incorporate the notion of incompressibility into the
framework. This constraint is derived from the Jacobian of the displacement field, which
is a second derivative measure and should stay close to 1 for incompressible objects. This
method could be used on rigid structures that are slightly deformed between two scans
but are known not to change its volume. However, the accuracy of this method will be
smaller than a partially rigid approach since the model will presumably be too deformable
for our application.

[Martin-Fernandez et al., 2005] describes an elastic registration scheme that includes
rigid anatomical structures. Rigid structures like knee, hands or spine are defined us-
ing wire connecting landmarks. A distance transform that starts at the wires is used
to constrain the elastic registration. At the wire locations an exact rigid registration is
guaranteed, while the further away one gets from the wires the larger the influence of the
elastic scheme is. The application of the algorithm is registration of hand radiographs.
Manually selected landmarks of the bone joints are used to build a wire model as a com-
bination of single wires which are defined between joints. Rigid registration incorporating
scaling, translation and rotation is performed on the wires. A distance transform that
is iteratively derived from the wires is used to weight the influences of each wire for the
interpolation of the deformation field over the whole image domain.

In [Staring et al., 2005] the problem of rigid structures that get deformed in a non-
linear registration framework is tackled by filtering a calculated displacement field after
the nonlinear registration. A b-spline deformation algorithm is applied and the resulting
displacement field is smoothed with a smoothing filter that depends on a segmentation of
the rigid structures. This smoothing filter is derived in a similar fashion like anisotropic
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diffusion, the rigid parts are incorporated into the stiffness term of the anisotropic diffu-
sion partial differential equation. However, the nonlinear registration leads to a certain
registration error that is smoothed after registration, but might still be quite large.

2.2 Nonlinear Registration

In medical image registration there are many applications that require a nonlinear trans-
formation to be modeled in the registration process. Examples for such applications occur
in brain images due to brain-shift, or in soft tissue thoracic or abdominal images due to
heart-beat or breathing. Also growing structures like tumors which are tracked over long
time-periods involve nonlinear tissue deformations. In contrast to rigid registration tech-
niques, nonlinear methods are still a ”hot” research topic, there are no state-of-the-art
algorithms yet, only algorithms solving specific problems. A big difficulty in nonlinear
image registration is the question of evaluation, it is very hard to define a ground truth
for nonlinear registration algorithms.

Nonlinear registration techniques look back on a period of 25 years of research, one
of the first publications is due to [Broit, 1981] who ”invented” elasticity theory matching
based on physical considerations of tissue deformation for medical image registration. In
the seminal paper of [Bajcsy and Kovacic, 1989], this technique was later refined to form
a multi-resolution elastic matching approach, we will describe this technique later in more
detail.

In the following we again rely on the basic formal definition of image
registration from Section 1.4. More general considerations were derived from the
books [Hajnal et al., 2001], [Yoo, 2004] and [Modersitzki, 2004]. We divide the
topic of nonlinear registration into three sections. First we distinguish feature- and
intensity-based methods, which are the two families of classical registration approaches.
Often feature-based methods are more accurate than intensity-based methods as long
as the feature extraction or segmentation steps are reliable and accurate. Due to the
reduction of the problem space, feature-based methods are also significantly faster to
compute. On the other hand, segmentation of the organs of interest is not always an
easy task and inaccuracies in the segmentation or feature extraction process have severe
effects on a subsequent registration step, making the intensity based methods perform
better in many practical applications. Afterwards we give a more specific survey on
nonlinear registration algorithms that were designed for the registration of thoracic
images at different breathing states. These techniques are often combinations of feature-
and intensity-based approaches to combine advantages from both directions.
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2.2.1 Feature-Based Methods

Similar to rigid registration, feature-based methods in nonlinear registration are divided
into methods based on anatomical landmarks and methods based on extracted surfaces to
find correspondences in the data sets to be registered. The latter approaches need (often
quite sophisticated) surface segmentation approaches as a pre-processing step. These seg-
mentation steps may be fully automatic, however, in practice some sort of user interaction
often is required, leading to semi-automatic segmentation schemes. Segmentation and ex-
act delineation of surfaces is a large research topic by itself, therefore we refer the reader
to books like [Sonka and Fitzpatrick, 2000] or [Bankman, 2000].

The basic pipeline of feature-based methods consists of three steps, the extraction of
the structures of interest, landmark or surface matching leading to sparse correspondences
and correspondence interpolation/approximation leading to a dense displacement field.

2.2.1.1 Matching & Registration of Anatomical Landmarks

In the computer vision literature, registration by matching of feature points
is a very prominent method that is also used in related topics like opti-
cal flow or stereo problems [Brown, 1992]. Very often features like corner
points [Förstner, 1986, Harris and Stephens, 1988] or scale-space maxima [Lowe, 2004]
are used to automatically find correspondences. The extraction of feature points
in the medical imaging domain was studied in [Rohr, 2001] who compared several
anatomical landmark extraction methods in terms of localization error. However,
the direct matching of anatomical landmarks has, up to our knowledge, not been
reported in the medical imaging literature. Very often only few landmarks are
selected and manually matched, with matching results being the input to e.g.
Thin-Plate-Spline (TPS) transformation models [Bookstein, 1989]. [Chui et al., 2003]
have shown a unified nonlinear feature registration approach using a joint clustering
and matching framework, however, their approach is based on segmented surfaces
where point features are extracted and matched. There is a growing number of
publications that incorporate feature matches into intensity-based registration
approaches [Johnson and Christensen, 2002, Fischer and Modersitzki, 2003a], but again,
the matches are considered to be derived in a manual fashion.

A Global Solution to Sparse Correspondence Problems
A theoretically very profound method to solve the feature correspondence problem can

be found in [Maciel and Costeira, 2003]. They claim to perform correspondence estimation
and outlier rejection in a single formulation, achieving a globally optimal solution in an
integer optimization problem. The combinatorial space of possible solutions is relaxed to
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a smaller search domain where an efficient constrained optimization algorithm can find a
solution within feasible time.

2.2.1.2 Matching & Registration of Shapes and Surfaces

A basic review of surface registration techniques in medical imaging can be found
in [Audette et al., 2000]. According to this survey paper, ”surfaces provide more
redundancy than landmarks, and this redundancy may be particularly advantageous
for characterizing non-rigid motion”. However, we have to add that the cost of this
redundancy is the highly complex process of surface segmentation that is involved in this
approach.

Early research in surface registration is based on physically-based elastic
contour models (a.k.a. ”Snakes”) [Kass et al., 1988], which were adapted to 3D
problems and termed ”Active Balloon Models” [Cohen, 1991]. These methods use
a partial differential equation that models the equilibrium of external image-driven
deformation forces vs. internal elasticity forces of a deformable contour or a
deformable surface. These ideas were used by a large number of authors for
medical image registration [Terzopoulos et al., 1988, Terzopoulos and Metaxas, 1991,
McInerney and Terzopoulos, 1995, Thompson and Toga, 1996]. A problem of the
active balloon model is its inherent restriction to the same topology involved
in the formulation. A more recent research direction uses the ”Level-Set
Method” [Sethian, 1999, Osher and Fedkiw, 2003] for registration, an example in the
domain of medical imaging can be found in [Malladi et al., 1995]. In some sense also
the approach of [Bajcsy and Kovacic, 1989] should be mentioned here, since its original
formulation involved a 3D surface representation of a brain atlas that was matched to a
voxel data set, however, we will present these kinds of methods in the following section.

Currently there is a trend in medical surface registration research to use state-of-the-
art shape matching approaches from the standard computer vision literature. The reader
may refer to [Veltkamp and Hagedoorn, 1999] for a review of shape matching algorithms.
In the following we will present some representative shape matching algorithms, however,
due to the large number of existing methods this selection is far from being comprehensive.

Modal Matching for Correspondence and Recognition
[Sclaroff and Pentland, 1995] are dealing the correspondence problem by spectral analy-

sis of point-sets. They describe deformable objects with their eigenmodes, shape similarity
is defined as the amount of deformation necessary to align objects. Eigenmodes ordered
from global (low frequencies) to local (high frequencies). The eigenmode representation
is calculated from a finite-element model of the shape, it can be seen as an orthogonal
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object-centered coordinate system describing the object. The modal object description
is used for determining correspondences by comparing mode shape vectors with minimal
deformation energy. The limitation of spectral analysis approaches is the susceptibility to
partial or additional, noisy data like spurious nodes and edges.

Robust Point Matching
[Chui and Rangarajan, 2003] have formulated feature-based nonlinear registration as

point matching problem where the two unknowns point correspondence and transformation
are modeled in an iterative optimization framework and solved for simultaneously. Their
algorithm, which shows similarities with expectation-maximization schemes, consists of
the soft-assign method to relax the binary correspondence problem and a thin-plate spline
model of the transformation. The optimization occurs in a deterministic annealing frame-
work. Later the authors have also proposed a generalization of this algorithm using an
iterative joint point clustering and matching strategy. Results applied to nonlinear brain
registration can be found in [Chui et al., 2003].

Shape Matching Using Shape Contexts
The shape context approach [Belongie et al., 2002] is a widely-used method for matching

2D shapes (especially hand-written digits and letters) and 2D object recognition without
relying on extracted features combining global and local shape knowledge. Objects are
treated as (possibly infinite) point sets and it is assumed that the shape of an object is
described by a subset of points. The method derives a distribution of relative distances
and orientations and uses this distribution as a feature descriptor in a one-to-one matching
step.

Nonlinear Shape Matching Using Relaxation Labeling
[Zheng and Doermann, 2006] have recently proposed an algorithm related to the robust

point matching algorithm of [Chui and Rangarajan, 2003]. They note that although due
to nonlinear deformations the absolute distance of points will vary, the neighborhood struc-
tures will remain intact. This idea is used in a graph matching approach where graph edges
represent the neighborhood information. Since the graph matching problem is a discrete
NP-hard optimization problem, the matching is relaxed to be able to use a continuous
optimization method (relaxation labeling). The initialization of this method is performed
using shape context matching, the comparison to shape context and robust point matching
shows slight advantages of the method, which come at a larger computational cost.
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2.2.1.3 Estimation of Dense Displacement Fields from Sparse Correspon-
dences

Many landmark or surface matching approaches only give sparse correspondences. These
correspondences may by interpreted as an approximation of a displacement field ϕ′. The
task now is to interpolate/approximate a dense displacement field ϕ from ϕ′ to be able to
warp the moving image IM to IF , thus finishing the registration process.

Spline-based techniques are a widely used method to perform dense displacement field
estimation after corresponding structures in the images have been identified. The corre-
sponding structures are often given in the form of two sets of control points. At these
control points, spline-based transformations either interpolate or approximate the dis-
placements such that corresponding points are mapped into each other. Between control
points, a smoothly varying displacement field estimate will be generated. A famous family
of splines are radial basis functions, with the Thin-Plate-Splines (TPS) being a specific in-
stantiation of radial basis functions. The use of TPS in (medical) image registration dates
back to the popular paper of [Bookstein, 1989] who was the first to show the utilization
of the TPS transform in the computer vision literature.

The original TPS interpolation method has been developed in the context of aero-elastic
calculations by [Harder and Desmarais, 1972], being termed surface splines in their work.
The mathematical foundations in terms of generic nonlinear function interpolation have
later been laid by [Duchon, 1976] and [Wahba, 1990]. Later in the work of [Rohr, 2001]
the exact interpolation constraint has been replaced by an approximation scheme which
makes interpolation results more numerically stable. We describe the TPS interpolation
and approximation scheme in more detail in Appendix B.1 since this method is crucial for
several parts of this thesis.

[Davis et al., 1997] argued that in the context of medical applications the Elastic Body
Spline (EBS) is a more accurate model for displacement field calculation. It solely differs
from the TPS kernel by the kernel function U(r), which is derived from Navier’s partial
differential equations that model tissue deformation as the equilibrium of an elastic body
subjected to forces. A main drawback of this method is its huge increase in terms of com-
putation time. Recently another method was presented in [Kohlrausch et al., 2005]. They
call it the Gaussian Elastic Body Spline (GEBS), in contrast to the EBS where polynomial
rational forces are used to derive the deformation behavior, in this work Gaussian forces
model local and global deformations. This increases both, accuracy as well as computation
time.
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2.2.2 Intensity-Based Methods

Voxel- or intensity-based methods do not rely on extracted image information, but
take the whole volume data sets as input for registration. The nonlinearity may be
introduced by putting a nonlinear transformation into the registration framework
depicted in Figure 2.1. A widely-used instantiation of this technique is the B-spline
deformable registration algorithm developed by [Rueckert et al., 1999]. Again the
nonlinear transformation model aligns the fixed and moving images until a certain
similarity criterion like normalized cross correlation or normalized mutual information
reaches a minimum. The optimization algorithm in this case has to be chosen
much more carefully, due to the large number of unknowns that come up in this
scheme. However, most intensity-based nonlinear registration methods like the
Demons algorithm [Thirion, 1998], elastic matching [Bajcsy and Kovacic, 1989] or fluid
deformable matching [Christensen et al., 1996] work in a non-parametric framework
(compare [Modersitzki, 2004]). In the following we will present the B-spline deformable
registration algorithm as well as several non-parametric methods based on the framework
we defined in Section 1.4.

2.2.2.1 B-spline Deformable Registration

In [Rueckert et al., 1999] a new approach for nonlinear registration of contrast
enhanced breast MRI is presented. The registration method is based on a global and
a local motion model. The global model describes the overall rigid motion of the
breast, whereas the local model specifies local deformations, modeled by B-spline
free-form deformations. The authors show that their algorithm achieves superior
results on breast MRI compared to simple rigid or affine registration methods.
Their influential contribution is the setup of the B-spline framework for nonlinear
registration, which was also used and extended in many different application areas later-
on [Rohlfing et al., 2003, Mattes et al., 2003, Rueckert et al., 2003, Schnabel et al., 2003,
Xie and Farin, 2004, Papademetris et al., 2004, Rueckert et al., 2006]. An evaluation of
this method can be found in [Denton et al., 1999]. We present a more detailed derivation
in Appendix B.2.

2.2.2.2 Elastic Registration

[Broit, 1981] was one of the first who investigated elastic registration, a method based on
the linearized elastic potential which serves as a regularizer in the generic non-parametric
registration framework. [Bajcsy and Kovacic, 1989] adapted this technique and used it
for a multi-resolution elastic matching scheme, to match explicit 3D brain atlas models
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to locally variant data. The goal of their work was measurement of local shape varia-
tions and segmentation. The basic ideas of this matching approach are very similar to
the early work on active contour models (”Snakes”) as described in [Kass et al., 1988,
Terzopoulos et al., 1988]. Informally the multi-resolution matching scheme consists of a
global, rigid alignment of model and data, followed by local model deformations similar
to deforming a piece of rubber. Citing [Bajcsy and Kovacic, 1989], ”when external forces
are applied the object is deformed until an equilibrium state between external and in-
ternal forces resisting the deformation is achieved; the equilibrium state for an isotropic
homogeneous body is described by the partial differential equations of Navier and serve
as the constraint equations in the elastic matching”. Material parameters are incorpo-
rated into this matching approach via the Lamé constants λ and µ, since all material
bodies are to some form deformable (elastic, plastic, local, global, small, large). The
coarse-to-fine scheme guarantees global coherence and a gradual increase of local similar-
ity. Appendix B.3 gives the details of this algorithm, together with a possible numerical
scheme to implement it. Further sample applications of the elastic registration scheme
can be found in [Davatzikos, 1996] or [Thompson and Toga, 1996].

2.2.2.3 Fluid Registration

A restriction of the elastic registration model is, that it is limited to highly
localized deformations. In fluid registration this drawback is removed, the elastic
regularization model is replaced by a visco-elastic model. Fluid registration goes back
to [Christensen et al., 1996], a more recent treatment on fluid registration can be found
in [Wollny and Kruggel, 2002]. The main difference to the elastic regularization is, that
the spatial smoothing of the displacement field is replaced by a spatial smoothing of the
velocity (i.e. displacement update) field. As a consequence one can obtain arbitrary
displacements given enough time, however, this flexibility may also be a disadvantage.
The main application area of fluid registration is inter-patient atlas matching. Due
to population-dependent shape variations, especially in the brain, it is important to
provide more flexible matching methods. Follow-up publications include the consistent
image registration framework [Christensen and Johnson, 2001], and the investigation
of diffeomorphic mappings in the context of fluid registration [Joshi and Miller, 2000].
These works are some of the seminal papers that lead to the development of a sub-area of
research in medical image registration, i.e. Computational Anatomy [Miller et al., 2002].
We will not go into further detail here, since the fluid registration approach is not very
suitable for intra-modality registration applications.
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2.2.2.4 Optical Flow Matching - Demons Algorithm

One of the currently most popular intensity-based nonlinear registration algorithm is
the ”Demons” algorithm [Thirion, 1998]. In contrast to the complex, physically-based
elastic and fluid registration methods, the ”Demons” algorithm is solely based on the
notion of smoothing the occurring displacement fields. General optical-flow based reg-
istration, where ”Demons” is a special instance of, is also called Diffusion Registration
in [Fischer and Modersitzki, 1999]. Optical-flow registration takes a SSD data term in a
variational setting and regularizes the resulting ill-posed problem using Tikhonov regu-
larization [Tikhonov and Arsenin, 1977]. This means that the norm of the gradient of
the displacement field is penalized in the regularization term, thereby preventing large
differences in neighboring displacement field vectors. Chapter 6 includes more detailed
information about the derivation of the optical-flow method using standard Tikhonov
regularization and an anisotropic variant.

The ”Demons” algorithm approximates the optical flow registration scheme by two im-
portant simplifications. First the minimization of the SSD data term and the regularization
term is decoupled. Regularization is performed by using a Gaussian filter applied to the
displacement field components separately in approximation of the Laplacians that occur
as a result of the Euler-Lagrange equations of the Tikhonov-regularized optical flow equa-
tion. Second, the optical flow data term is heuristically modified by a normalization term
that stabilizes the solution in the presence of large image gradients. See [Thirion, 1998]
and [Avants et al., 2004] and Appendix B.4 for additional details on both the classical
”Demons” algorithm and a variant that uses a symmetric definition of the registrations
driving forces.

2.2.2.5 Curvature Registration

[Fischer and Modersitzki, 2003b] have recently proposed an efficient nonlinear registration
algorithm which they termed curvature registration. It is again based on the SSD distance
measure, however, the regularizer is based on penalizing second order derivatives of the dis-
placement field (i.e. the term curvature registration). An important practical advantage of
this method is that it already includes affine registration as a special case, a fact that dis-
tinguishes it from elastic, fluid and diffusion registration. [Fischer and Modersitzki, 2003b]
have shown that for a certain finite difference approximation and a certain choice of bound-
ary conditions a solution for the discretized partial differential equation (PDE) can be found
very efficiently by using a fast Fourier transform (FFT) technique which leads to a compu-
tation time complexity O(N log N) with N being the number of unknowns of the system.
See Appendix B.5 for a more detailed explanation of this method.
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2.2.2.6 Biomechanical FEM-Based Registration

There is a large body of work in nonlinear registration that makes use of biomechanic
models to derive energy functionals that drive the registration process. One example was
presented in [Edwards et al., 1998] who have shown a three-component model to simulate
the properties of rigid, elastic and fluid structures. In the brain these structures would
correspond to skull, white and gray matter and cerebral-spinal fluid. The discretization
of the variational energy functionals underlying these processes is performed in a Finite-
Element Mesh (FEM) model, an analysis technique that solves PDE describing complex
systems and spatially distributed processes. The mesh is generated by a segmentation of
the three tissue types and a triangularization to get the FEM nodes. By deforming the
mesh iteratively the energy functional is minimized. Note, that the need for segmentation
makes this method restricted to brain applications where segmentation can more easily be
achieved. Further the method has the drawbacks that one has to choose proper elasticity
constants for the different tissue types and that the complexity to implement such a FEM
scheme efficiently is rather high.

2.2.2.7 Hybrid Feature- and Intensity-Based Methods

Recently a number of authors started to investigate the fusion of feature- and intensity-
based nonlinear registration methods. [Gee, 1996] proposed a Bayesian framework to unify
these contrarious approaches. [Johnson and Christensen, 2002] combined landmark TPS

registration with intensity registration using a viscous fluid regularization in a consistent
manner. In [Li et al., 2002] this consistent intensity registration was combined with airway
tree branch point matching for deformable lung registration. [Fan and Chen, 1999a] ini-
tialized an optical flow based intensity registration method with a semi-automatic airway
tree and lung segmentation. [Hellier and Barillot, 2003] proposed a unified brain registra-
tion framework combining a global intensity approach with sparse landmark constraints.
[Liu et al., 2004] showed a combined volumetric and surface matching approach for inter-
subject brain registration. [Fischer and Modersitzki, 2003a] proposed to use landmark
constraints as an auxiliary condition in a variational framework, leading to a formula-
tion where the landmark constraints are the Lagrange multipliers of the optimization
problem. [Papademetris et al., 2004] recently proposed a hybrid registration combining
B-spline free-form deformation intensity registration with the Robust Point Matching al-
gorithm.
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2.2.3 Thoracic CT Image Registration

While the publications concerning rigid and nonlinear image registration are numerous
in application areas like e.g. the brain, the literature of the recent years does not show
the same extensiveness regarding thoracic registration applications, i.e. lung or airway
tree registration and warping. Possible reasons may be the large size of thoracic vol-
ume scans and the large degree of deformation that might occur on volumes at different
breathing states. Some examples for rigid thoracic registration applications can be found
in [Cai et al., 1999] who rely on the chamfer matching method based on segmented lung
surfaces or in [Betke et al., 2003] who show a two-step procedure with template landmark
matching and iterative closest point registration of extracted lung surfaces. One example
for a nonlinear registration algorithm that relates PET and CT images of the thorax can
be found in [Mattes et al., 2003]. There the localized cubic B-spline deformation model
from [Rueckert et al., 1999] is used in combination with the mutual information measure.
A model-matching approach for segmentation of thoracic volume scans using fuzzy implicit
surfaces can be found in [Lelieveldt et al., 2000].

An early approach for elastic registration of chest CT and whole-body PET can be found
in [Tai et al., 1997]. After a prior coarse registration using a similarity transform model
(translation, rotation, scale), a nonlinear registration method based on a sub-volume model
is introduced. In each iteration, the target image is divided into small subsets of equal
volume, these subsets are moved into all three directions until a local similarity measure is
minimized. Afterwards a Gaussian-weighted regularization step interpolates the displace-
ments off the subvolume centers. After warping according to the found displacement field,
the next algorithm iteration starts. The whole process is continued until a pre-defined
convergence criterion is fulfilled. The whole procedure is very similar to the registration
technique in [Likar and Pernus, 2001].

An interesting approach for nonlinear lung registration was proposed
by [Fan and Chen, 1999a]. They identify bronchial points of airway trees and vessel
structures as feature points and manually register them. These sparse correspondences
are used as a priori knowledge in a 3D warping model based on continuum mechanics
theory that results in a dense displacement field. The notions of mass-conservation
and incompressibility and their inclusion in a divergence-free elastic model leads to a
variational formulation which is regularized by an anisotropic smoothing constraint,
which preserves motion discontinuities. The resulting partial differential equation is
solved by a conjugate gradient method. One major drawback of this method is its
dependency on accurate a priori feature correspondences, this issue is dealt with in
a follow-up paper [Fan and Chen, 1999b] where segmented lung surfaces are used as
an additional a priori constraint. Nonlinear registration of lung surfaces is performed
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in an optical-flow framework, again using anisotropic smoothing regularization.
In [Fan et al., 2001] this registration approach is evaluated on several data sets in terms
of average feature registration error and lung volume comparison. Further, the approach
is applied to a ventilation study.

[Zhang and Reinhardt, 2000] show a 3D surface based registration approach of lung CT
images to a standard lung atlas. The purpose is lung segmentation by atlas registration.
The two-step procedure involves a global transformation and a local elastic transformation
based on subvolumes, i.e. cubes. For the local cubes, two similarity matches, one from
atlas to volume and one from volume to atlas, are constructed. Resulting displacements
are smoothed using a dynamic model combining the two directions. The procedure iterates
until a convergence criterion is met. Evaluation of the approach using average distances
of pairs of deformed images give accuracies in the order of 7± 3 mm to 2.7± 2 mm.

[Weruaga et al., 2003] present a volumetric motion estimation technique for thoracic
images with the intention to include a model of breathing motion in radiotherapy plan-
ning for tumor localization and radiation-dose planning. Their approach consists of two
phases, a similarity-parameterization data analysis stage and a projection-regularization
stage. Most of the reported methods for thorax motion estimation require either patient
training/collaboration or expensive medical equipment. Therefore the spatial correspon-
dence of two volumetric CT data sets is acquired at the extremes of the breathing cycle. The
proposed method defines a similarity criterion based on cross-correlation and the sum of
squared differences. This similarity coefficient is used in a block matching technique where
blocks are parameterized differently, according to the underlying image data. Finally the
set of parametric models are translated into motion vector fields by a fast convolution-
based regularization approach with a dedicated convolution kernel. The method shows
promising results, however, it was only evaluated on a single data set and there are a large
number of parameters to adjust in addition to a necessary lung border segmentation.

[Li et al., 2002] propose an inter-subject thoracic CT image warping and registration
scheme for standardized atlas building. They use a priori information in the form of a
set of reproducible feature point correspondences derived from airway trees and combine
this information with an inverse consistent intensity-based registration scheme according
to [Johnson and Christensen, 2002]. They report accurate results on six volumetric CT

data sets in terms of relative volume overlapping error and average landmark registration
error. However, the method is very time-consuming, due to the necessary manual match-
ing of corresponding feature points and the highly complex nonlinear inverse consistent
registration scheme. The work was later successfully used to establish a normative atlas of
the human lung which might be used for image segmentation and detection of abnormal
lung structures [Li et al., 2003].
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[Dougherty et al., 2003] have shown the application of a sum of squared difference
based optical flow method for nonlinear intra-subject thoracic CT registration. Their
method uses a local optical flow formulation including intensity-bias correction (due to
e.g. contrast agents) in a coarse-to-fine manner. No further smoothness or regularization
assumptions on the motion field are made. Evaluations on five cases are only performed
using the cross-correlation of registered data sets. In [Dougherty et al., 2006] more evalu-
ation experiments were performed to assess the algorithm behavior in a lung nodule study,
a perfusion study and an air trapping study.

In [Tschirren et al., 2005b] an interesting approach for the matching of segmented
airway trees is described. They are using the airway tree segmentation method
from [Tschirren et al., 2005a] to robustly extract the airways, afterwards skeletonise the
airway tree and derive a graph representation with branching points used as graph nodes.
A maximum-clique graph matching algorithm is used to define a correspondence between
airway trees.

2.3 Conclusion

Our extensive literature review has revealed the potential contribution areas for this work.
Bone subtraction CTA techniques currently do not handle several independent rigid move-
ments in a satisfying way, hence a novel method is of large interest. Although there
exists a large body of work in soft-tissue deformable registration, only few methods exist
that make use of shape- and feature-based semi- and fully-automatic matching algorithms
(especially for thorax images), a topic which has already been thoroughly researched in
the traditional computer vision community. By transporting several promising computer
vision approaches into the medical imaging domain, a contribution to the search for ef-
ficient nonlinear registration algorithms might be performed. These algorithms may be
applied to increasingly large data sets from clinical practice, while at the same time keep-
ing small vessel structures (i.e. high frequency information) intact. The fusion of feature-
and intensity based approaches is another topic from literature that promises to be useful
for practical algorithms, since feature based constraints will speed up intensity based ap-
proaches significantly. An interesting fact we learned from the evaluation sections of the
various nonlinear registration algorithms is, that there are currently no common frame-
works to simplify and objectify the hard question of nonlinear registration evaluation.
Consequently, the decision to investigate such a framework in the context of thoracic CT

images seems to be very promising.



Chapter 3

Partially Rigid Registration for

Bone Removal in CTA

Applications

Contents

3.1 Bone-Subtraction CT Angiography . . . . . . . . . . . . . . . . . 43

3.2 Partially Rigid Registration Algorithm . . . . . . . . . . . . . . 44

3.3 Evaluation Experiments & Results . . . . . . . . . . . . . . . . . 48

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Maximum Intensity Projection (MIP) study of CT Angiography (CTA) scans is a
widely used imaging tool for artery and vein visualization especially in the brain. This
method allows the detection of cerebral aneurysms, arterial stenosis, and other vascular
brain anomalies which are important in the emergency evaluation of stroke and intracranial
hemorrhage [Lell et al., 2006a, Tomandl et al., 2006] (see also Figure 1.3).

With the increase in temporal and spatial resolution, CTA has emerged as an alternative
to Digital Subtraction Angiography (DSA). CTA studies are X-ray Computed Tomography
(CT) scans where a contrast agent is applied via intravenous injection. Often the contrast-
enhanced scan is accompanied by a native scan to be able to support vessel visualization
by subtraction techniques. This is a large advantage compared to classical DSA where
intra-arterial injection of contrast material has to be accomplished, being more invasive to
a patient. More specifically, if one ignores intra- and inter-scan patient movement, CTA is
performed by a subtraction of the native from the contrast-enhanced scan, leaving solely
the vascular structures. The resulting data set is visualized in 3D using a MIP, where the
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maximum value in the CT volume data set is displayed along each ray through a pixel in
the direction of the viewpoint projection (see Figure 3.1a for a MIP example).

(a) (b)

(c) (d)

Figure 3.1: Maximum intensity projections of several CTA data sets with and without
bone artifacts obstructing vascular structures. (a) Example for MIP visualization showing
vascular structures, (b) MIP of CTA data set with slight errors due to independently
moving jawbone, (c) MIP of CTA data set with intra-scan artifacts in the skull region,
(d) MIP of CTA data set with severe errors due to independently moving jawbone.

In this chapter we describe a novel algorithm for bone subtraction CTA under the
influence of independent rigid movements occurring during or between scans. We have
already given an overview of related work on bone removal techniques and partially rigid
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bone registration in Section 2.1.4. Section 3.1 gives a more detailed motivation of the
problem. The partially rigid registration algorithm is described in Section 3.2. Section 3.3
introduces setup and results of the synthetic and real data experiments, while finally
Sections 3.4 and 3.5 discuss the obtained results and conclude the chapter.

3.1 Bone-Subtraction CT Angiography

A drawback of CTA images is the similar CT intensity value of bone structures and calci-
fications compared to the contrast-enhanced vascular structures. Therefore, one acquires
native and contrast-enhanced CTA images to remove bones and calcifications from the head
and neck CTA images by subtraction techniques. In practice, patient movement during and
between native and contrast-enhanced scans often is inevitable leading to insufficient im-
age quality due to motion artifacts. Therefore, a subtraction algorithm has to deal with
misregistered areas. Due to their high CT intensity especially misregistered bone struc-
tures lead to considerable visualization artifacts in MIP studies (see Figure 3.1b)-d) for
examples). These artifacts have to be removed to get an undistorted view of the oth-
erwise obstructed vascular structures. In many cases this removal is possible by a rigid
registration of native to contrast-enhanced scan followed by a subtraction of a bone mask
generated from the registered native scan. This technique is also referred to as ”Matched
Mask Bone Elimination” [Venema et al., 2001] (see also Section 2.1.4).

However, sometimes several independent patient movements occur during contrast-
enhanced and native scans, thus complicating the subtraction and introducing the need
for specialized registration methods. Although each of the independent movements can
be regarded as being rigid, the combination of these inter- and intra-scan motion artifacts
cannot be effectively removed by a single rigid registration step. In the remainder we
will refer to the problem of independently moving bone structures as a ”partially rigid
registration” problem. An example of independent movements is a slight head rotation
combined with a different position of the jawbone due to swallowing or yawning between
scans. Further, one can easily imagine that the problem of independently moving bone
structures becomes even more important as soon as not only the head is involved in the
CTA study but the vascular structures of interest are extended into the neck and shoulder
region [Lell et al., 2006a]. Independent shoulder movements due to e.g. an uncomfortable
resting position of a patient additionally pose registration problems.

To address these problems we have developed a refinement of the ”Matched Mask Bone
Elimination” technique that incorporates a joint segmentation and registration method in
an iterative fashion. Moreover our novel approach takes the large size of current routinely
acquired CT scans into account. With volume data sets that consist of several hundred
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slices and an x-y resolution of 512×512 voxels, memory and run-time issues are a challenge
in the development of medical imaging algorithms.

3.2 Partially Rigid Registration Algorithm

As already mentioned, this algorithm has to deal with several problems which may be
summarized as follows:

• Accurate registration of native and contrast-enhanced scans taking independently
moving bone structures like e.g. inter-scan skull and jawbone movement into ac-
count.

• Accurate registration despite local intra-scan errors like rapid skull movements dur-
ing a single acquisition.

• Memory- and runtime-efficiency due to large volume data sets of several hundred
slices.

We decided to follow a similar direction like [van Straten et al., 2004]. However, our
approach replaces the error-prone watershed segmentation step by a more robust approach
that uses joint segmentation and registration in an iterative fashion. Therefore, no high-
level or semi-automatic segmentation step is necessary, the algorithm is based on the
combination of low-level segmentations and rigid registrations. Our method guarantees
that nonlinear deformations never occur at the bone structures but are solely used for tissue
structures by a registration matrix interpolation step. The only important assumption that
we have to make is that it is possible to rigidly register and remove independently moving
bone structures in sequential steps, i.e. each registration step in the iterative loop has
to remove a certain area of misregistration. If this assumption does not hold anymore
the algorithm will terminate too soon. This situation might happen if two independent
misregistration areas cancel each other out in terms of the registration metric.

The basic idea of the proposed algorithm is to iteratively perform rigid registration
on areas where large misregistrations occur. The algorithm takes a native and a contrast-
enhanced volume as input and starts with an initial mutual information based rigid regis-
tration that is restricted to bone structures segmented by a bone threshold. Calculating
the misregistration error identifies areas where the registration has to be refined. This
refinement is performed in an iterative manner as long as the number of misregistration
errors is too large. Each iteration consists of calculating the misregistration area, a rigid
registration step restricted to the current misregistered area and an interpolation step that
combines the different registration results. Algorithm 1 shows this algorithm in pseudo-
code, while the following subsections explain its behaviour in more detail.
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Algorithm 1 Partially Rigid Registration
1: Mutual information based rigid registration of native and contrast-enhanced scan
2: Initialize data structure of resulting registration matrices with initial transform
3: Calculate the misregistration area
4: while size of misregistration area larger threshold do
5: Derive a bone mask from the misregistration error area
6: Mutual information based rigid registration restricted to bone mask
7: Update registration matrix data structure by checking if the new transform improves

the error
8: Smooth and interpolate registration matrices
9: Update misregistration area

10: end while

3.2.1 Single Rigid Registration Step

Our technique consists of several rigid registration steps always using the same mutual
information based matching method as its basic building block. Using Mutual Information
(MI) as a similarity measure for image registration was already explained in Section 2.1.2.3.
We decided to use the Normalized Mutual Information (NMI) metric due to its indepen-
dence to volume overlap problems. According to the basic registration scheme (see Fig-
ure 2.1) a registration algorithm also consists of an optimization strategy, an interpolation
method and a transformation representation that provides the parameters to be optimized.
Our optimizer is a regular-step gradient descent optimizer that takes larger steps at the
beginning of optimization and consecutively reduces its step size until a local minimum
is reached. The interpolation method is tri-linear, a more complex method is impractical
due to performance reasons. Finally our transformation is composed of six parameters,
three representing 3D translation and the other three representing 3D rotation encoded as
a unit quaternion. The unit quaternion or versor representation has the advantage that
it natively models the 3 degrees of freedom of a rotation without the problem of gimbal
lock. See [Ng and Ibanez, 2004] for a treatment of the unit quaternion representation in
medical image registration. The regular-step gradient descent optimizer herein has to take
into account the special structure of the parameter space which is not a vector space.

3.2.2 Partially Rigid Registration - Initial Stage

The partially rigid registration algorithm starts with a threshold based bone segmentation
of the contrast-enhanced CTA image. This bone segmentation is used as a mask restricting
the following initial mutual information based registration procedure to bone structures.
The result is a transformation which is stored as the initial transformation in the result
data structure at bone voxel locations only. With this initial transformation it is possible
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to calculate a misregistration area by subtracting the accordingly warped native image
from the contrast-enhanced image. Now the iterative stage is entered.

3.2.3 Partially Rigid Registration - Iterative Stage

The iterative stage terminates if the misregistration area is smaller than a certain thresh-
old. The first step in this loop is the creation of another bone segmentation mask to
restrict the subsequent mutual information registration. The bone segmentation mask is
derived from the misregistration area, which is located at the edges of misregistered bone
structures, by a dilation into the bones nearby using a distance-constrained region growing
method. This dilation step can be seen as a bone segmentation procedure, however this
bone segmentation is only used to focus the following registration step on misregistered
areas. The restricted registration step results in another transformation which overwrites
the result data structure after checking if the current transformation is able to reduce
the misregistration at each bone voxel location. Now the transformation results have to
be smoothed in local neighborhoods to remove some noise and to prepare the following
transformation interpolation. Since the rigid transformations are only stored at bone voxel
locations, it is necessary to find transformation parameters for tissue voxels. This can be
performed by a linear or a nearest-neighbor interpolation. Although a linear interpolation
would be more accurate, we decided to use nearest-neighbor interpolation due to reasons of
reduced computation time and its low memory consumption. The evaluation section will
show that the accuracy of nearest-neighbor interpolation is sufficient for our application.
The final step in the iterative stage is the warping of the native to the contrast-enhanced
image according to the transformation result data structure. The result can be used to
calculate another misregistration which gets checked if it is larger than a threshold by the
loop termination condition. After the loop has terminated the Matched Mask Bone Elimi-
nation (MMBE) method is used to remove bone structures from the contrast-enhanced image.
The whole algorithm work-flow is also depicted in Figure 3.2. Note that the color-coding
represents intensity difference magnitudes where ”cold colors” (magenta, blue, green) are
assigned to small differences and with growing differences the colors get ”warmer” (i.e.
yellow, orange, red).

3.2.4 Memory and Runtime Efficiency Issues

As already mentioned above the large size of current routinely acquired volume data sets
always poses restrictions on practically useful algorithms due to runtime and memory con-
sumption issues. CT data sets the proposed algorithm is intended for easily have several
hundred slices with x-y resolutions of 512 by 512 voxels respectively, thereby requiring
around 250 MB in memory due to a 12 bit gray level resolution. Runtime efficiency re-
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 3.2: Partially rigid registration work-flow. (a) contrast-enhanced image, (b) native
image, (c) difference image showing two independent sources of movement (jawbone -
orange, skull - green), (d) misregistration area after initial registration, (e) misregistration
mask derived from (d), (f) distance-constrained region growing of misregistration mask,
(g) result of another registration step focusing only on misregistration mask, (h) result of
the nearest-neighbor fusion of the individual registration steps.
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DS Size Problem Characteristics
A 512,512,231 independent head & jaw movement
B 512,512,344 independent head & jaw movement
C 512,512,429 head movement & teeth artifacts
D 512,512,233 intra- and inter-scan movements
E 512,512,269 swallowing and teeth artifacts

Table 3.1: Partially rigid registration. Evaluation data set characteristics.

quires the data sets to be fully held in memory, therefore it is important to reduce the
need for intermediate data structures. The partially rigid registration algorithm only re-
quires one additional volume data set of the same size as the two input images to store
intermediate results. This can be achieved by representing bone segmentation results and
registration error regions as single bits and by using indices into a list of possible trans-
formation parameters to store the different registration results of the iterative algorithm.
Since memory and time consumption always imposes some trade-off, we will show in the
evaluation section that our runtime results are nevertheless acceptable.

3.3 Evaluation Experiments & Results

The presented approach was evaluated on several CT data sets showing problems of state-of-
the-art bone removal techniques for CTA images based on maximum intensity projections.
All of these data sets still have problems after one single registration step for Matched
Mask Bone Elimination (compare first row of Figure 3.4). More specifically we used 5
clinical data sets whose characteristics are shown in Table 3.1. The images stem from
a 64-slice Multi-slice Spiral CT (MSCT). The acquisition protocol is a CTA protocol that
involves a native image and an image with non-ionic iodinated contrast medium injected.
The scan delay is adapted using a bolus tracker. Data sets show an in-plane resolution of
0.5 mm and a z-resolution of up to 0.6 mm.

Most of the data sets show several independent movements typical for CTA acquisitions.
Data sets C and E also show some artifacts in the tooth regions due to implanted gold
teeth disturbing the CT scans. In our experiments we calculate two measures from the
data sets. The first one is the progression of the number of misregistration voxels during
our algorithm. The number of misregistration voxels is calculated as the number of voxels
which is larger than a threshold from the difference between contrast-enhanced and (par-
tially) rigidly warped native image. Table 3.2 depicts this measure, note that data sets
A and E finished earlier due to additional termination conditions in the main loop. The
first column specifies this measure before registration. To restrict runtime the loop was
terminated after four iterations.



3.3. Evaluation Experiments & Results 49

DS 0 1 2 3 4
A 306 705 37 078 26
B 208 846 94 601 991 926 801
C 53 443 9 007 6 529 6 514 5 755
D 164 939 136 603 19 165 14 347 14 189
E 26 868 9 036 5 387

Table 3.2: Partially rigid registration. Decrease of misregistration error voxels for evalua-
tion data sets A-E.

The second measure is the progression of the sum of squared intensity differences (SSD)
between the contrast-enhanced image ICE and the warped native image IN ′ according to
the partially rigid registration transformations. The sum of squared intensity difference is
calculated as

SSD =
1
|Ω|
∑
Ω

(ICE(x)− IN ′(x))2

where Ω is the domain of the overlapping part of the images. One should note that the Sum
of Squared Differences (SSD) will never decrease to zero, since there are always contrast
differences in the images due to contrast agent injection. Figure 3.3 shows the decrease of
the SSD for the five data sets.

Figure 3.3: Partially rigid registration. Decrease of sum of squared difference measure for
evaluation data sets A-E

Finally we give a table showing the execution times for the algorithm on each of the
data sets A,B,C,D and E. The algorithm implementation was performed under Windows
in C++ and evaluation experiments were executed on a Pentium M with 2.0 GHz and 1.5
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GB RAM.

A B C D E

time [s] 93,25 233,95 276,02 205,67 93,27

In Figure 3.4 the three data sets A,B and D are shown to give qualitative results as
well. The first row is the MIP of each data set after a MMBE with a single rigid registration to
take patient movement into account. One can clearly see the bright bone structures that
obstruct several portions of the vascular structures. The second row shows the resulting
MIP after a MMBE using the novel partially rigid registration procedure.

3.4 Discussion

Our experiments show very clearly that the proposed algorithm is capable to improve the
MMBE method in those cases where several independent rigid movements occur during two
scans in CTA studies. In all clinical test cases the sum of squared intensity differences and
the number of registration error voxels is significantly reduced after one or two additional
registration steps in our iterative algorithm. We observe that both measures are going into
a converged state after a few iterations, therefore we decided to restrict the additional
registration steps to at most three. Data sets A and B show the algorithms excellent
behavior in the presence of independent head and jawbone movement. In data set A the
obstructing structures have been completely removed, while data set B has improved a lot,
although some very small regions still remain, where the whole algorithm has converged
to a local minimum. Data sets C and E show the algorithms behavior in the presence of
artifacts due to CT scan errors from gold teeth or due to a patient swallowing during scans.
Both effects do not have a great impact on the result, all obstructions are successfully
removed. Finally data set D has inter- and intra-slice scanning errors which are also
removed, however in this case a larger number of obstructing bone structures remains. An
important property of the algorithm is that it never worsens a result if the registration
is already accurate enough after a single registration step. So it is very suitable as an
additional refinement step if the classical MMBE method does not succeed. The fact that
the algorithm runtime lies between two and five minutes on a standard notebook computer
underlines that the additional computational effort is acceptable.

3.5 Conclusion

In a number of medical applications the removal of bone structures is of crucial impor-
tance for a high-quality CTA visualization using MIP. This chapter has presented a novel
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Partially rigid registration. Selected results comparing the classical MMBE
method (first row) with the improved MMBE method (second row) (a) data set A after
original MMBE, (b) data set A after partially rigid registration MMBE, (c) data set B
after original MMBE, (d) data set B after partially rigid registration MMBE, (e) data set
D after original MMBE, (f) data set D after partially rigid registration MMBE.
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algorithm for bone removal addressing the problems of independent inter- and intra scan
movements. It extends the classical MMBE algorithm by a joint segmentation and regis-
tration stage. The presented experimental results on clinical data sets show examples of
intra- and inter-scan patient movements which were successfully registered with the pro-
posed algorithm. The improved MIP visualization quality underlines the usefulness of our
novel method, while the quantitative evaluation of the number of registration voxels and
the progression of the sum of squared intensity differences proves the algorithms correct
behavior.
The presented algorithm is in the process of clinical evaluation, an important topic for
future work is to perform more evaluation experiments on these data-sets to show the clin-
ical relevance of the refinement algorithm. A first result on a more thorough comparison
of our partially rigid registration algorithm to the standard methods has recently been
published in [Lell et al., 2006b]. Their promising results using our method show superior
quality of MIP visualizations in clinical practice. Important topics to investigate further
are the improvement of the algorithm accuracy by replacing the nearest-neighbor inter-
polation with a linear interpolation. A theoretical proof of convergence of the iterative
algorithm would also be of great interest. Another possible direction for future work is to
look into more sophisticated algorithms for joint segmentation and registration like tech-
niques working in a variational framework [Yezzi et al., 2003] or compare it to the elastic
registration scheme in [Bentoutou et al., 2002]. A further interesting approach that we
recently found is [Arsigny et al., 2005] who propose a polyrigid/polyaffine transformation
model as an intermediate representation between simple rigid and highly nonlinear trans-
formations. Their transformation seems to be very suitable for our purpose and should be
investigated more deeply.
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Studying the complex thorax breathing motion for fusion of functional and anatomical
data and derivation of statistical breathing motion models has already been motivated in
earlier sections of this thesis. In this chapter we investigate segmented thoracic CT struc-
tures like lung, airway tree and diaphragm surfaces at several different breathing states
between inhalation (Total Lung Capacity (TLC)) and exhalation (Functional Residual Ca-
pacity (FRC)). We are working on thoracic sheep CT data sets provided by Prof. Eric
Hoffman from the University of Iowa. Since the sheep data sets were acquired with high
radiation doses, the signal-to-noise ratio of the images is very high, thus the segmentation
of the structures of interest is possible without the need for highly complex, robust seg-
mentation algorithms. Due to the simple surface extraction, the decision to investigate
surface-based nonlinear registration methods has been made. We concentrate on efficient
nonlinear registration based on a shape descriptor [Veltkamp and Hagedoorn, 1999], more
specifically finding correspondences via shape matching and registering identified corre-
spondences in the context of a Thin-Plate-Spline (TPS) framework [Bookstein, 1989]. In
many cases shape-based methods are able to provide very accurate solutions with less com-
putational effort since only the organ of interest is considered as opposed to intensity-based
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methods where the whole images are taken for matching and registration.

Generally, feature-based registration starts with a feature extraction step. After ana-
lyzing lung and diaphragm surfaces over the breathing cycle one will notice that the shapes
undergo certain deformations which make it hard to robustly identify correspondences. Es-
pecially the deformations of the surface of the elastic lung tissue are hard to describe. The
lung surface is attached to the rib cage by adhesive forces and the diaphragm-induced
cranio-caudal forces move the lung tissue while at the same time the bones of the rib cage
remain comparatively rigid. As a consequence the rib cage forces its shape on the moving
elastic lung tissue and it is not necessarily the case that classical 3D features like ridges
(or valleys) on the lung surface stay ridges (or valleys) during breathing. For this reason
a shape matching algorithm has to be developed that is independent of points of interest
like curvature maxima or similar 3D features. After reviewing the body of literature the
shape context approach [Belongie et al., 2002] was identified as a reasonable and promis-
ing approach for this purpose. In the following this algorithm was extended to 3D and
adapted for the task at hand. The idea of extending the shape context descriptor to 3D has
been independently proposed by [Frome et al., 2004] for recognizing 3D objects in range
scans. Given the correspondences from the shape matching, an estimate of the breathing
motion in form of a displacement field can be calculated in a nonlinear registration step.
[Belongie et al., 2002] propose the TPS framework [Bookstein, 1989] for this task.

The remainder of this chapter is organized as follows. Section 4.1 gives further moti-
vation for studying shape-based registration. In Section 4.2 the basic techniques and their
extensions which were used to identify shape correspondences and nonlinearly register the
image data are presented. Section 4.3 introduces setup and results of the synthetic and
real data experiments, while Sections 4.4 and 4.5 discuss the obtained results and conclude
the chapter.

4.1 Understanding the Physiology of Breathing

Investigation of the physiology of breathing in order to model respiratory motion is
an important research topic [Hoffman et al., 2004, Simon et al., 2005]. Respiration de-
pends on the dynamic interaction of lung, rib-cage and diaphragm, topics which have
already been extensively studied in human and animal studies in the physiology com-
munity [Wilson, 1988, Boriek et al., 1998, Angelillo et al., 2000]. Attempts for simulat-
ing and modeling respiration can be found in [Kaye et al., 1998], who combine static
anatomical CT information with physics-based cardio-respiratory physiological models, or
in [Segars et al., 2001], who have modeled respiratory motion in a spline-based math-
ematical torso phantom to reduce respiratory motion artifacts by using findings from
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respiratory mechanics. In the long run, investigation of breathing motion in thoracic
and abdominal CT images should lead to statistical models of respiration, optionally us-
ing bio-mechanical constraints, which might be used for breathing motion compensation.
Respiratory motion correction in coronary MR images based on 3D registration has al-
ready been studied by [Manke et al., 2002]. Since registration of pre- and intra-operative
thoracic and abdominal images is nowadays being used more often by image-guided in-
tervention and surgery systems, the accurate registration of thoracic and abdominal soft-
tissue regions was also used for liver intervention systems taking breathing motion into
account [Rohlfing et al., 2001, Blackall et al., 2004]. We consider the contributions made
in this chapter as another component on the way to understand the physiology of breathing
with the help of computer vision techniques.

4.2 Surface Registration using Shape Context

In this work the shape context approach is used to find correspondences on lung and
diaphragm surfaces followed by a nonlinear TPS registration. Compared to other methods
for registration of thoracic CT data (see Section 2.2.3), this is a more general approach,
since basically all kinds of extracted surfaces (e.g. segmented airway or vessel tree surfaces
as well as skeletonized trees) can be used in the same matching framework. Similar
methods for shape matching have already been discussed in Section 2.2.1.

4.2.1 Shape Context Matching & Registration

The shape context approach [Belongie et al., 2002] was reported as a reasonable and
promising method for matching 2D shapes (especially hand-written digits and letters)
and 2D object recognition without relying on extracted features. It combines global (by
regarding all points of a shape) and local (by storing information about the relation of all
possible point pairs) shape knowledge in a clever way. Objects are treated as (possibly
infinite) point sets and it is assumed that the shape of an object is captured by a finite
subset of its points, giving a set P = {p1, ..., pn}. The points can be obtained as locations
of edges from an edge detector or from another method to sample contour/surface points
from a shape. The points need not and typically will not correspond to key points or
structures such as maxima of curvature, inflection points or surface ridges. If one looks at
the set of vectors emitted from one point pk to all other points pi of a shape with i 6= k,
this set can be interpreted as a rich description of the shape configuration relative to pi.
Since this description is much too detailed, the relative distribution of this set of vectors is
taken as a compact, yet highly discriminative descriptor instead. Therefore, for each point
pi a histogram hi of the relative positions of the remaining points is calculated which is
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called the shape context. This histogram uses bins that are uniform in a three-dimensional
spherical coordinate system (θ,φ,r). The r coordinate axis is logarithmically sampled,
such that positions of nearby sample points have stronger influence on the descriptor than
ones located farther away. When setting up the logarithmic bin edges for the radius, it is
important to scale these bin edges accordingly to the data set. In order to achieve scale
invariance for the descriptor, it is possible to calculate the median point-to-point distance
of the shape and take this as a measure representing the scale of the shape. This scale
may be used as the bin edge that discriminates the largest and the second-largest radius
bin. To find the bin edge that distinguishes between smallest and second-smallest radius
bin, a robust minimum point-to-point distance may be found by taking the median of the
smallest one-percent of the point-to-point distances. Inbetween these two radius bin edges,
the other logarithmically scaled bins are placed. Figure 4.1a shows the bin structure of
3D shape context histograms.

Now for each point pi on the first shape, the ”best” matching point qj on the second
shape has to be located. For a point tuple < pi, qj >, let

Cij = C(pi, qj) =
1
2

K∑
k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)

denote the cost of matching these two points. This cost function is simply based on the χ2

test statistic which is a natural choice for comparing histograms. Given the set of costs Cij

between all pairs of points on first and second shape, one wants to relate each point from
the first shape with exactly one point from the second shape under the constraint that
the total cost of this mapping is minimized. This problem can be formulated in a graph
framework by taking the sample points from both shapes as graph nodes in a bipartite
graph, i.e. there are only graph edges between the two sets of sample points, no edges
between sample points of a single set. Edges in the graph are weighted with the cost
function Cij . This graph setup is illustrated in Figure 4.1b. Finding a cost-minimizing
mapping between point sets now transforms to a graph matching problem which is an
instance of the weighted bipartite assignment problem. It can be solved in polynomial
time, e.g. with the Hungarian Algorithm in O(N3) time, with N being the number of
nodes in the bipartite graph. The final result of the graph matching step is a one-to-one
mapping of corresponding points from the two shapes.

[Belongie et al., 2002] give some arguments about invariance and robustness of the
shape context approach. It is implicitly invariant to translation, since all measurements are
taken with respect to object points. Scale invariance can easily be achieved by normalizing
the radial distances by the mean distance. In this work we replace the mean distance by
the statistically more robust median distance. If it is desirable for an application, rotation
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Figure 4.1: Components of the 3D shape context descriptor calculation. a) shows the
histogram bin structure embedded in a spherical coordinate system (θ,φ,r). b) depicts
the bipartite graph structure used for the graph matching algorithm, with nodes pi and
qj representing all sample points from first and second shape, respectively, and edges
weighted with Ci,j representing the cost function to match a pair of points. c) is the
resulting graph after bipartite matching.

invariance can also be achieved by incorporating local coordinate systems based on the
tangent vector at each point instead of using a common global coordinate system. Rotation
invariance is not an issue for this work, since data sets are either already in a similar
position and orientation, or will be brought into similar orientation by a pre-processing
step using rigid registration. Outlier handling can be introduced by using ”dummy” nodes
attached to each point set, whose cost is chosen in a way that outliers have larger cost
values.

After establishing the point correspondences [Belongie et al., 2002] make use of the
TPS framework [Bookstein, 1989] for nonlinear registration. The TPS approach leads to a
transformation that consists of an affine part and a nonlinear deformation part depending
on the identified correspondences. The parameters of the TPS model are calculated from
the constraints that the displacement at corresponding points is zero (exact interpolation
of the displacement field) and that the spline model between corresponding points yields
regular and smooth displacements tending to zero the further away from the corresponding
points they are.

4.2.2 A Shape Matching & Registration Pipeline

A shape matching & registration pipeline was implemented to be able to derive a dis-
placement field given two image data sets at two distinct states of the breathing cycle. A
coarse overview of this pipeline is given in Figure 4.2. The ITK toolkit [ITK, 2006] was
used as a very helpful basic software library for the implementation of this pipeline.
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Figure 4.2: Shape Registration Pipeline. From left to right, volume segmentation, surface
extraction, surface point sampling, shape matching to get point correspondences and non-
linear registration and volume warping based on the point correspondences are depicted.

4.2.2.1 Segmentation

The first step in the registration pipeline is an automatic segmentation of the lung, air-
way tree and diaphragm surfaces. A simple algorithm that incorporates a region grower
for background removal, a gray value thresholding step and a connected component la-
beling gives a rough segmentation of the airway tree and the lung tissue. For accu-
rate lung segmentation a region-growing algorithm with an increasing threshold inter-
val [Boehm et al., 2000] is used. The seed point is located in the airway tree (trachea) of
the topmost image. The lung segmentation result is morphologically closed to remove small
vessel structures. Figure 4.3 shows an example for segmented lung surfaces at exhalation
and inhalation respectively, visualized by using a polygonal mesh representation created
with the Simplex Mesh algorithm [Delingette, 1999]. An airway tree segmentation algo-
rithm that was developed in our group [Pock et al., 2005a] is used to get an accurate airway
tree with the rough segmentation as a constraint. The lung segmentation is separated into
left and right lobe by a labeling step based on the main branching point of the airway
tree, using the same method that was presented in Beichel et al. [Beichel et al., 2004] for
liver partitioning. This results in a binary volume for left and right lung lobe. From these
binary volumes a diaphragm point set is extracted by regularily sampling points from the
bottom part of the lung surface. It should be noted that this simple diaphragm segmen-
tation scheme is working well for sheep CT data but can not so easily be used for human
diaphragm segmentation, since the human heart sits on top of the diaphragm, while in
sheep data the heart is surrounded by lung tissue.
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Figure 4.3: An example for segmented sheep lung surfaces. The left image shows the lung
at exhalation (FRC), the right one at inhalation (TLC).

4.2.2.2 Polygonization & Sampling Point Extraction

The next step is the extraction of a point set from the segmented lung surfaces. In contrast
to the original shape context paper, discretization is an important issue in this work since
3D discretizations easily produce very large numbers of points. Further, some methods
might produce more points in areas of high curvature which is a disadvantage for calcu-
lating the shape context descriptor. In this case the descriptor would lose its ability to de-
scribe the small lung deformations due to breathing. To avoid these difficulties the binary
volumes are triangulated using the Marching Cubes algorithm [Lorensen and Cline, 1987].
This gives a dense and regular triangle mesh, which is sampled in a regular way. Regular
sampling is important for the shape context descriptor to form a rich description in a
global and local manner and to be independent of small deformations due to lung move-
ment at once. In all later experiments the number of sampling points per lung surface was
varied between 200 and 3400 points.

4.2.2.3 Shape Context Matching

The calculation of the shape context descriptor was extended to incorporate local gray
value information. At each extracted surface point a second term of the cost function
based on the normalized cross correlation is calculated. The extended cost function C ′

ij

has the following form

C ′
ij = C ′(pi, qj) = αC(pi, qj) + βNCC(pi, qj)

with C(pi, qj) being the original shape context descriptor cost function and NCC(pi, qj)
being the normalized cross correlation evaluated at 5×5×5 neighborhoods of the original
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gray value CT image centered around pi and qj respectively. This additional term adds
robustness against segmentation errors and makes use of the otherwise neglected intensity
information in the data sets.

Since the three-dimensional extension of the shape context approach requires a larger
number of sample points than the simpler two-dimensional case, it is crucial to utilize an
efficient algorithm for the bipartite graph matching problem. In this work the minimum
weight assignment algorithm from the LEDATMsoftware library∗ was used, which solves
the graph matching in O(N(M + NlogN)) time, with N being the number of nodes and
M the number of edges in the bipartite graph. This algorithm proved itself as reasonably
fast, since all practical experiments showed that the calculation of the cost functions at
the N2 points took more time than the graph matching step. After finding the one-to-one
correspondences a certain percentage of matched points were removed. More specifically
matched edges get sorted by their weights and the ones with largest weights get excluded.
This adds some robustness against errors introduced in the preceding segmentation and
point sampling steps. The subsequent registration step does not need the full number of
correspondences since it interpolates the displacements between missing correspondences
according to the chosen interpolation model. However, the percentage of correspondences
to remove has to be chosen small enough to prevent entire loss of information in certain
image regions.

4.2.2.4 Thin-Plate-Spline Interpolation

The final step in the registration pipeline is the nonlinear registration of the matched
points in a TPS framework. A TPS interpolation function f(x, y, z) has the form

f(x, y, z) = a1 + axx + ayy + azz +
n∑

i=1

wiU(‖ (xi, yi, zi)− (x, y, z) ‖)

with kernel U(r) = r. The reader may refer to Appendix B.1 for further details on the TPS
method. Davis et al. [Davis et al., 1997] have reported that the elastic body spline (EBS),
which solely differs from the TPS in the kernel function U(r), is a more accurate model
for medical imaging applications. They state that this kernel is actually better suited for
modeling tissue deformations, since it is derived from Navier’s partial differential equa-
tions that model the equilibrium of an elastic body subjected to forces. It incorporates
a parameter that models the tissue elasticity derived from Poisson’s ratio. In this imple-
mentation both types of spline kernels were used. In our modular framework the spline
kernel is easy to modify. Another aspect in the registration framework is the large number
of sample points that have to be extracted for a reasonable shape approximation. The

∗http://www.algorithmic-solutions.com



4.3. Evaluation Experiments & Results 61

TPS framework resembles an interpolation of the displacement field between corresponding
points, therefore a large number of correspondences tend to introduce over-fitting to still
fulfill the interpolation requirements. Besides over-fitting, it also allows non-diffeomorphic
mappings, i.e. foldings in the displacement field. The group around Belongie published a
method [Donato and Belongie, 2002] to deal with this problem. However, in this work the
findings of [Rohr et al., 2001] to approximate thin-plate spline mappings were considered,
since they are theoretically more profoundly justified. [Rohr et al., 2001] proposed to add
a regularization term to the formulation, which is steered by a parameter λ weighting the
trade-off between interpolation and smoothness of the solution. λ ranges between 0 for
exact interpolation to 0.1 for an approximated purely affine transformation with hardly
any local deformations.

4.3 Evaluation Experiments & Results

To assess the validity of the shape context matching and registration approach qualitative
and quantitative evaluations were performed on synthetically transformed and real thorax
data sets. Three different kinds of shapes were produced in the segmentation steps and
taken as input for the evaluations, i.e. diaphragm, lung lobe and airway tree surfaces.
Figure 4.4 shows examples for each kind of shape.

The image data that was used for these evaluations comes from MSCT sheep scans,
provided by Prof. Eric Hoffman, University of Iowa. The data was acquired with 64-
slice scanners at five different breathing states between inhalation (TLC) and exhalation
(FRC) by a protocol where breath is held at fixed inspiration levels during the 30 sec
scan time. This leads to a static breathing scheme, which has to be considered for the
interpretation of derived motion models from matched and registered shapes. The image
dimensions per breathing state are approximately 512× 512× 550 with voxel dimensions
of 0.52× 0.52× 0.6mm.

4.3.1 Matching Experiments on Synthetically Transformed Data

The basic procedure for the synthetic matching experiments is to provide a data set A(x)
and a transformed version of the data set B(x) as input to the shape matching algorithm.
The synthetic transformation

ϕ : {B(x) = ϕ(A(x)), 1 ≤ x ≤ nx, 1 ≤ y ≤ ny, 1 ≤ z ≤ nz}

is defined by the evaluator and unknown to the matching algorithm, therefore B serves
as a ”gold standard” data set for the shape matching algorithm. The matching algorithm
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Figure 4.4: The different kinds of data used in the experiments. Segmented surfaces to
the left and sampled points to the right, respectively. Right column shows airway tree
data, while left column shows diaphragm at the top and lung lobes at the bottom.

computes from its inputs A(x) and B(x) a list of point correspondences < pi, q
′
i >, mapping

a point set pi : {pi(x) ∈ A(x), 1 ≤ i ≤ n} to a point set q′i : {q′i(x) ∈ B(x), 1 ≤ i ≤ n} with
n being the number of surface sample points. By applying the transformation ϕ on the
point set pi a set of synthetically transformed points qi : {qi(x) = ϕ(pi(x)), 1 ≤ i ≤ n} is
calculated. If the shape matching algorithm would be perfect qi and q′i would be identical
for all values of i. Since in practice this is not the case, for each tuple of point sets q′i and
qi minimum, mean and maximum distances are calculated and interpreted as an accuracy
measure for the shape matching algorithm.

Some of the parameters involved in the matching and registration algorithm remain
fixed during the experiments. The weighting parameters of shape context and normalized
cross correlation cost function are set to α = 0.7 and β = 0.3 to give more importance to
the shape context cost function term. The percentage of point correspondences removed
from the shape matching results is set to 20% and it was ensured that there are no regions
lacking sample points after removal by visual inspection. The elastic body spline kernel
is not used for the final evaluations. Compared to the TPS kernel we found that its need
to tune the parameter resembling Poisson’s ratio and its considerably higher computation
time were not worth the only slightly better results. The regularization factor for the TPS

interpolation is set to 0.01.

Two different kinds of transformations ϕ were applied to create synthetic data sets.
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First, a simple rigid scaling transformation was applied to test the algorithms correct
behavior. Second, a more elaborate synthetic nonlinear transformation was applied to
derive error statistics on the matching performance.

4.3.1.1 Synthetic Scaling Transformations

In the simplest case, a rigid scaling transformation qi = T (pi) with varying scale factors
between 0.9 to 0.1 in steps of 0.05 was applied to the extracted points of an airway tree
surface. The airway tree surface was sampled with 1000 and 2000 points, respectively.
The outcome of this test case were percentages of correctly identified correspondences of
100% between scale factors of 0.9 and 0.6 which slowly start to decrease between scale
factors. Figure 4.5 shows a plot of the percentages of correctly identified correspondences.
Although the implementation of the shape context approach is not scale-invariant, the
performance is very well as one might expect. The descriptors give very similar histograms
if the points are simply scaled. Nevertheless if the scale factor becomes very small the
points in the scaled point set tend to concentrate on few histogram bins in contrast to
the points of the unscaled version. This could be prevented by making the algorithm
scale-invariant, which was no issue for this work. This problem explains the performance
drop for scale factors below 0.4. The data set with 2000 sample points reaches the state
with histogram binning problems earlier, since there are more points involved.
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Figure 4.5: Percentages of correctly identified correspondences for scaled airway tree point
sets.
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The second synthetic test case took airway tree and lung lobe surfaces as its input and
applied the rigid scaling transformations qi = T (pi) with varying scale factors between
0.9 and 0.2 in steps of 0.1 again. Instead of applying the transformation on the already
extracted surface points, this time it was applied on the segmented image data, in accor-
dance to the real-world matching problem the algorithm is designed for. After scaling,
2000 point samples were picked independently from both data sets and presented to the
shape context matching algorithm. As a consequence inaccuracies due to the sampling
method have an effect on the matching outcome. Corresponding points were compared
with the ”gold standard” correspondences as described above. The results for airway tree
and lung lobe surface are shown in Table 4.1. Similar to the results mentioned above a
large scale factor induces larger distance errors, since the shape matching is scale depen-
dent. However, the mean error distances for all surfaces remains in the range of a few
mm, which is a good prerequisite for the subsequent registration task.

4.3.1.2 Synthetic Simulated Breathing Transformations

The shape context approach is used to find shape correspondences of thorax structures
over breathing. Therefore a synthetic transformation has to simulate breathing behav-
ior. A nonlinear transformation ϕ was designed to approximate a breathing-like de-
formation by simulating diaphragm and rib cage movement. According to the litera-
ture [Davies et al., 1994] diaphragm movement for deep breathing ranges between 25 to
40 mm in the vertical direction during a breathing cycle. The nonlinear deformation is
calculated using two parameters tvertical and tinward. The details of this synthetic trans-
formation are given in Appendix B.6. An example for this transformation using tvertical

of 25 mm and tinward of 10 mm applied to a thorax data set is shown in Figure 4.6.

Figure 4.6: Sagittal and coronal views of a data set demonstrating the synthetic trans-
formation that is used to simulate breathing behavior. Left column shows original, right
column transformed data, respectively.

The first synthetic experiment operates on a segmented diaphragm. Diaphragm sur-
face points are extracted from a segmented lung surface data set at TLC. The vertical
translation tvertical and the inward translation tinward remain fixed to 25 and 10 mm,
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[%] / Samples 400 800 1200 1600 2000 2400 2800 3200 3600
Correspondences 100 100 100 100 99.6 99.1 97.3 94.5 89.2

Table 4.2: Percentage of correctly identified correspondences from synthetically trans-
formed diaphragm point sets.

[mm]/Samples 400 800 1200 1600 2000 2400 2800 3200 3600
Min 0.309 0.270 0.216 0.128 0.100 0.135 0.063 0.103 0.058

Mean 8.991 5.867 6.027 5.500 5.202 4.983 4.761 4.817 4.441
Max 25.92 24.38 22.45 22.64 23.32 21.22 18.15 21.28 18.47

Table 4.3: Distance error measures for synthetically transformed diaphragm volumes over
different sampling sizes.

respectively. The number of sample points used to represent the diaphragm surface are
varied between 400 and 3600 sample points in steps of 400. To assess the validity of the
shape matching method based on the shape context descriptor (without dependencies on
segmentation and shape sampling errors) sampled point sets are transformed according to
the simulated breathing transformation. In this case an exact correspondence of points
is given initially and an ideal shape matching method would identify 100% correct corre-
spondences. The percentage of correctly identified correspondences over different numbers
of sampling points is given in Table 4.2. The expected 100% correspondence was achieved
in most cases. The higher number of sampling points show a performance decrease, since a
large number of shape context histogram bins would be necessary to prevent discretization
artifacts.

To assess the dependencies on sampling inaccuracies the segmented volumes are then
transformed instead of the sampled point sets. Each transformed volume is sampled
independently. First of all the number of sampled points is varied while keeping the
translation parameters at the same value as in the previous experiment. This demonstrates
the matching algorithms behavior with increasing sampling rate, which clearly shows an
increase using more sample points with a saturation at very high numbers. Table 4.3
shows these results.

From now on the number of diaphragm sample points is fixed to 2000 sample points.
Following the previous results this is a good compromise between running time and match-
ing quality, especially since the quality does not increase drastically for higher number of
sample points. tinward is set to 10 mm and tvertical is varied between 0 and 45 mm. Ta-
ble 4.4 depicts these results, the same experiment with tvertical set to 25 mm and tinward

being varied show a similar result. Performance decreases when deformations get too
large. Another algorithm run was performed with tvertical set to 25 mm and tinward being
varied between 0 and 25 mm. Table 4.5 states these results.
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[mm] / t 0 5 10 15 20 25 30 35 40 45
Min 0.121 0.0500 0.135 0.034 0.153 0.184 0.143 0.104 0.097 0.262

Mean 3.406 3.453 3.549 3.895 4.506 4.903 5.367 6.029 6.506 7.404
Max 12.13 11.66 12.21 14.34 17.21 17.57 19.10 21.53 26.46 27.81

Table 4.4: Distance error measures for synthetically transformed diaphragm volumes over
different transformations.

[mm] / t 0 5 10 15 20 25
Min 0.001 0.136 0.184 0.069 0.085 0.196

Mean 4.333 4.743 4.903 4.967 5.491 6.002
Max 17.35 19.28 17.57 21.53 24.16 25.23

Table 4.5: Distance error measures for synthetically transformed diaphragm volumes over
different transformations.

[mm]/Samples 200 600 1000 1400 1800 2200 2600 3000 3400
Min 1.705 0.371 0.355 0.132 0.169 0.164 0.192 0.131 0.069

Mean 11.74 8.30 7.35 5.98 5.802 5.707 5.517 5.040 4.578

A
ir

w
ay

Max 32.73 28.54 31.10 24.96 25.39 26.30 27.50 27.16 25.68
Min 1.944 0.580 0.244 0.371 0.227 0.146 0.337 0.244 0.083

Mean 15.84 9.48 7.93 7.14 6.70 6.44 5.72 5.98 5.99

L
o
b
e

Max 38.95 26.57 28.36 24.08 19.16 21.74 22.18 27.26 26.15

Table 4.6: Distance error measures for synthetically transformed airway & lung volumes
over different sampling sizes.

Another set of experiments is performed on airway tree and lung lobe surfaces. Airway
tree and lung lobe segmentations from a data set at TLC are used as input to the shape
matching algorithm. Again, the vertical translation tvertical and the inward translation
tinward remain fixed to 25 and 10 mm, respectively. The number of sample points is varied
between 200 and 3400 sample points in steps of 400. Table 4.6 summarizes the achieved
results which are similar to the results from the diaphragm experiments.

Figure 4.7a,b,c shows matching results for synthetically transformed diaphragm, lung
lobe and airway tree surfaces transformed with tvertical of 25 mm, tinward of 10 mm and
sampled with 2000 sample points, respectively.

4.3.2 Registration Experiments on Synthetically Transformed Data

The synthetic registration experiments use a data set A and its transformed version B as
input to the nonlinear registration algorithm which is composed of the shape matching
and the displacement field interpolation component. Experiments are solely performed on
lung lobe surface segmentations. Again a transformation ϕ is defined by the evaluator
and unknown to the algorithm. The point correspondences < pi, q

′
i > that are created
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Measure/Samples 200 600 1000 2000
RVOE [%] 12.47 10.89 9.54 8.26
TRE [mm]

Min/Mean/Max 1.81/7.39/14.03 1.70/6.06/11.09 1.79/5.37/10.08 1.61/5.16/9.89

Table 4.7: RVOE and TRE for synthetically transformed lung volume T32 over different
sampling sizes.

by shape matching of an original and a transformed data set are used to calculate a
displacement field by regularized spline-based interpolation of the point correspondences
within the thin-plate spline framework. This displacement field is utilized to warp the
original data set A to a data set B′. By comparing B′ with the synthetically transformed
data set B the two quantitative error measurements relative volume overlapping error
(RVOE) and target registration error (TRE) are calculated. RVOE is defined as 1 − B∩B′

B∪B′ ,
perfect registration would result in a value of 0 while 1 resembles total misregistration.
TRE is calculated by manually identifying a number of corresponding points in the lung
lobes. Therefore the original gray value data set is transformed according to the synthetic
transformation ϕ and afterwards the airway tree is segmented in both the original and
the transformed image. Both airway tree segmentations are skeletonised and 20 branch
points are extracted, respectively [Tschirren et al., 2005b]. Figure 4.7f,g shows the graph-
based airway tree representations and the manually labeled airway tree branch points. By
warping identified airway tree branch points of data set A according to the displacement
field from the registration step and calculating their distance from the corresponding
branch points in synthetically transformed data set B, the minimum, mean and maximum
target registration error is computed.

Five thorax data sets are used in this experiment. The first data set is examined at
varying numbers of sample points between 600 and 2000, while the other four data sets
are solely examined with 1000 sample points. RVOE (in %) and TRE results (in mm) for
data set T32 are given in Table 4.7. The mean RVOE of all 5 data sets is 10.166% while
mean target registration errors over all 5 data sets are 1.576mm, 6.734mm and 16.502 for
minimum, mean and maximum TRE, respectively. tvertical is 25 mm and tinward is 10 mm.
Figure 4.7 shows one lung lobe of data set T32 before (d) and after (e) registration.

4.3.3 Registration Experiments on Real Thorax Data

The first evaluation experiment on the real thorax data makes use of a sheep thorax data
set at five different breathing states between TLC and FRC, these data sets are called T32,
T24, T16, T8 and F. Each of them contains a lung lobe segmentation from which 1000
points are sampled. Four data subsets are built, with the first subset consisting of states
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[mm]/Subset {T32,T24,T16} {T24,T16,T8} {T16,T8,F} {T32,T16,F}
Min Distance 0.1538 0.2732 0.2458 0.1997

Mean Distance 7.76223 7.9934 8.2067 8.2582
Max Distance 24.6284 24.2931 23.9196 30.1443

Table 4.8: Real data experiment showing accuracy of the interpolation of intermediate
breathing states for five data sets.

[mm]/Data Set T32/T24 T32/T16 T32/T8 T32/F
Min Distance 0.9465 0.3671 0.5833 2.4355

Mean Distance 5.6503 4.9746 4.8215 6.2446
Max Distance 22.2019 18.8932 14.1134 17.2176

[mm]/Data Set T24/T16 T24/T8 T24/F
Min Distance 1.4852 1.3285 1.8347

Mean Distance 7.1077 7.4101 7.9520
Max Distance 22.1003 22.5588 20.8391

Table 4.9: Real data experiment showing target registration errors of pairs of data sets.

{T32, T24, T16}, the second subset consisting of {T24, T16, T8}, third subset {T16,
T8, F} and fourth subset {T32, T16, F}. For each of these subsets the transformation
T ′ relating first and second state of the subset and T ′′ relating second and third state
of the subset is calculated by using the shape context matching approach. Further the
transformation T ′′′ is calculated relating first and third state of the subset. By comparing
the results of applying T ′′′ and T ′′(T ′) on the points of the first state of each subset
minimum, mean and maximum distances are calculated and shown in Table 4.8.

For the interpolation of the displacement fields these evaluations inherently assume
a linear relationship between the different states in the breathing cycle, which is not
necessarily the case for real thorax breathing motion. Therefore, a second evaluation
experiment is performed on the real thorax data by using the airway tree branching points
as corresponding landmarks again to calculate landmark TRE. The same procedure as
described in the previous section is used. Registering two real data sets results in a
displacement field which is applied to the manually identified airway tree branching points
of the first data set and compared to the manually identified airway tree branching points
of the second data set. In this way minimum, mean and maximum target registration
errors are computed (see Table 4.9). Figure 4.7 shows the result of overlaying data sets
T8 and T32 before (f) and after (g) registration.
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4.4 Discussion

Experiments show that the nonlinear registration method based on the shape context
matching approach is a well-suited method for a variety of soft tissue organ surfaces.
Shape matching and subsequent volume registration and warping was successfully per-
formed using airway tree, lung, lung lobe and diaphragm segmentations. Experiments on
synthetic and real data sets show mean registration errors in the range of 5 to 8 mm.
Since there is a sophisticated image processing pipeline necessary for the whole registra-
tion process, the final error is composed of several components. First of all segmentation
and surface point sampling introduce errors that have an effect on the registration result.
The matching evaluation experiments using synthetically transformed point sets assess
the effect of segmentation errors. They show that the shape context descriptor based
matching approach is a suitable method if there are no segmentation errors present, since
the percentage of correctly identified correspondences stays stable at almost 100% over a
wide range of different numbers of sample points. However, a very large number of sample
points introduces inaccuracies due to the discrete nature of the shape context histogram.
For a stable matching quality histogram size would have to be increased at larger numbers
of sample points which leads to high computation times. The matching evaluation exper-
iments using synthetically transformed input volumes and independently sampled point
sets clearly show the dependency of matching quality on the number of sample points.
In accordance to common insights from sampling theory an increase in the number of
sample points increases matching quality until it stays stable between 4 and 5 mm start-
ing around 2000 sample points. This is consistent with the former experiment, since at
higher sampling rates histogram discretization issues come into play. The error of 4 to 5
mm can be explained by point sampling issues. The matching method uses independently
sampled points of two shapes, the established correspondences implicitly carry an error
in the sampling positions which becomes relevant in the graph-based optimization to find
the one-to-one correspondences.

Evaluation experiments with varying synthetic deformation forces show that larger
deformations induce a degrading matching accuracy, this indicates that the matching
method is not suitable to model extremely large movements. Synthetic and real-data
registration experiments also show acceptable behavior. Mean TRE are in the range of 5 to
9 mm. Here the effects of the preceding image processing pipeline steps have to be taken
into account. Segmentation inaccuracies, surface sampling issues and discretization effects
in the shape context matching all sum up to form an error which gets slightly smoothed by
the thin-plate spline interpolation process at those points that are interpolated, but not at
the correspondences. In addition, calculation of target registration errors is an error-prone
process by itself, especially since for these evaluation studies the branchpoint labeling was
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not performed by a medical expert but by the author.
The outcome of this work is a method that allows to calculate deformation fields

capturing organ motion. The focus lay on breathing motion but the basic concepts can be
used for other kinds of motion as well. Displacement fields may be derived from organs
like diaphragms or lung surfaces which enables one to build statistical models of organ
motion, e.g. by using Active Shape Models [Cootes and Taylor, 2001] in subsequent stages.
A statistical model of breathing motion resembles a very useful tool for segmentation and
registration applications in medical imaging areas that suffer from motion artifacts.

4.5 Conclusion

In this chapter a three-dimensional extension of the shape context approach for matching
and registering 3D surfaces was presented and experiments on lung, lung lobe, airway
tree and diaphragm surfaces were shown. Shape context based nonlinear registration is a
promising technique which has to be studied further to be able to lower the TRE. Future
work will include algorithm fine-tuning on the one hand and more evaluation experiments
on the other hand. Fine-tuning might be performed by using the Normalized Mutual In-
formation measure instead of Normalized Correlation Coefficients for the intensity-based
cost function and by finding a better way to get rid of segmentation and discretization
errors and outliers. The thin-plate spline displacement field interpolation might be im-
proved by using the weights from the matched points for regularization instead of simply
having a single regularization parameter. Speed-up of the pipeline should be performed
by approximating the TPS, since this is the most time-consuming part of the processing.
A more appropriate evaluation study should include a large number of data sets and use
manual correspondences identified by experts for the TRE calculation. Further, the method
should be compared to other state-of-the-art techniques like e.g. [Chui et al., 2003]. Based
on a large number of evaluated data sets, a statistical model of the displacement fields
that describes breathing motion could be established.
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Figure 4.7: Some shape matching results are depicted in a), b) & c). d) & e) show
registration results of synthetically transformed data set T32. f) & g) give an example of
corresponding airway branch points that were used to determine target registration error.
h) & i) show results from registering data sets T32 & T8. In d), e), h) and i) the white
volumes are the original and dark volumes are the overlaid warped volumes.
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This chapter presents a novel nonlinear registration approach based on automatically
extracted and matched feature points. Although intensity-based approaches are getting
more attention by the medical registration research community compared to feature-based
approaches, they face two kinds of practical problems when applied to large thoracic data
sets. First, due to their mathematical complexity they require large computational ef-
fort. Second, many approaches tend to misregister small structures in the lung like vessels
and airways, due to similarity measures being dominated by homogeneous areas. Fur-
ther, intensity variations that occur when comparing inhaled and exhaled lungs are not
always modeled due to implicit brightness constancy assumptions. Figure 5.1 shows a
nonlinear registration example on lung CT data where the widely-used Demons algo-
rithm [Thirion, 1998] leads to misregistrations of vessel structures. Feature-based algo-
rithms prevent such problems by explicitly concentrating on a subset of the provided
image information, a subset which is derived from a segmentation or directly from the
vascular structures of interest. This not only prevents misregistrations but also has a
positive effect on computation time.

Consequently, an automatic feature matching and registration pipeline was established
using state-of-the-art techniques from the computer vision community. This pipeline con-
tains Förstner corner detection [Förstner, 1986], forward-backward matching using a 3D

73
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Scale-Invariant Feature Transform (SIFT) descriptor [Lowe, 2004] and a global descriptor
similar to shape context [Belongie et al., 2002] and dense displacement field estimation
in the thin-plate spline (TPS) framework [Bookstein, 1989]. Especially SIFT and shape
context have proved to be very powerful approaches in traditional computer vision appli-
cations like wide-baseline matching or object recognition. The main contributions of our
work are the 3D extension and the runtime optimization of these stages and the setup of an
automatic feature registration pipeline for application in medical imaging. Related work
on feature-based matching and registration has already been presented in 2.2.1. Note that
none of these works addresses the problem of fully automatic feature extraction, matching
and registration.

Figure 5.1: Example data set (data set F from evaluation data) with axial slices in top and
coronal slices in bottom row. a) and c) show the differences in inspiration and exhalation.
b) gives the difference image after Demons registration. Note the misregistered vessel
structures.

This chapter is organized as follows. Section 5.1 introduces the components of the
feature-based registration scheme. Section 5.2 shows setup and results of synthetic and
real data experiments. Note that we only present a proof-of-concept evaluation in this
chapter, since the developed algorithm will be evaluated more thoroughly in Chapter 7.
Finally Section 5.3 discusses the obtained results and concludes the chapter.
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5.1 An Automatic Feature-Based Registration Pipeline

Figure 5.2: Nonlinear matching and registration pipeline. The feature extraction stage
only shows extracted bone corners, while the method also extracts lung and tissue features.

Breathing motion mainly stems from two sources, the diaphragm and the rib cage mus-
cles. Expected tissue deformations are not extremely large even in the case of matching
full exhalation to full inhalation and they change smoothly over the image domain. The
deformations are locally similar to translations with small tissue deformations, formally
speaking the Jacobians of the displacements are nearly identity matrices. These consid-
erations imply that a robust and reproducible feature extraction step producing large
numbers of feature candidates, followed by the automatic matching of feature descrip-
tors suited to the expected local deformations is a valid approach to find corresponding
structures in the images (see Figure 5.2 for the matching and registration pipeline). Due
to the large similarity of local neighborhoods in lung images (vessel and airway struc-
tures) it is important to not only look at local feature descriptors but also add a notion
of global correspondence. [Mortensen et al., 2005] have recently proposed a combined
local and global descriptor for the matching of repetitive patterns. The combined de-
scriptor was applied to e.g. find correspondences from images of buildings with repet-
itive window structures. Their ideas were adapted to solve the ambiguities with lo-
cally similar structures. The final step after establishing corresponding features is the
interpolation of a dense displacement field. Since the landmark publication of Book-
stein [Bookstein, 1989] this is often performed in a TPS framework, however recent publica-
tions [Rohr, 2001, Donato and Belongie, 2002, Guo et al., 2004] have shown that the inter-
polating behavior of TPS is not desirable since it may lead to foldings (non-diffeomorphic
mappings) of the interpolated displacement field. To overcome this problem the deci-
sion to use TPS approximation [Rohr, 2001] was made. Algorithm 2 gives the algorithmic
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overview of the matching and registration pipeline that was developed in this work.

Algorithm 2 Nonlinear Feature Matching and Registration Algorithm
1: for the two input images to register do
2: Reproducible detection of 3D Förstner corners as image features
3: Calculation of local 3D SIFT descriptors for each feature
4: Calculation of global 3D shape context descriptors for each feature
5: Robust forward-backward matching using Euclidean distance on SIFT and χ2 metric

on shape context
6: end for
7: Nonlinearly register both images by establishing a dense TPS displacement field from

the corresponding feature matches

The large size of current routinely acquired CT volume data sets always poses restric-
tions on practically useful algorithms due to runtime and memory consumption issues.
This is especially true in the case of complex nonlinear registration methods. Acquired
CT data sets easily have several hundred slices with x-y resolutions of 512 by 512 vox-
els respectively, thereby requiring hundreds of MB in memory due to their 12 bit gray
level resolution. Therefore it is necessary to carefully consider computational and mem-
ory effort of registration algorithms during the design stage. In the presented algorithm
two severe performance bottlenecks were identified due to the large number of detected
feature points. First, the calculation of the shape context descriptor on large numbers of
feature points is critical due to its internally used log-polar histogram structure and the
O(N2) complexity of descriptor calculation (with N being the number of extracted feature
points). Second, the direct solution of the TPS equation system and the calculation of the
final dense displacement field is very expensive when confronted with a large number of
matched points. These strategies were developed to overcome these performance issues:

• Approximate the shape context measure with a measure that uses axis-aligned his-
togram bins instead of bins in a log-polar coordinate frame. This makes it possible
to use 3D integral images to significantly speed up descriptor computation.

• Approximate the global TPS transform with a locally restricted thin-plate-spline
(LRTPS) using a k-d tree data structure.

The following subsections describe the different pipeline stages in more detail.

5.1.1 Feature Extraction

The first step in the nonlinear registration pipeline deals with feature extraction.
The need for fast and reproducible features was already extensively investigated
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in [Rohr, 2001]. His evaluations of several different 3D anatomical point landmark
detection operators and their localization errors resulted in the recommendation to use
the Förstner operator [Förstner, 1986] for reproducible 3D feature detection. Compared
to other presented operators like those that use local first and second order partial deriva-
tives [Kitchen and Rosenfeld, 1982] or curvature extrema [Thirion and Gourdon, 1995] it
has the advantage of only using first order partial derivatives in its formulation. This
speeds up computation and makes the operator less prone to noise which gets enhanced
by the discrete approximations of higher-order differentiation operators. Further, the
reported experimental results show that the Förstner operator gives superior landmark
detection and localization capabilities in terms of repeatability and reproducibility.

Structure Tensor Representation

The Förstner operator is based on the matrix S∇I which represents for each location the
averaged dyadic product of the local intensity gradient:

S∇I := ∇I∇IT =


( ∂I

∂x)2 ( ∂I
∂x)(∂I

∂y ) ( ∂I
∂x)(∂I

∂z )

( ∂I
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∂z ) (∂I
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This symmetric, positive semi-definite matrix is also known as structure

tensor [Jaehne, 1993], the overline represents averaging in a local neighborhood. The
structure tensor is a measure that contains information on orientation and intensity
of the surrounding structure around the location I(x). It is derived from the tensor
(outer) product ∇I∇IT of the intensity gradients. Although this product contains
no more information than the gradient itself, there is the advantage that it can be
averaged without cancellation effects in areas where gradients have opposite signs. It is
very common to perform the averaging by smoothing with a Gaussian kernel Gρ with
standard deviation ρ, leading to

S∇I = Gρ ∗ (∇I∇IT )

in a more compact notation. The smoothing over the local neighborhood has the ef-
fect that the structure tensor contains additional information about the homogeneity of
orientations within the neighborhood. This information can be accessed via an eigen-
decomposition S∇I = UΦUT , where the eigenvectors (columns of U) denote the principal
orientations and the eigenvalues (diagonal elements of Φ) denote the amount of intensity
change along the principal orientations. The eigenvector to the smallest eigenvalue deter-
mines the dominant orientation, while the trace of S∇I (i.e. the sum of the eigenvalues,
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Figure 5.3: Three views of a 3D visualization of extracted lung and bone feature points
from data set A.

or the sum of the diagonal elements of S∇I) determines the magnitude of the dominant
orientation.

Förstner Corner Detection

In two dimensions corners are defined as image structures where the eigenvalues of the
structure tensor differ significantly. This can be described by the ratio of the determinant
and the trace of the eigenvalues. A generalization to three dimensions has been presented
in [Rohr, 2001], who also showed that this corner detector gives reliable responses for
medical volumetric images. The Förstner corner response function is given as

F (x, y, z) =
det(S∇I)

(1
3 tr(S∇I))3

.

The response of the operator lies between 0 and 1 and characterizes the similarity
of the eigenvalues of S∇I without explicitly calculating them. Maxima of this response
function have to be identified by thresholding to identify corners. Finally corners are
labeled according to the gray-value of the underlying pixel, resulting in different corner
classes like lung, tissue or bone. We refer to the set of extracted feature points from fixed
and moving images as {xF } and {xM}, respectively. Figure 5.3 shows extracted lung and
bone features from an example data set, tissue features are not shown to achieve a better
visualization.
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5.1.2 Local SIFT Feature Descriptor

For each feature derived in the previous stage a distinctive local feature descriptor has
to be built which is robust to deformations as well as feature localization errors. The
SIFT descriptor [Lowe, 2004] which has been recently introduced in the computer vi-
sion community was identified as being suitable for this medical application. Perfor-
mance evaluations show its excellent matching behavior on various kinds of transforma-
tions [Mikolajczyk and Schmid, 2005]. In this work only the descriptor representation of
SIFT is used, since the keypoint localization is performed using Förstner corners instead
of the computationally more intensive scale space localization approach. The original 2D
SIFT descriptor representation is a histogram of gradient location and orientation in a
local neighborhood. Location is quantized in a 4×4 grid and the gradient angle quantized
into eight orientations, resulting in a descriptor of total size 128. For illumination invari-
ance, the descriptor usually is normalized by its L2-norm. An illustration of the gradient
orientation histogram setup is given in Figure 5.4. We do not incorporate the notion of
scale here, the feature points we are interested in are assumed to come from the original
scale level.

Figure 5.4: Illustration of the 2D SIFT gradient orientation histogram bins. Gradient
orientations are sampled from the 2 × 2 location bins into 4 histograms. The blue circle
indicates the Gaussian weighting of the gradient orientations.

To apply the SIFT descriptor representation on volume data an extension to 3D is
necessary. The 3D SIFT descriptor quantizes gradient location in a 2 × 2 × 2 grid while
gradient orientation (consisting of two angles that comprise a spherical coordinate sys-
tem) are quantized into two orientation histograms of 8 bins respectively. After putting
the orientation histograms sequentially into the descriptor, the total descriptor size is 512
and it is again normalized by its L2-norm. Note that the coordinate frame of the used
location grid is aligned to the volume coordinate system, as opposed to the description
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of the original 2D SIFT descriptor. In the 2D case before descriptor construction a prin-
cipal gradient orientation is derived and the local neighborhood is transformed into this
coordinate frame to get rotation invariance. So the proposed 3D SIFT descriptor is not
rotation-invariant. This saves computation time and moreover rotation invariance is not
critical for the intended application, since breathing motion locally does not lead to strong
rotations. Preventing an incorporation of different rotations further has the advantage of
getting an improved discriminative behavior of the descriptor.

5.1.3 Global Shape Context Feature Descriptor

The 3D shape context descriptor [Belongie et al., 2002, Urschler and Bischof, 2005] treats
objects as (possibly infinite) point sets and assumes that the shape of an object is cap-
tured by a finite subset of its points. We have already discussed this method in Section 4.2,
the reader may refer there for more details. The result of the shape context descriptor
calculation is a histogram of relative positions of all other points of a shape with respect
to the point under consideration. This histogram uses bins that are uniform in a three-
dimensional spherical coordinate system (θ,φ,r). The r coordinate axis is logarithmically
sampled, such that positions of nearby sample points have stronger influence on the de-
scriptor than ones located farther away. The log-polar histogram binning of this method
is a performance problem due to the large number of feature points that are detected.

Figure 5.5: Approximated global context (a) vs shape context (b) histogram bin structure.

To overcome this performance problem an approximation of the shape context descrip-
tor was used. This approach was recently developed in our group [Bauer, 2005] offering
comparable matching behavior to the classical shape context approach. The descriptor
replaces the log-polar histogram bin structure with a structure based on rectangular, axis-
aligned image patches. Figure 5.5 shows the histogram bin structure of the classical and
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the approximated shape context descriptor. The patch size increases exponentially with
increasing distance from the center (i.e. feature point). This strategy preserves some
local information close to the feature point and generalizes at larger distance to a coarser
quantization. A key advantage of this descriptor which is extremely important in case of
medical applications with large 3D volumes is its low computational cost. By using 3D
integral images [Viola and Jones, 2004] to store point locations the cost for computing the
descriptor is linear in the number of layers since the features of interest in a rectangular,
axis aligned patch can be computed in linear time from eight sampled values in a 3D in-
tegral image. Another advantage is that the size of the descriptor is linear in the number
of layers, while the covered areas increase exponentially.

5.1.4 Robust Feature Matching

To find corresponding feature points a matching algorithm has to be used. The previous
stages have established a local and a global descriptor for each feature point, the task of
the matching stage now is to find those point pairs from two volumes that minimize a cost
function derived from the descriptors. The simplest possible matching algorithm would be
to relate each feature point in the first image to all feature points in the second image via
the cost function. The point pair exhibiting the smallest value of the cost function is taken
as the found correspondence. So for a point xF,1 ∈ {xF } from image IF a corresponding
point xM,1 ∈ {xM} from image IM is identified. Note that it is possible that xM,1 is the
best match for another point in {xF } as well, the method therefore lacks in consistency. To
make this approach more robust in terms of consistency, occlusions and erroneous feature
point detection an idea from stereo matching is borrowed. Forward-backward matching in
stereo vision (as presented in Fua [Fua, 1993]) takes care of the above mentioned problems.
The basic idea is to perform the matching step twice by reversing the roles of the two
feature point sets and considering as valid only those matches for which the corresponding
points are identical when matching from {xF } to {xM} and from {xM} to {xF }. So in
addition to xF,1 being the best match for xM,1, xM,1 must also be the best match for xF,1.
In practice the search area that is used for determining the correspondences is locally
restricted according to the maximum amount of expected tissue deformations.

The cost function used in both the forward and the backward matching step is a
weighted linear combination of distance metrics. The distance metric for the SIFT feature
descriptor is Euclidean distance in the 512-dimensional feature space. Given two SIFT

descriptors SFi and SFj the distance metric is defined as

dSIFT :=
√∑

k

(SFi,k − SFj,k)
2.



82 Chapter 5. Feature-Based Nonlinear Registration

Shape context descriptors SCi,SCj are compared using a χ2 statistic

dSC := χ2 =
1
2

∑
k

(SCi,k − SCj,k)
2

SCi,k + SCj,k

on the descriptors SCi and SCj . Both distance metrics are normalized between 0 and 1.
The total cost function is given by the weighted linear combination

d = ωdSIFT + (1− ω)dSC

where ω is a weighting factor that represents the relative importance of global and local
matching cost term. Matches with a cost function value above some threshold Td get
discarded.

5.1.5 Dense Displacement Field Interpolation

The final step in the registration pipeline is the estimation of a dense displacement
field from the sparse matching result. For this purpose the TPS framework is
used [Bookstein, 1989, Rohr, 2001]. In its original formulation the interpolating behavior
of the TPS often is too restrictive and might lead to over-fitting to the correspondences
or folding of the displacement field in case of erroneous correspondences. Therefore,
the findings of [Rohr, 2001] for approximating TPS mappings were considered. A
regularization term is added to the formulation, which is steered by a parameter λ,
weighting the trade-off between interpolation and smoothness of the solution. Further,
a landmark error term is introduced to give each pair of corresponding features an
uncertainty measure, which is directly derived from the matching costs of the feature
matching stage. More details on TPS interpolation and approximation can be found in
Appendix B.1.

It is desirable that the matching stage produces a large number of feature corre-
spondences nmatch. On typical volume data sets thousands of correspondences might
be achieved. In this case the warping of large volume data sets is very costly, since for
each voxel a multiplication with O(nmatch) weighted landmarks including the calculation
of O(nmatch) vector norms is involved. Therefore a locally restricted version (LRTPS) of the
global TPS transform is used. The source points of the feature correspondences are put into
a k-d tree structure to give efficient access to its neighbor features. For each feature point
a TPS transform restricted to a pre-defined number of neighbors is calculated. So only a
subset of the total set of correspondences in the volume is taken for locally estimating the
transform, however this subset is chosen as being near to the feature point. The dense
displacement field approximation step now always looks for the nearest feature correspon-
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dence in the k-d tree and takes the stored local TPS transform to compute a displacement.
Note that this approximation to the global TPS might lead to artifacts in the resulting
displacement field, if the distribution of landmarks is not dense and even enough, or if the
number of neighbors is too small. A possible solution to this problem might be a separa-
tion of the images into several regions, where each region has to contribute a pre-defined
number of matches (so-called bucketing, see e.g. [Zhang et al., 1995]), however, this will
also increase the number of noisy/outlier matches.

5.2 Evaluation Experiments & Results

To assess the validity of the feature-based registration approach qualitative and quantita-
tive evaluations were performed on synthetically transformed and clinical thorax CT data
sets. For the synthetic deformation experiments two different kinds of deformations were
used. The first deformation model is a Simulated Breathing Transformation simulating
rib-cage and diaphragm muscle behavior. The second synthetic transformation makes use
of a regular grid of landmarks that are moved in random directions. The synthetic experi-
ments give numbers on the root-mean-square (RMS) of the intensity differences before and
after registration, compares the registered and the synthetic displacement fields and com-
pares the method with the Demons algorithm. Real data experiments show the decrease
in the RMS of the intensity differences, compare the RMS with the Demons algorithm and
give qualitative difference images. All experiments were performed on a dual 2GHz AMD
Opteron system with 8GB RAM running Linux.

5.2.1 Synthetic Deformation Experiments

Synthetic experiments were performed on seven test data sets (A,B,C,D,E,F,G) taken at
inspiration, each of them having a volume size of 512×512×256 voxels. The first synthetic
transformation intends to model breathing behavior. The nonlinear transformation ϕ

simulates diaphragm and rib cage movement and consists of two components tvertical and
tinward. The details of this synthetic transformation are given in Appendix B.6.

The seven test data sets were synthetically transformed with a small and a large de-
formation. The small deformation is defined by the translations tvertical = 25mm and
tinward = 10mm while the large deformation is defined by tvertical = 55mm and tinward =
25mm. Figure 5.6 a)-c) shows the effects of these deformations on data set A. First, the
feature matching produces corresponding points which can be compared to the ground
truth simulated breathing transformation in terms of the RMS of the displacement differ-
ence vectors (RMSdisp) and the maximum of the lengths of the displacement difference
vectors (MAXdisp) over all correspondences. Evaluations showed that the RMSdisp varies
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Figure 5.6: Synthetic transformations. a) original data set A, b) the small and c) the large
simulated breathing deformation. d) original data set B, e) randomly displaced landmark
transformation -8...+8, f) displacement -24...+24, g) displacement -48...+48.

Measure A B C D E F G Mean

RMSDinitial [HU] 385.99 327.25 303.92 359.49 318.73 316.58 316.45 332.63
RMSDdemons [HU] 114.44 115.56 92.05 100.06 96.33 90.21 105.95 102.08
RMSDfeature [HU] 45.18 45.71 43.43 50.78 46.09 41.64 47.91 45.82
RMSdisp,demons [mm] 4.564 5.961 5.412 4.842 4.756 4.931 5.741 5.172
RMSdisp,feature [mm] 0.662 0.769 0.59 0.66 0.601 1.338 1.025 0.806
MAXdisp,demons [mm] 34.55 38.56 38.06 29.95 28.45 35.26 37.59 34.63
MAXdisp,feature [mm] 8.59 9.56 8.02 8.52 8.87 12.64 11.79 9.71
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5
-1

0

# matches 2678 2121 2330 2022 1805 5204 3714 2825.9

RMSDinitial [HU] 549.02 477.81 446.84 521.65 477.07 472.65 442.95 484
RMSDdemons [HU] 134.46 135.69 128.57 181.32 145.77 153.67 153.11 147.51
RMSDfeature [HU] 69.35 82.24 71.09 96.98 70.11 74.78 78.93 77.64
RMSdisp,demons [mm] 6.844 7.384 6.912 5.822 5.113 7.012 6.992 6.583
RMSdisp,feature [mm] 1.059 1.382 1.327 1.331 1.252 2.256 2.03 1.519
MAXdisp,demons [mm] 39.45 38.12 39.99 41.72 38.09 43.01 42.95 40.48
MAXdisp,feature [mm] 15.22 21.44 19.84 23.49 18.24 24.14 21.66 20.58
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5
5
-2

5

# matches 1940 1424 1709 1287 1277 2778 2856 1895.9

Table 5.1: Simulated breathing transformation. Registration results in terms of RMS
intensity differences and displacement difference vectors.



5.2. Evaluation Experiments & Results 85

Measure -8...+8 -16...+16 -24...+24 -32...+32 -48...+48
RMSDinitial [HU] 164.89 233.48 289.76 333.94 397.89
RMSDdemons [HU] 161.13 188.67 193.75 184.12 253.81
RMSDfeature [HU] 90.58 169.89 236.83 271.113 360.72
RMSdisp,demons [mm] 5.834 9.374 13.874 17.099 19.933
RMSdisp,feature [mm] 4.802 8.355 11.172 15.792 18.562
# matches 1729 1101 426 312 87

Table 5.2: Synthetic TPS transformation results. Registration results in terms of RMS
intensity differences and displacement difference vectors.

between 0.265mm and 0.314mm for the small and between 0.558mm and 2.479mm for the
large deformation over the data sets. Accordingly MAXDISP varies between 2.62mm and
8.59mm for small and between 14.95mm and 28.37mm for large deformations respectively.

Table 5.1 gives the results of the synthetic registration experiments. All comparisons
are always performed only on those regions which are present in both registered data
sets. The RMS of the intensity differences before (RMSDinitial) and after (RMSDfeature)
registration are calculated, as well as the difference of the resulting and the synthetic
displacement fields in terms of the RMS of the displacement vector field RMSdisp and the
maximum of the lengths of the displacement difference vectors MAXdisp. The algorithms
performance is compared to the widely used Demons [Thirion, 1998] algorithm. Its imple-
mentation was taken from the Insight Segmentation and Registration Toolkit [ITK, 2006].
The Demons algorithm uses a five level multi-resolution framework to calculate a smooth
displacement field with a fixed number of iterations per multi-resolution level (between 100
and 15 from coarse to fine) in a gradient-descent scheme. Figure 5.7 a)-c) shows difference
images of data set D which had the worst behavior in terms of decreasing the RMS of the
intensity differences using the large simulated breathing deformation.

The second synthetic transformation is calculated using a number of evenly distributed
landmark points and randomly assigning displacements to these landmarks. The amount of
the displacement is increased up to the sampling size of the landmark distribution. These
displacements are not physically motivated and the larger the assigned displacements are
the harder it is to correct them. The dense synthetic displacement field is calculated using
a TPS interpolation. Note that we use TPS interpolation here not TPS approximation. For
data sets size 512× 512× 256 every 64 voxels a landmark is placed in the original image.
This leads to a grid of 7 × 7 × 3 landmarks. Now a random displacement is calculated
for each landmark coordinate in the range from -8 to +8 voxels. This is repeated five
times while always doubling the displacement range. Evaluations are solely performed
on data set B, Figure 5.6 d)-g) shows the effect of these synthetic displacements. The
main motivation of these experiments is to determine the degree of deformation where the
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algorithms are not capable to register the data anymore. Table 5.2 gives the results of
these experiments.

5.2.2 Clinical Data

The algorithm was also evaluated on four clinical thoracic data sets consisting of two
scans at different breathing states. The data sets show different problem characteristics.
Data sets B and G differ by a small breathing deformation and intensity variations due
to contrast agent application. Data set G additionally shows a lung disease in the upper
lobe region. Data sets E and F differ by large breathing deformations and the images
have intensity differences due to a lung disease making them very hard to register. For
the clinical data no gold standard displacement was available for comparison, therefore
solely the decrease in the RMS of the intensity differences before and after registration
are calculated. Again the novel feature-based algorithm is compared with the Demons
algorithm. The RMS of data set B was decreased from 201.57HU to 129HU (Demons) and
to 104.83HU (feature-based). Data set E decreased from 403.49HU to 235.88HU and to
197.45HU, data set F from 413.62HU to 288.31HU and to 294.98HU and finally data set G
from 367.66HU to 274.14HU and to 241.43HU. The numbers of found correspondences lies
between 685 and 1632. For qualitative results difference images are shown in Figure 5.7
d)-f) for data set B and g)-i) for data set E.

5.3 Discussion & Conclusion

The different stages of the proposed feature-based algorithm require some parameters to
be chosen. In the matching stage normalized local and global descriptors are used to
form the matching cost function. We chose the weight ω that represents the influence of
local and global descriptors to be 0.5, i.e. the influence of both descriptors is equal. This
seems to be a reasonable choice in many cases, however if the probability of self-repeating
structures becomes very high, this parameter should be modified in favor of the global
descriptor. A meaningful threshold Td has to be found to exclude bad matches which was
empirically chosen at 0.3. The matching stage also produces some outliers. The MAXdisp

measures reflect this fact, especially in the matching evaluation. However, the registration
stage with the approximating TPS framework takes the magnitude of the matching cost
into account, such that outlier matches have a low influence on the final dense displacement
field. Parameter λ of the TPS displacement field approximation was selected as λ = 0.005
after experimenting with several data sets. The LRTPS implementation needs a choice on
the number of neighboring points that defines a local TPS, this parameter was set to 200.
None of these parameters is critical, i.e. small changes of these parameters lead to similar
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Figure 5.7: Selected Results. Top row always axial, bottom row always coronal slices. Left
image shows difference image before, middle image after Demons and right image after
feature-based registration. a)-c) shows synthetic results of data set D with a simulated
breathing transformation of tvertical = 55mm and tinward = 25mm. d)-f) shows results on
real data set B, g)-i) on real data set E.
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results.

The two goals of the proposed algorithm, to be faster and similarily accurate as a state-
of-the-art nonlinear intensity-based registration algorithm, were both met. Computation
time of the feature-based algorithm on the 512 × 512 × 256 data sets ranges between
1632s and 2282s, depending on the number of identified correspondences. The largest
part (more than 50%) of the algorithm runtime still goes into the calculation of the dense
displacement field. The Demons algorithm takes on average around 2540s for registration
of two 512 × 512 × 256 data sets. If one further increases data sets size a feature-based
algorithm will be even more efficient due to its inherent reduction of matching complexity.

Registration accuracy of the feature-based algorithm exceeds the Demons algorithm in
most of the synthetic examples. Demons only performs better on the evenly distributed
landmark TPS experiments with a high degree of random deformation where the feature-
based approach is not able to find enough correspondences. However, these deformations
are physically implausible and not entirely representative. Especially the simulated breath-
ing transformation was very accurately registered using the feature-based approach. This
is reflected in the substantial decrease of the RMS of the intensity difference and the RMS of
the displacement difference vector fields (in the order of 0.5mm to 2.0mm). The difference
images of the simulated breathing experiment (Figure 5.7) illustrate the problems of the
Demons approach with the vascular structures. The real data experiments show that the
performance of the feature-based algorithm is comparable to Demons. Performance on
data sets B and G was better, while the performance on the very difficult data sets E
and F is similar. Although Demons shows lower RMS values, the difference images of the
feature-based approach have the same quality. However, the feature-based approach also
has some problems with registration of vessel structures on the difficult data sets. The
largest disadvantage of the feature-based approach is to get a large number of robust,
evenly distributed feature matches. This can not be guaranteed in the current imple-
mentation, which explains the registration problems and can also theoretically lead to
artifacts at the edges of the local TPS regions, however in our set of images, these were
not observed. A good direction for further work would therefore be the investigation
of more sophisticated methods to approximate and speed-up the TPS like e.g. proposed
in [Beatson and Newsam, 1998]. For another comparison of this method with more state-
of-the-art nonlinear registration algorithms, the reader may refer to Chapter 7. However,
a direct comparison to these results is difficult since we increase the number of iterations
of the Demons algorithm in Chapter 7 and we modified the comparison measures. We also
conclude that the influence of the feature extraction stage is the main accuracy bottle-neck,
therefore, a comparison to other feature extraction methods would be interesting. All of
the later stages in the matching and registration pipeline crucially depend on accurate
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and reproducible feature extraction, so one might think of coming up with a sub-voxel
accurate extraction algorithm. Sub-voxel accuracy would have to be used later as well for
the local descriptor calculation and one could also think of a way how to locally refine
matches during the matching stage, i.e. find a more probable sub-voxel match after a
voxel-accurate match has been identififed. On the other hand, one should be aware of the
fact that these procedures will increase the algorithm run-time dramatically.
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This chapter describes a novel hybrid nonlinear registration algorithm that combines
feature- and intensity-based registration in a variational framework. Feature-based regis-
tration often uses manually or automatically derived point landmarks [Rohr, 2001]. After
matching the resulting sparse displacement field from the point correspondences is interpo-
lated/approximated in the TPS [Bookstein, 1989, Rohr, 2001] framework which crucially
depends on an even distribution of point correspondences over the data set. However,
this even distribution can rarely be guaranteed by automatic matching algorithms. Con-
sequently we have decided to combine feature and intensity based methods, leading to a
very flexible registration scheme that still provides good accuracy in the vessel structures.
Speed up of the convergence of intensity based methods will also be increased this way.

Building upon the automatic point landmark extraction, matching and registration
from Chapter 5 the goal of this chapter is to replace the TPS displacement field estimation
by intensity-based registration, thus establishing the hybrid nonlinear registration scheme.
The assumption that the coupling of landmark- and intensity-based registration is more
powerful than the individual steps has already been investigated by other authors. We
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have already presented a number of hybrid approaches in Section 2.2.2.7. Many of these
hybrid schemes need a large computational effort during registration or during automated
segmentation. Others require manual landmark selection or tedious semi-automatic seg-
mentation methods for pre-processing. In this work we present a novel fully-automatic
hybrid nonlinear registration framework that is both efficient and independent of tedious
or time-consuming pre-processing. This framework uses a flexible variational formula-
tion [Modersitzki, 2004] where different data and regularization terms can be used and the
corresponding landmarks from the automatic landmark matching of the previous chapter
act as an additional regularization constraint.

The work we present in this chapter is closely related to [Hellier and Barillot, 2003]
and extends [Fan and Chen, 1999a] to be less dependent on a pre-segmentation. The
proposed algorithm is based on the fully automatic feature extraction and matching
pipeline from Chapter 5 and combines this feature-based step with optical flow
based intensity registration in a generic variational framework [Modersitzki, 2004]
consisting of a data and a regularization term. This combination leads to a flexible
formulation where different data and regularization terms can be used and the
matched features always form an additional regularization constraint. In the proposed
algorithm the variational framework uses an L2 − norm data term and an anisotropic
image-driven regularization term [Weickert and Schnörr, 2001a] leading to an optical
flow formulation similar to [Fan and Chen, 1999a, Hellier and Barillot, 2003]. In contrast
to [Hellier and Barillot, 2003] feature-based registration is not restricted to segmented
surfaces and the derivation of the combined registration energy term incorporates image
information for the regularization and weighs the feature matches according to their
matching accuracy. In [Fan and Chen, 1999a] the derivation of the intensity-based
registration is very similar to the formulation used in this work, however, they also
rely on several pre-segmentation steps making the algorithm very time-consuming and
they only use the feature information as a hard initialization for the intensity-based
registration without taking matching costs into account.

This chapter is organized as follows. Sections 6.1 and 6.2 introduce the components of
the hybrid registration scheme. Section 6.3 presents the proposed novel hybrid registration
algorithm. Section 6.5 shows setup and results of synthetic and real data experiments,
while Section 6.6 discusses the obtained results and gives an outlook on future work.

6.1 Landmark-Based Registration

In Chapter 5 an automatic landmark extraction, matching and registration approach con-
sisting of a four-stage pipeline was constructed, inspired by state-of-the-art computer vision
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matching techniques [Mikolajczyk and Schmid, 2005]. We used Förstner corner detection,
local SIFT and global shape context descriptors, forward-backward matching and and a
TPS approximation for estimating the dense displacement field. However, the algorithm,
while being very efficient in the first three stages, still needs large computational effort
for the final dense displacement field estimation and shows a crucial dependence on the
even distribution of matched landmarks over the input volume. For a quick overview of
the algorithm see Algorithm 2 and Figure 5.2.

6.2 Variational Intensity-Based Registration

As presented in Section 1.4 the general nonlinear registration problem can be formulated as
a minimization process of a cost functional J that depends on a similarity function D and
a regularization constraint S [Modersitzki, 2004]. Fixed image IF (x) and moving image
IM (x) are considered as intensity functions IF (x) : ΩF → R and IM (x) : ΩM → R over
the domains ΩF ,ΩM ⊂ R3. The formalized registration problem is stated according to
Definition 1.2 as the problem of finding a transformation ϕ, represented as a displacement
field ϕ(xF ) = (u(xF ), v(xF ), w(xF ))T : ΩF → ΩM , that minimizes (for a weight α > 0)
the continuous cost functional

J [ϕ] := D[IF , IM ;ϕ] + αS[ϕ] = min. (6.1)

6.2.1 Choice of a Similarity Measure

A frequently used choice for a similarity measure D is the L2−norm of the intensity differ-
ences. This is especially useful in intra-modality applications where a constant brightness
assumption is holding. The SSD similarity measure is well-known in the motion estimation
and computer vision literature, where it is used for optical flow [Lucas and Kanade, 1981,
Barron et al., 1994, Weickert and Schnörr, 2001b] estimation, and it is also a wide-spread
similarity measure in the medical image registration community [Fan and Chen, 1999a,
Hellier and Barillot, 2003]. The following formulation characterizes the SSD measure:

D[IF , IM ;ϕ] := DSSD[IF , IM ;ϕ] =
∫∫∫

Ω

(IF (x)− IM (ϕ (x)))2dx (6.2)

Since the SSD measure is quite sensitive to outliers due to squaring the intensity dif-
ferences, a more robust alternative is given by the Sum of Absolute Differences (SAD). It
is defined as the L1 − norm of the intensity differences:
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DSAD[IF , IM ;ϕ] =
∫∫∫

Ω

|IF (x)− IM (ϕ (x))|dx (6.3)

Obviously it is also possible to define different similarity measures in this framework,
examples of further measures (correlation and mutual information-based) can be found
in [Modersitzki, 2004]. There the correlation-based similarity measure is derived as
a generalization of the SSD measure and they also show how to define a MI-based
measure, which nevertheless has the major drawback of being costly to compute
and difficult to approximate the derivatives of the similarity measure. A further
interesting similarity measure based on normalized intensity gradients has been presented
in [Haber and Modersitzki, 2006].

6.2.2 Choice of a Regularizer

The minimization term S classically minimizes the squared norms of the gradient vectors
of the displacement field components (u, v, w):

S[ϕ] := S[ϕ]H =
∫∫∫

Ω

|∇u|2 + |∇v|2 + |∇w|2 dx (6.4)

This enables a certain amount of smoothing of the displacement field by penalizing
large gradient differences in neighboring displacement vectors. According to the taxonomy
of [Weickert and Schnörr, 2001a] we refer to this regularizer as a homogeneous regularizer,
a formulation which first appeared in [Horn and Schunck, 1981] for solving the optical
flow problem globally in a variational framework.

A major drawback of this choice of regularizer is its inherent capability to regularize
isotropically over the domain of interest. However, in the case of practical image registra-
tion applications, deformations of soft tissue organs during breathing or cardiac motion
are investigated. Since these deformations never occur smoothly across the whole body,
this regularization model is far from being realistic. For example the reader may think
of the diaphragm and rib cage muscles which exert forces on the lung due to contrac-
tion and expansion. As a result the lung moves independent of the rest of the thorax
due to the pleural interface that connects lung and rib cage. Fortunately the bordering
structures between lungs and rib cage can easily be depicted on CT images due to a large
intensity gradient occurring at this anatomical border. Consequently we propose to use
an anisotropic regularization of the deformation field, which specifically takes large inten-



6.2. Variational Intensity-Based Registration 95

sity gradients into account. According to the taxonomy of [Weickert and Schnörr, 2001a]
again, we define the anisotropic image-driven regularization as

S[ϕ] := S[ϕ]AI =
∫∫∫

Ω

(∇u)T D∇IF
∇u + (∇v)T D∇IF

∇v + (∇w)T D∇IF
∇wdx, (6.5)

where D∇IF
is a tensor which represents how much regularization one wants in specific

directions. These directions are encoded by a set of orthogonal basis vectors, which are
derived from the local intensity gradient directions. Note that these considerations were
pioneered by [Nagel, 1987]. The D∇IF

is often referred to as the regularized projection
matrix. For the two-dimensional case (the classical optical flow formulation), this diffusion
tensor might be easily derived by using the local intensity gradient and its normal vector
∇I⊥F [Alvarez et al., 2000]. In this case it is defined as

D∇IF
:=

1
|∇IF |2 + 2ε2

(
∇I⊥F ∇I⊥T

F + ε2I
)

,

where ε denotes a small constant value to prevent division by zero which occurs in
completely homogeneous regions.

In the three-dimensional case, the derivation of the diffusion tensor has to be done dif-
ferently, since the normal to the local intensity gradient is not well-defined, i.e. there
exists an infinite amount of normals for a given three-dimensional vector. To over-
come this problem the structure tensor [Jaehne, 1993] might be used, which is a dif-
ferent representation of the local intensity gradients. We have already come across the
structure tensor in Section 5.1 where its eigenvalues were used to determine corner-like
situations. Here we use the structure tensor S∇IF

to define the local directions where
the regularization should be allowed/restricted. Therefore we employ a model suggested
by [Scharr and Uttenweiler, 2001]. They derived the diffusion tensor from the structure
tensor by performing an eigen-decomposition of S∇IF

S∇IF
= UΦUT .

The columns of U hold the eigenvectors of the structure tensor, while Φ is the di-
agonal matrix of its eigenvalues φi. The eigenvalues give a measure of the degree of
contrast change along the respective gradient direction represented by the eigenvectors.
Therefore to transform the structure tensor to a diffusion tensor, it is obvious that large
eigenvalues have to be mapped to small ones, while the eigenvectors remain unchanged.
In [Scharr and Uttenweiler, 2001] the following mapping function is proposed
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Λii := λi =

{
1− (1− c) exp

(
−d

(φi−σ)2

)
φi ≥ σ

1 else

We adopt this definition for our derivation of the anisotropic regularization scheme.
c is a constant that prevents this function from becoming equal to one, d represents the
distribution of eigenvalues and depends on the intensity range of the input images, φi is
the eigenvalue of the structure tensor and σ is a parameter that represents the noise level
of the input images. With this definition the diffusion tensor can be constructed

D∇IF
= UΛUT .

and used for the anisotropic image-driven regularization term.

6.3 Hybrid Landmark and Intensity Registration

A registration approach that is solely depending on landmark correspondences, like the
approach that was presented in Chapter 5, works well as long as an evenly distributed set
of correspondences can be found. To avoid this shortcoming and to properly combine the
advantages of landmark- and intensity-based registration such that both approaches con-
currently contribute to the optimal solution, we propose to use the sparse set of matched
landmarks as an additional regularization constraint Q in the general nonlinear registra-
tion functional that was presented above. This leads to the continuous cost functional (for
weights α > 0, β > 0)

J [ϕ]hyb := D[IF , IM ;ϕ] + αS[ϕ] + βQ[ϕ] = min. (6.6)

We define the L2 − norm optical flow data term as

D[IF , IM ;ϕ] :=
∫∫∫

Ω

(1−W (x))(IF (x)− IM (ϕ (x)))2dx, (6.7)

where the factor (1−W (x)) penalizes the data term near landmark correspondences.
The weight factor W (x) can be imagined as a binary mask image that is set to 1 at
locations where a landmark match has been identified and 0 otherwise. Now for those
locations where we have a landmark match, we decide to reduce the influence of the SSD

data term by multiplying (1 − W (x)). This way the feature- and intensity-information
is fused. Note that the coupling to other locations in the volume is performed via the
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regularization term, which propagates landmark-matching information to the neighbors
of the matches. In practice we also applied the matching uncertainties from the landmark
matching stage into W (x)).

Anisotropic image-driven regularization is given as S[ϕ]AI , where according to the pre-
vious section D∇IF

is the diffusion tensor that creates a dependency between the estimated
displacement field and the image boundaries of the fixed image IF such that regularization
across image boundaries is penalized. Finally, with ϕ = (u(x), v(x), w(x))T the landmark
matching constraint is

Q[ϕ] :=
∫∫∫

Ω

W (x)
∥∥(u(x), v(x), w(x))T − (uq(x), vq(x), wq(x))T

∥∥2
dx. (6.8)

W (x) is the same weighting function incorporating landmark correspondences and its
matching uncertainties as given above and (uq(x), vq(x), wq(x))T is the sparse displacement
field derived from the correspondences of the automatic landmark matching step. Note
that the additional landmark matching regularization term is independent of the explicit
choice of data or regularization terms.

6.4 Numerical Aspects of the Minimization of Energy Func-

tionals

The calculus of variations gives solutions for the minimization of energy functionals like
Equations 6.1 or 6.6 by the notion of the Gâteaux derivatives of a functional, which have
to be equal to 0 similar to the case of minimizing functions [Lanczos, 1986]. Setting
the functional derivatives δJhyb from Equation 6.6 equal to 0 results in a coupled Euler-
Lagrange partial differential equation (PDE) system. The solution of the PDE system gives
the stationary value, i.e. the desired deformation field ϕ.

The PDE system derived from the Gâteaux derivatives reads

1. (1−W ) (IF (x)− IM (ϕ (x)))
∂IM

∂x
+ αdiv (D∇IF

∇u)− βW (u− uq) = 0

2. (1−W ) (IF (x)− IM (ϕ (x)))
∂IM

∂y
+ αdiv (D∇IF

∇v)− βW (v − vq) = 0

3. (1−W ) (IF (x)− IM (ϕ (x)))
∂IM

∂z
+ αdiv (D∇IF

∇w)− βW (w − wq) = 0 (6.9)

This boundary value problem assumes a Neumann boundary condition. An explicit
scheme could be derived for this PDE system by introducing an artificial time dependency
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in u, v, w and setting the temporal derivatives equal to 0. This would lead to a gradient-
descent minimization scheme with an explicit time-step. However, we decided to use a
more robust semi-implicit scheme for solving the Euler-Lagrange equations. It makes use
of a first-order Taylor approximation of the nonlinear expression IM (ϕ (x)). After dis-
cretization using standard finite difference stencils [Strikwerda, 1989] a huge but sparse
system of linear equations has to be solved. The 3N unknowns of this equation system
are the deformation field coordinates (u(x), v(x), w(x))T for each voxel (supposing a to-
tal of N voxels). To solve this linear equation system we make use of a Gauss-Seidel
scheme [Press et al., 1992]. Gauss-Seidel is an instance of relaxation methods for solving
huge but sparse linear systems, working with in-place updates, thus removing the need for
storing multiple displacement fields to calculate the iterative solution. The whole registra-
tion algorithm is performed in a multi-resolution manner to further speed-up computation,
to avoid local minima and to be able to handle large displacements. The implementation of
the multi-resolution coarse-to-fine strategy uses a Gaussian pyramid, where the first-order
derivative stencils are taken from [Farid and Simoncelli, 1997].

We now go into the details of the Taylor approximation of IM (ϕ (x)) and the choice
of the finite difference stencils for a single resolution level. The first-order Taylor approxi-
mation introduces the unknown displacement field updates ∆u, ∆v,∆w which have to be
solved for in the iterative relaxation step. However, since we also linearize the nonlinearity
IM (ϕ (x)), it is also necessary to establish an outer iteration loop for the displacement
field components. The relation between inner and outer loop displacements is

∆u = ui − ui−1,∆v = vi − vi−1,∆w = wi − wi−1.

Inserting these expressions into Equation 6.9 and putting unknowns on one side of the
equations, one gets the following PDE system in the unknowns ∆u, ∆v,∆w:

1. (1−W )
(

∆u
∂IM

∂x
+ ∆v

∂IM

∂y
+ ∆w

∂IM

∂z

)
∂IM

∂x
− αD∇IF

L (∆u) + βW∆u =

(1−W ) (IF − IM )
∂IM

∂x
+ αD∇IF

L
(
ui−1

)
− βW

(
ui−1 − uq

)
2. (1−W )

(
∆u

∂IM

∂x
+ ∆v

∂IM

∂y
+ ∆w

∂IM

∂z

)
∂IM

∂y
− αD∇IF

L (∆v) + βW∆v =

(1−W ) (IF − IM )
∂IM

∂y
+ αD∇IF

L
(
vi−1

)
− βW

(
vi−1 − vq

)
3. (1−W )

(
∆u

∂IM

∂x
+ ∆v

∂IM

∂y
+ ∆w

∂IM

∂z

)
∂IM

∂z
− αD∇IF

L (∆w) + βW∆w =

(1−W ) (IF − IM )
∂IM

∂z
+ αD∇IF

L
(
wi−1

)
− βW

(
wi−1 − wq

)
(6.10)
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The divergence operator is discretized using standard stencils for second derivatives
symbolized as linear operator L. Therefore, the diffusion tensor D∇IF

, which may be
regarded as the following symmetric matrix

D∇IF
=

 d1 d4 d5

d4 d2 d6

d5 d6 d3


has to be multiplied with the divergence of the gradient vectors. For the left hand side

term of the first equation this leads to the expression

D∇IF
L(∆u) = d1 (∆u)xx + d2 (∆u)yy + d3 (∆u)zz +

2d4 (∆u)xy + 2d5 (∆u)xz + 2d6 (∆u)yz

Equivalent expressions follow for the right hand side and the other two Euler-Lagrange
equations. The three-dimensional stencils used for the discretization of the second-order
derivatives uxx, uyy, uzz, uxy, uxz, uyz are derived from the optimally rotation equivariant
derivative stencils of [Farid and Simoncelli, 1997].

Now it is possible to derive the relaxation scheme from these final discretized equations.
For each of the N voxels there are three discretized Euler-Lagrange equations, the total
system has 3N unknowns, the system matrix A is sparse and block-diagonal. In relaxation
schemes it is not necessary to explicitly construct the system matrix, instead one goes over
all voxels of the fixed image and calculates updates to the current deformation field entry
that corresponds to this voxel. The linear system Ax = b is the starting point for the
derivation of the Gauss-Seidel scheme. The iteration scheme can be expressed as

xk =
1
aii

bi −
∑
j<i

aijx
k
j −

∑
j>i

aijx
k−1
j

 , i = 0, 2, · · · , 3N − 1

where k is the iteration count, aij are the components of system matrix A and bi the
components of b.

Another important numerical aspect is the proper choice of the regularization weight
α. We decided to split α into two components, a global weight factor α0 and a factor
αi, · · · , i ∈ {x, y, z}, that depends on the direction of interest. The second component αi

has two responsibilities. First, it balances the energy data term and the regularization
term with respect to their measuring units. The SSD data term subtracts intensities and
squares them, i.e. its measuring unit is [HU2]. The regularization term works on squared
displacement field gradients, i.e. its measuring unit is [mm2]. Consequently the measuring
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unit of α is equal to [HU2]
[mm2]

. Second, αi takes care of the anisotropic spacing that might be
given in the input data sets. We calculate the αi as

αi =
(max(maxx(IF (x)),maxx(IM (x)))−min(minx(IF (x)),minx(IM (x))))2

spacingi

Now that the anisotropic spacing and the mismatch in measuring units have been
taken care of it is possible to choose α0 as a global,abstract weighting parameter that
takes values in the range of 0.1 to 0.001.

6.5 Evaluation Experiments & Results

To assess the validity of the hybrid registration approach qualitative and quantitative
evaluations were performed on synthetically transformed and clinical thorax CT data sets
showing breathing motion. All experiments were executed on a standard Windows note-
book computer with 2GHz and 2GB RAM.

6.5.1 Synthetic Deformations

Synthetic experiments were performed on four test data sets (A,B,C,D) taken at inspira-
tion, each of them having a volume size of 256× 256× 256 voxels. The applied transfor-
mation intends to model a simple displacement field similar to exhalation. A synthetic
nonlinear transformation ϕ that simulates diaphragm and rib cage movement can be found
in B.6. ϕ is defined using two parameters tvertical and tinward. The four test data sets
were synthetically transformed with a small (tvertical = 25mm, tinward = 10mm) and a
large (tvertical = 55mm, tinward = 25mm) deformation. Figure 6.1 a)-c) shows the effects
of these deformations on data set A. Table 6.1 gives the results of these experiments by
comparing the hybrid approach (”hyb”) with the landmark-based approach (”lm”) from
Section 6.1 and the optical flow intensity registration (”of ”) from Section 6.2. All compar-
isons are always performed only on those regions which are present in both registered data
sets. The RMS of the intensity differences INTrms before (”init”) and after registration are
calculated, as well as the difference of the resulting and the synthetic displacement fields
in terms of the RMS of the whole displacement vector field DFrms and the maximum of
the displacement difference vector components DFmax. Qualitative results are shown in
terms of difference images of data set D in Figure 6.3 a)-c).
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Figure 6.1: Simulated breathing deformation. a) original data set A, b) the small and c)
the large deformation.

Simulated Breathing 25-10 Simulated Breathing 55-25
Measure A B C D A B C D

init [HU] 373.85 313.70 291.08 348.11 539.98 468.57 438.07 513.42
of [HU] 77.045 75.084 64.972 75.529 123.43 106.01 102.27 116.022
lm [HU] 61.888 61.891 55.351 69.595 149.69 137.94 105.22 178.82

I
N

T
r
m

s

hyb [HU] 57.719 45.187 48.769 44.441 111.47 103.32 101.64 108.74
of [mm] 4.4201 6.0393 4.1328 4.6852 9.4332 12.428 8.3835 10.039
lm [mm] 1.2700 1.6068 1.2759 1.3829 4.3041 4.7178 3.9078 4.6794

D
F

r
m

s

hyb [mm] 1.6826 2.4241 1.7129 2.1525 4.7948 5.7478 5.0956 5.7385
of [mm] 19.926 22.976 16.925 18.366 40.826 48.667 40.868 43.429
lm [mm] 22.712 21.981 21.586 22.219 49.008 50.426 47.969 49.375

D
F

m
a

x

hyb [mm] 17.488 19.770 16.489 17.909 35.090 36.737 32.985 41.322

Table 6.1: Simulated breathing transformation. Registration results in terms of the RMS
of the intensity differences INTrms, the RMS of the displacement field DFrms and the
maximum of the displacement difference vector components DFmax.

6.5.2 Clinical Data

The algorithm was also evaluated on four clinical thoracic data sets (A,B,C,D), each of
them consisting of two scans at different breathing states. The data sets show different
problem characteristics. Data sets A and D differ by small breathing deformations. Data
sets B and C differ by large breathing deformations and also show intensity variations
due to diseases making them very hard to register. For the clinical data no gold standard
displacement was available for comparison, therefore solely the decrease in the RMS of the
intensity differences before and after registration are calculated and presented in Figure 6.2.
For qualitative results difference images are shown in Figure 6.3 d)-e) for data sets C and
D.
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Figure 6.2: Result chart showing the RMS of the intensity differences on the clinical data.

6.6 Discussion & Conclusion

The quantitative evaluation on the simulated data shows that the presented hybrid ap-
proach is an effective way to combine the advantages of landmark- and intensity-based
registration. The RMS of the intensity differences on the small deformation data is slightly
better than the individual methods, however all three methods are able to register these
deformations very well. The displacement field outliers (DFmax) are also improved while
the RMS of the displacement field (DFrms) is slightly worse due to the influence of the
intensity registration. However with an absolute value of DFrms lying around 2mm this is
already a very accurate result. The large deformation data is more demanding to register.
Here the landmark-based approach has problems generating a dense set of correspon-
dences. On the other hand, due to the large imposed deformation, the intensity-based
registration has problems to align small vascular structures. With the hybrid approach
the best of both approaches is achieved which can be seen in the decrease of INTrms and
on the qualitative results in Figure 6.3 a)-c). The RMS of the displacement fields again
decrease to a similar level as in the landmark registration and the displacement field out-
liers are reduced. The large absolute values of the displacement field outliers are due to
problems at the border of the data sets. The clinical data also shows good correspondence
after registration. However, registration of the vascular structures still can be improved.
An important thing to consider is the proper choice of the algorithm parameters in the
hybrid approach. Careful choice of parameters λ and µ are crucial. In our experiments,
after appropriate pre-normalization of data and regularization terms, suitable values were
determined empirically in a set of initial experiments and remained fixed during the evalu-
ations. In our case we chose λ = 0.05 and µ = 2. For solving the Euler-Lagrange equations
the linearizing Taylor approximation leads to the choice of a number of outer iterations.
A trade-off of computation time and accuracy leads to more iterations on coarser resolu-
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Figure 6.3: Selected Results. a)-c) Simulated Breathing results for the large deformation
on data set D. a) shows difference images after optical flow, b) after landmark-based and
c) after hybrid registration. d) depicts difference images of clinical data set C before and
after hybrid registration, e) shows clinical data set D before and after hybrid registration.
(Image contrast was enhanced to improve visibility.)
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tions compared to the finer ones. For the Gauss-Seidel stage three internal iterations were
chosen. The whole algorithm obviously has the drawback that the computation time is
rather high with most of the time spent in solving the PDE.

In this chapter a hybrid feature- and intensity-based nonlinear registration algorithm
was presented that consists of a fully automatic feature matching stage that acts as an addi-
tional regularization constraint on a generic intensity-based nonlinear registration method
formulated in a variational framework. An evaluation of the algorithm on four synthetic
and four real data sets was performed and the method was also compared to the feature-
and intensity-based algorithms alone. Results show that the hybrid approach outperforms
the single approaches, while its runtime is similar to the intensity-based approach.

Future work will investigate methods to speed-up the time-consuming steps of the
algorithm. Another interesting perspective is to find suitable inter-modality similarity
terms to derive a multi-modality nonlinear registration scheme. Finally an automatic way
to determine the regularization weighting parameters will be of great interest.



Chapter 7

Comparing Nonlinear Registration

Methods on Thoracic CT Images

Contents

7.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2 Experiments on Synthetic Data Sets . . . . . . . . . . . . . . . . 121

7.3 Experiments on Clinical Data Sets . . . . . . . . . . . . . . . . . 121

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

In this chapter we describe our evaluation framework which is consequently used to
compare a number of nonlinear registration algorithms applied to thoracic CT images.
Evaluation of nonlinear registration algorithms is a hard task, since there generally is no
ground-truth data to compare to. In contrast to validation we only refer to evaluation,
since our definition of validation is the measurement of the ”absolute” performance of an
algorithm. However, all quantitative measures are inherently influenced by noise, partial
volume effect, limited numerical precision, interpolation schemes, etc. [Hellier et al., 2003]
Therefore we restrict ourselves to measuring ”relative” algorithm performance for evalua-
tion. Our evaluation consists of two parts, one is working with synthetically transformed
data, while the second part uses clinical data that includes a number of real-world prob-
lems like small to large breathing differences, contrast agents present in one of the images
or cases with lung diseases. Only the synthetic experiments can be assessed using ground-
truth data, the clinical data is evaluated by some representative quantitative measures
based on the comparison of intensities and by visual inspection.

The choice of synthetic deformations is crucial in an evaluation procedure. If the chosen
transformation is too simple or restrictive, then the derived quantitative measures are re-
stricted to a very coarse approximation of the originally investigated problem. This fact es-

105
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pecially complicates the task of nonlinear registration. One of the few publications that use
a complex, physically plausible model of synthetic deformation is [Schnabel et al., 2003].
The synthetic transformation is generated by a bio-mechanical tissue deformation based
on the Finite-Element method. As a consequence, deformations from the registration can
be compared to plausible ground-truth deformation data. However, the drawback of this
evaluation method is that it is very complicated to implement, since it consists of a seg-
mentation step that has to be very accurate, a meshing step to create the Finite-Element
nodes and the solution of the FEM equations, where in [Schnabel et al., 2003] commer-
cial products were used for all of these stages. Due to this complicated (and expensive)
set-up we decided not to investigate this direction further, however, we keep it in mind as
a direction for future work.

Our approach is to use a combination of simpler synthetic transformation methods to
derive quantitative measures on the performance of several nonlinear registration algo-
rithms. Up to our knowledge we are the first to provide such an extensive comparison of
state-of-the-art registration methods from the literature. Especially in the area of regis-
tration of thoracic data in the presence of breathing deformations, there are no reports
on the comparison of algorithms. We also compare our proposed algorithms from the
previous chapters in this evaluation procedure. We assume that the calculation of many
different synthetic deformations, with each of them testing different behavior, along with
a large number of different evaluation measures leads to a method for thorough evaluation
and comparison.

7.1 Evaluation Setup

An evaluation framework has been built to assist in the quantitative comparison of different
algorithms over a variety of synthetic transformations and for clinical-data evaluation.
This framework uses Python as high-level scripting language to call the C++ methods that
perform the synthetic transformation calculation, the registration and the computation
of the quantitative evaluation measures. See [Kluckner, 2006] for further details. We
have selected three different images from human and sheep data sets as the input to the
synthetic part of the evaluation framework. These images are synthetically transformed
with the help of a configuration file. A list of nonlinear registration algorithms along with
its parameterizations may be specified to perform the computations. Finally the synthetic
ground-truth deformation fields and the original moving images are compared with the
outcomes of the registration algorithms and log files with the quantitative evaluation
results are written. Note, that all of these processes are performed in an easily customizable
fully automatic fashion. Another interesting aspect this evaluation framework allows, is
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to automatically test algorithms with different parameterizations to determine optimal
parameters with respect to the evaluation measures. We did not yet look further into
this capability of the framework, but we intend to do that in future. Up to now we
chose the parameters for the algorithms under investigation by performing some tests on
representative data sets and held them fixed after finding suitable choices.

For the clinical part we selected eight different thoracic data sets, which are (similar
to the synthetic experiments) registered and evaluated in an automated fashion. However,
since there is no ground-truth data on the deformation fields available we restrict the
evaluation to image-related comparison measures in this case. The following subsections
will present more details on the parts of the evaluation framework.

All of the evaluations were performed on AMD Opteron dual-processor machines run-
ning a 64-bit Linux with 8 GB of memory.

7.1.1 Input Images

We selected three different images of size 256 × 256 × 256 for our synthetic evaluation
experiments. The first image is a human thorax scan from the free NLM data collection
(nlm) [NLM, 2006]. The second one is a sheep data set at inspiration which was provided
by Prof. Eric Hoffman from the University of Iowa (sheep). The third one is a human lung
data set at inspiration (human). This data set was provided by Siemens MED CT, Forch-
heim, Germany. The scans were performed using 64-slice MSCT, the x-, y- and z-resolution
range of 0.5-0.6 mm lead to nearly isotropic original data set sizes of around 512×512×400
slices. All of these data sets were resampled to 256× 256× 256 voxels from their original
size using the windowed-sinc resampling approach from [Meijering et al., 2001]. Since we
were only interested in nonlinear registration we assume all our input data sets to be
rigidly pre-registered. To assess algorithm behavior on larger data sets, we decided to use
one data set with a size of 512×512×512 voxels during our evaluations. This data set was
resampled from the sheep data set with its original resolution of 512×512×590 voxels. We
resampled the z-dimension to simplify algorithm setup. Figure 7.1 shows example slices
of the used data sets.

For the evaluation of the clinical data we used seven different data sets
(A,B,C,D,E,F,G), which stem from human thorax scans provided by Siemens MED
CT, Forchheim, Germany. The specific characteristics of these data sets are given in
Table 7.1. For our evaluations the data sets were resampled to 256× 256× 256 voxels to
simplify algorithm setup. Again the resampling approach from [Meijering et al., 2001]
was used. We depicted sample slices from data sets B and C in Figure 7.2 and from
data sets E and G in Figure 7.3. Note that we are using a color coded representation
to visualize intensity differences of corresponding locations. This color code is inspired
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Figure 7.1: Input images used for the synthetic deformation experiments. First row shows
data set nlm, second row sheep, third row human. First column shows axial, second column
coronal, and third column sagittal view plane.
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Figure 7.2: Sample slices from data sets B (top two rows) and C (bottom two rows). Axial
and coronal slices respectively. a),d) scan with contrast agent. b),e) native scan. c),f)
shows the differences using a color code representation.
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Figure 7.3: Sample slices from data sets E (top two rows) and G (bottom two rows). Axial
and coronal slices respectively. a),d) exhalation scan. b),e) inhalation scan. c),f) shows
the differences using a color code representation. Note the severe lung disease in data set
G.
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DataSet orig. size Problem Characteristics

A 512,512,306 native & contrast-enhanced, small breath. deformation

B 512,512,329 native & contrast-enhanced, medium breath. deformation

C 512,512,307 native & contrast-enhanced, small breath. def., lung disease

D 512,512,316 native & contr.-enh., small breath. def., lung pathology

E 512,512,438 large breath. deformation, slight lung disease

F 512,512,438 large breath. deformation, slight lung disease

G 512,512,421 medium breath. deformation, severe lung disease

Table 7.1: Nonlinear registration evaluation clinical data set characteristics.

by the electro-magnetic spectrum of visible light, i.e. it ranges from violet to red, where
small intensity differences are mapped to colors near violet and large intensity differences
are mapped to colors near red. Figure 7.4 shows this color-coding.

Figure 7.4: Intensity differences color coding scheme. Small differences are mapped to
colors near violet, large differences mapped to colors near red of the spectrum.

7.1.2 Synthetic Transformations

We are using three different kinds of synthetic transformations. The first is a very simple
simulated breathing transformation. It depends on two parameters tvertical and tinward

which provide a means for a simple approximation of a diaphragm and rib-cage movement.
Further, a slight intensity variation is applied to the interior of the lung, to simulate
the partial volume effect. A more detailed description of this transformation is given in
Appendix B.6, we will denote it simbr. Examples for this transformation are given in
Figure 7.5, for the experiments we use four instances of this transformation (simbr-10-5,
simbr-25-10, simbr-55-25, simbr-70-30 ).

The second synthetic transformation consists of a regular grid with random deforma-
tions, interpolated by an Elastic Body Spline (EBS) [Davis et al., 1997]. There are two
parameters that may be varied, the grid size of the points to be placed and the possible
extent of the random deformation that is applied per grid-point (see Appendix B.7 for fur-
ther details). It will be denoted grid from now on. The parameters of this transformation
are gridSize and maxDeviation. Figure 7.6 gives some examples for this transformation,
later on we will be using two instances of this transformation (grid-32-2, grid-32-4 ).

The third synthetic transformation is the most complex and most realistic one. We
take one of our data sets (sheep) where we have a scan at full inhalation (TLC) and one
at full exhalation (FRC). From these two data sets we derive a synthetic ground-truth
deformation in the following way. From both data sets the airway trees are segmented
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Figure 7.5: Synthetic transformation - Simulated breathing (simbr). a) original data set,
b) effect of tvertical = 25mm and tinward = 10mm and c) effect of tvertical = 55mm and
tinward = 25mm.

Figure 7.6: Synthetic transformation - grid based (grid). a) original data set, b) ef-
fect of gridSize = 32 and maxDeviation = 2 and c) effect of gridSize = 32 and
maxDeviation = 4.

using the vessel segmentation approach from [Pock et al., 2005b]. These two binary
segmentation masks are skeletonized and the branching points are extracted with
the method of [Palagyi et al., 2003]. Afterwards we manually identify and label 20
corresponding branching points from the TLC and FRC states using a tool described
in [Tschirren et al., 2005b]. We interpret these correspondences as a sparse displacement
field. Finally we use an EBS transformation [Davis et al., 1997] to acquire a dense
displacement field. This displacement field now is our ground truth deformation
which represents a breathing behavior from TLC to FRC (exhalation). By applying this
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displacement field to the TLC image, we get a warped TLC image that resembles FRC. We
denote this synthetic transformation as airway. Since this whole work-flow of producing
the airway transformation is very tedious we only applied it to one data set, and we
chose the sheep data set due to its high imaging quality, which makes the segmentation
and branch-point extraction steps easier. Figure 7.7 shows the input images and the
work-flow of creating this synthetic transformation. We chose the large 512 × 512 × 512
sheep data set as input for the airway experiment, since we also are interested in the
computational effort and memory consumption the different algorithms show on full-scale
CT volume data sets.

Our basic strategy for the evaluation is in all cases identical. We take an original
image, apply a synthetic transformation and store the synthetically warped image and the
resulting displacement field. The displacement field will be our ground truth to compare
to. Now each of the investigated nonlinear registration algorithms gets the synthetically
warped image as fixed input and the original image as moving input, i.e. we try to find
a displacement field that warps the original image to the synthetically transformed. In
this way we can finally compare the warped image with the synthetically warped image
and the ground truth displacement field with the calculated displacement field. Note that
only this way it can be guaranteed that the displacement fields represent transformations
in the same directions (from fixed to moving image). Compare Figure 7.8 for an overview
of this strategy. This figure also clearly shows that the nonlinear registration algorithms
have no insights on the working of the synthetic transformations, making their behavior
completely independent from these transformations.

7.1.3 Compared Algorithms

In this section we list the nonlinear registration algorithms that are used for the com-
parison. We shortly describe the method, how we acquired the implementation and we
state all of the important parameters that were chosen for the evaluation procedure. Note
that all of these parameters remained fixed during our evaluations. The algorithms pre-
sented below are implemented in a straight-forward fashion without using parallelisms and
multi-threading strategies. Further, we used standard implementations of the memory-
consuming data structures like deformation fields (memory buffers of 12 32-bit floating
point data types), more thorough investigation of more efficient storage data structures
for the deformation fields will definitely be useful for practical applications.

Symmetric Demons Registration

The Symmetric Demons registration method is explained in Appendix B.4. We will refer
to this algorithm with the abbreviation symdemons. We are using the publicly available
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Figure 7.8: The basic setup for the synthetic transformation evaluation experiments. The
synthetic transformations are applied to the original image, the nonlinear registration of
original and synthetically transformed image leads to a transformation and a warped image
which can be compared.

implementation of this method from the Insight Segmentation and Registration Toolkit
ITK [ITK, 2006]. Symmetric Demons is very similar to the Demons algorithm with an
additional increase in robustness since image gradients in both fixed and moving image are
used. The necessary parameters that have to be chosen are the number of multi-resolution
levels in the Gaussian pyramid, the number of iterations per level and the standard devia-
tion of the regularization Gauss-filter. These parameters are given in Table 7.2. The total
number of iterations per level is given by the expression nrIter1 ∗ shrinkLevel + nrIter2
with shrinkLevel = 0, · · · , nrLevels and shrinkLevel = 0 resembling the original reso-
lution in the Gaussian pyramid. This formula reflects the idea that low resolution levels
use many iterations since they are cheap to compute while when going up in the multi-
resolution hierarchy, a compromise has to be found between accuracy and computation
speed.
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nrLevels nrIter1 nrIter2 sigma
Method [voxel]
symdemons 4 35 20 1

Table 7.2: Symmetric Demons registration evaluation parameters setup

Curvature Registration

The Curvature registration method (curvature) is explained in Appendix B.5. We are
using the publicly available implementation of this method from the ITK [ITK, 2006].
The necessary parameters that have to be chosen are the number of multi-resolution levels
in the Gaussian pyramid, the number of iterations per level, the time-step of the semi-
implicit scheme τ and the regularization weight α. These parameters are given in Table 7.3.
The total number of iterations per level is given by the expression nrIter1∗shrinkLevel+
nrIter2 with shrinkLevel = 0, · · · , nrLevels and shrinkLevel = 0 resembling the original
resolution in the Gaussian pyramid.

Method nrLevels nrIter1 nrIter2 τ α

curvature 4 35 20 1 1

Table 7.3: Curvature registration evaluation parameters setup

B-spline Mutual Information

The B-spline Mutual Information registration method (bspline) is explained in
Appendix B.2. We are using an implementation of this scheme that was taken from
the ITK [ITK, 2006]. The necessary parameters of this method are the number of
multi-resolution levels in the Gaussian pyramid, the number of maximum iterations
per level, the number of histogram bins for MI, the convergence tolerance of the
LBFGS optimizer and the grid spacing of the regular B-spline grid. These parameters
are given in Table 7.4. The maximum number of iterations per level is given by the
expression nrIter1 ∗ shrinkLevel + nrIter2 with shrinkLevel = 0, · · · , nrLevels and
shrinkLevel = 0 resembling the original resolution in the Gaussian pyramid.

nrLevels nrIter1 nrIter2 histogram optimizer gridSpacing
Method bins tolerance [mm]
bspline 4 250 150 70 0.01 12.0

Table 7.4: B-spline Mutual Information registration evaluation parameters setup
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Optical Flow Registration

The Optical Flow registration method (opticflow) is explained in Chapter 6. Although
the derivation is not completely given, it can be seen as a simpler version of the landmark
constrained anisotropic image-driven diffusion registration. We are using an implemen-
tation of this scheme that makes use of a Gauss-Seidel approximation of the PDE system
that resembles the Gâteaux derivative of the energy functional. Necessary parameters
of this algorithm are the number of multi-resolution levels in the Gaussian pyramid, the
number of maximum iterations per level, the regularization weight α and the number of
Gauss-Seidel iterations per iteration. A summary of the parameters is given in Table 7.5.

Method nrLevels nrIter1 nrIter2 nrGaussSeidelIters α

opticflow 4 25 15 5 0.08

Table 7.5: Optical flow registration evaluation parameters setup

Elastic Registration

The Elastic registration method (elastic) is explained in Appendix B.5. We are using an
implementation of this scheme that makes use of a Gauss-Seidel approximation of the PDE
system that resembles the Gâteaux derivative of the energy functional, very similar to
the optical flow registration. Since this method is a classic method from literature, we
decided to apply it similarly as done in other publications (see e.g. [Modersitzki, 2004]).
This means that we set the elasticity parameters λ and µ to 0 and 1 respectively, such that
λ has no influence at all, and the influence of µ gets included into the global regularization
weight α. The other parameters are similar to the methods stated above and summarized
in Table 7.6.

Method nrLevels nrIter1 nrIter2 nrGaussSeidelIters α λ mu

elastic 4 25 15 5 0.08 0 1

Table 7.6: Elastic registration evaluation parameters setup

Feature Based Registration

The Feature-based registration method (feature) is presented in detail in Chapter 5. The
required parameters to set for this method are the maximum number of features to extract
from each of the data sets, the corner noise threshold that determines which corner re-
sponses are removed, the matching cost threshold that resembles a hard threshold on the
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matching cost in the robust forward-backward matching step, some histogram discretiza-
tion parameters for SIFT and shape context, the global TPS regularization weight and the
number of neighbors for the locally reduced TPS. Table 7.7 states these parameters as they
were used in our experiments.

nr corner match sift scHisto scHisto tps tps
Method Corner NoiseThr CostThr HistoSize SizeRadius SizeOrient Weight Nghbrs

feature 25000 140 0.3 8 8 6 0.005 300

Table 7.7: Feature-based registration evaluation parameters setup

Hybrid Registration

The Hybrid registration method (hybrid) is presented in detail in Chapter 6. The required
parameters to set for this method are a combination of the parameters used in the feature-
based method and the optical flow method, additionally one has to define the feature
constraint weight β, while α now is the global anisotropic image-driven regularization
weight. Table 7.8 states these parameters as they were used in our experiments.

nr nr nr nrGauss nr corner match histo
Method Levels Iter1 Iter2 SeidelIters α β Corner NoiseThr CostThr Sizes

hybrid 4 25 15 5 0.08 1.0 25000 140 0.3 (8,8,6)

Table 7.8: Hybrid registration evaluation parameters setup

7.1.4 Quantitative Evaluation Measures

Two kinds of measures are used in our evaluation framework. The first one is used to
compare displacement field ground truth data with displacement field results calculated
during the registration. The second kind of measures compares two sets of images, before
and after registration. This comparison step is performed on fixed and moving input image
and on fixed and warped moving image. After successful registration, warping the moving
image should result in an increase of similarity with the fixed image. We also give the
computation time and the peak memory effort for each of the compared algorithms.

We always compute the evaluation measures only on the overlapping regions of the
input image data sets and the deformation fields. This is especially important in the
case of synthetic transformations, where certain areas might vanish due to a shrinking like
behavior, we always mark these regions with special values during synthetic transformation
and we omit those marked regions from the evaluation process.
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We have to remark here that all of these measures possess one inherent shortcoming.
Data sets with a size of 256 × 256 × 256 consist of a total around 16 million voxels and
each measure of interest will try to reduce this huge amount of information to one single
number. Although some of our measures are inspired by robust statistics, their information
value has to be at least discussed and also questioned. One should always keep this in
mind when looking at quantitative evaluation results.

7.1.4.1 Displacement Field Measures

To assess the similarity of a synthetic ground-truth deformation field ϕsyn and a defor-
mation field computed by a nonlinear registration algorithm ϕreg, we use:

Root-Mean-Square of Displacement Field RMSdisp The RMS of the displacement
field interprets the two displacement fields of interest as feature vectors of dimension
3×N1 ×N2 ×N3, where Ni is the number of voxels on the input image grid in the
according dimension. The measure reads

RMSdisp :=

√√√√ 1
3N1N2N3

∑
x∈Ω

3∑
i=1

(ϕsyn(xi)− ϕreg(xi))
2

Median Absolute Deviation of Displacement Field MADdisp This measure is sim-
ilar to the RMS, however it is a more robust variant in the presence of outliers. The
median absolute deviation is defined as

MADdisp := Median (|mi −Median (mi)|)

with mi = |ϕsyn(xi)− ϕreg(xi)| and i = 1 · · · 3.

Maximum Deviation of Displacement Field MAXdisp The maximum deviation of
the displacement field states the maximal difference of all components of the two
displacement fields ϕsynand ϕreg. We use a robust maximum, i.e. our maximum
difference is defined as the difference that is larger than 95% of all other values.

7.1.4.2 Image Similarity Measures

To assess the similarity of images before and after registration we use:

Root-Mean-Square of Intensity Differences RMSint The RMS of the intensity dif-
ferences needs as its input the pixel-wise intensity differences over the overlapping
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region of the image domain. It is defined as

RMSint :=

√
1

N1N2N3

∑
x∈Ω

d(x)2

with

d(x)2 :=

{
100 if (IF (x)− IM (x))2 > 100
(IF (x)− IM (x))2 otherwise

We decided to clamp intensity differences that are larger than 100 Hounsfield Unit
(HU) and assign the absolute difference of 100 HU to all of these differences. This
makes the measure more sensitive to lower intensity differences, the unmodified RMS

measure would weight outliers too strong. Note that we perform this clamping
consistently for comparing all image pairs, either original fixed and original moving
or original fixed and warped moving.

Median Absolute Deviation of Intensity Differences MADint This measure is
similar to the RMS, however it is a more robust variant in the presence of outliers.
The median absolute deviation is defined as

MADint := Median (|d(x)−Median (d(x))|)

with d(x) = |IF (x)− IM (x)|.

Maximum Intensity Difference MAXint The maximal intensity differences on the
overlap region of the image grid. We use a robust maximum, i.e. our maximum
intensity difference is defined as the intensity difference that is larger than 95%
of all other values. Here of course no clamping (like for the RMS measure) of the
intensity differences is performed.

Normalized Mutual Information NMIint The normalized mutual information is a
measure from information theory, which relates the information content of two im-
ages by probability distributions of the gray values. See Chapter 2.1.2.3 for further
details.

Edge Overlap EDGEint We are using a simple scheme to extract strong gradients from
both images, based on the Canny edge detector [Canny, 1986]. The Canny edge
detector is used with a σ of 3 times the voxel spacing, the result is a binary image
with edges marked with a 1. The sum of the absolute differences divided by the
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256× 256× 256 512× 512× 512

Algorithm Runtime Peak-Memory Runtime Peak-Memory

symdemons 2500 s 741 MB 9100 s 4.2 GB

curvature 2450 s 803 MB failed -

bspline 11400 s 1500 MB failed -

elastic 5100 s 741 MB 38000 s 5.6 GB

feature 900 s 785 MB 2700 s 3.2 GB

opticflow 2400 s 741 MB 18400 s 5.6 GB

hybrid 5500 s 741 MB 38000 s 5.6 GB

Table 7.9: Algorithms computational efforts and peak-memory consumptions. All values
are only approximate or mean values.

number of voxels in the overlap region is used to compare the binary images. This
function lies between 0 and 1 with 0 denoting optimal overlap.

7.2 Experiments on Synthetic Data Sets

According to the setup derived in the previous sections we have performed a large number
of synthetic evaluations using three data sets (nlm, sheep, human), three different syn-
thetic transformations (simbr, grid, airway) and seven algorithms (symdemons, curvature,
feature, hybrid, bspline, elastic, opticflow). Tables C.1, C.2, C.3, C.4, C.5, and C.6 present
the results of these evaluations given all of our quantitative measures. These tables are
listed in Appendix C. We treated the airway transformation a little different, since it was
applied only to one data set and using a larger volume size. The results of this experiment
are shown in Table 7.10. With our chosen parameters for each of the algorithms we get
the approximate algorithm run-times (approximate mean values of all algorithm runs) and
peak-memory consumptions as shown in Table 7.9.

The 256× 256× 256 data sets have been used in most of our experiments to derive the
quantitative evaluation measures. Additionally we have performed the airway experiment
on the sheep data set which was resampled to 512 × 512 × 512 voxels. In this case the
computational and memory requirements are of course more demanding, which can be
seen from Table 7.9. Two of the algorithms (curvature and bspline) did not terminate on
these large data sets, due to unresolvable problems with the ITK implementation. They
were omitted from the efficiency comparison and we give no quantitative results for the
airway experiment.

7.3 Experiments on Clinical Data Sets

We have also performed a number of experiments using seven clinical thorax data sets
of the human (A,B,C,D,E,F,G). We evaluated the algorithms performance in terms of
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intensity-based quantitative measures only, since there is no deformation field ground-truth
data available. Table 7.11 gives the results of these evaluations. As was already mentioned
before, the intensity-based measures should not be overrated, because the corresponding
deformation measures are unknown. Therefore we will also show detailed visual results
for qualitative comparison.

7.4 Discussion

Our automatic nonlinear registration framework produced a large number of quantitative
and qualitative results. We decided to present the conclusions that we drew from the eval-
uation experiments in several sub-sections, i.e. computational effort, small- and large-scale
synthetic deformation experiments, realistic synthetic airway deformation experiments and
clinical data experiments. The key messages of these parts will be underlined by images
and evaluation results.

We use a number of differing quantitative measures, so we start by giving a catego-
rization of the significance of these measures. Most important are the displacement field
statistics which are derived from a comparison with ground-truth deformation field data.
However, this is only possible for the synthetic experiments, for the clinical data there is
no ground-truth available. The RMS of the displacement field differences (RMSdisp) and its
median absolute deviation (MADdisp) are very similar, however, the latter is more robust
in the presence of outliers. They provide a means to compare the quality of registration
methods in an absolute manner, under the assumption that the synthetic deformation is
meaningful. These two measures are the most important ones for assessing algorithms,
however, one has to always bear in mind that they try to describe the behavior of millions
of voxels with a single number. We expect that RMSdisp and MADdisp will point out
which algorithms show the best registration accuracy, thereby separating suitable from un-
suitable algorithms. The maximal deviation of the displacement field differences provides
information about the behavior of an algorithm at image borders where discontinuities
might occur in practice. Its relevance should not be overrated, due to the large number
of voxels that are matched, while this measure only makes a statement about the outliers
that often occur due to occlusions.

The second group of quantitative measures (intensity based measures) has to be inter-
preted more carefully. In addition to the problem that a large number of intensity differ-
ences is described with a single number representing a ”standard-deviation”-like measure,
the direct comparison of a warped moving image with the fixed (target) image is dan-
gerous, since this measure does not take into account the underlying deformation field.
There are many deformations which lead to the same warped image result, therefore these
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measures always have to be regarded in combination with the displacement field com-
parison measures. As a consequence the relevance of these measures on clinical data is
questionable, however, up to our knowledge, it is the only possible way to quantitatively
describe real data registration results. The RMS of the intensity differences RMSint and
the median absolute deviation MADint make statements about the similarity of the fixed
target image and the moving image which gets warped according to the deformation field.
Due to the nature of the RMS calculation, this measure is more prone to outliers, so we
expect that the median absolute deviation will give the most reliable statistics of the in-
tensity differences. In order to compare clinical image data we also decided to use the
normalized mutual information as a similarity measure. The influence of contrast agents
or lung diseases on the intensity differences leads to outliers that restrict the suitability
of the previous two measures. Since we are highly interested in accurate registration of
vascular structures we also calculate a measure describing an edge overlap statistic. We
expect this measure to be rather independent from intensity changes due to its reduction
to binary edge images which get compared. A further advantage of the binarization of the
edges is that the magnitude of the gradients do not influence it. We expect this measure
to distinguish between algorithms that match the vascular structures well and algorithms
that have problems with vascular registration. Finally the maximum intensity difference
will let us draw conclusions about the intensity difference outliers which might occur at
border regions.

7.4.1 Computational Effort

The computational effort of nonlinear registration algorithms is quite high, since we are in
general dealing with an ill-posed problem that has to be solved by (regularized) iterative
methods, i.e. optimization algorithms. What we can see from Table 7.9 is that most of
the investigated methods require computation times on the order of hours for full-sized
(512×512×512) clinical data sets. The main reason for long computation times is the large
number of iterations that are needed in the underlying optimization algorithms. The trade-
off between algorithm convergence and run-time has to be chosen carefully in practice. For
the smaller data sets one gets computation times around 40 minutes if one uses the more
efficient of the intensity-based methods (demons, curvature). These efficient methods
often are using certain approximations (e.g. in the demons method the regularization is
performed by convolution of the displacement field with Gaussian kernels) or they make
use of sophisticated methods for solving the underlying PDE system (e.g. the curvature
method uses a fast Fourier transform (FFT) to speed-up the solution). Theoretically more
profound methods like elastic registration and the hybrid approach take a long time to
compute since they have to solve large PDE systems. The bspline algorithm needs the
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highest computational effort due to its formulation with a large number of Degrees of
Freedom (DoF) modeled in the B-spline framework, where the large number of B-spline
coefficients are the unknowns in an optimization framework.

Since the feature based registration algorithm uses only a subset of the image informa-
tion compared to all of the intensity-based approaches, it obviously is the fastest method
of all. If one could further speed-up the dense displacement field estimation, it would even
be possible to compute in around 10 minutes on the full-sized data sets, a time-span that
would be acceptable for applications in clinical practice.

The memory consumption of the algorithms has also to be taken into account. Current
32-bit machines still have limitations on the size of the virtual memory a process can
acquire, a value that e.g. lies at 2GB on Windows machines. Most of the presented
algorithms do need more than this size if one looks at the processing of the full-sized data
sets. So, an obvious solution to this problem is a splitting of the data sets into chunks,
which are registered by separate processes. Another solution is to use memory-mapped
data structures. However, these techniques are much more complicated to implement and
there is a trade-off that has to be made concerning the processing speed, since a lot of
computational work would go into the synchronization and communication of the processes
or the disk caching. The simpler way to go will be to simply wait until 64-bit systems
have conquered the work-stations, making the memory consumption problems more or
less obsolete.

We conclude that without further optimizations some of the algorithms like bspline,
hybrid or elastic are definitely not suitable for the registration of large CT volume data
sets due to their high computational efforts and memory consumptions. The only way to
use these algorithms is to apply them to downsampled data sets and to perform a less
costly algorithm on the original size using the result from the downsampled step as initial
solution. A very promising approach for fast registration is the feature based approach,
which should be investigated further for possibilities to speed-up. Also a very efficiently
implemented variant of demons could be useful in clinical practice.

7.4.2 Small-Scale Synthetic Deformation Experiments

The first type of synthetic deformation experiment is the simulated breathing deformation
which uses small magnitudes of artificial deformation (simbr-10-5 and simbr-25-10 ). The
measures that describe displacement field differences compared to the ground-truth show
that curvature, symdemons, feature and hybrid perform best here (see Figure 7.9). These
results are consistent with the intensity-based measures which show similar decreases, as
an example we give the RMSint in Figure 7.10. However, after looking at the qualitative
results of these methods (data set human), we found that the quantitative measures do
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Simulated Breathing Experiments: Small-Scale
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Figure 7.9: Median absolute deviation of the displacement fields for small simulated
breathing experiments simbr-10-5 and simbr-25-10.

hide some problems on the one hand while making e.g. the bspline algorithm look much
worse than it actually is. Figure 7.11 shows a selection of result images. We can see
that the curvature registration (c) aligns the interior of the images best, however, it also
artificially shrinks the warped image, which is not desirable. The feature approach (b) gives
an appealing visual result, note that the result of the hybrid approach looks visually nearly
identical, so in this case the full-grown hybrid model does not bring significant advantages.
The elastic approach (d) shows problems with the registration of the vascular structures,
this is consistent with the quantitative measures and a behavior that also occurs for the
opticflow algorithm. Finally, we find that the bspline algorithm (e) also leads to a very
accurate registration result, a fact which is not supported by the quantitative measures.
The reason for this discrepancy is a rather large mismatch region that can be seen on
the lower part of the axial slice. Since most of this occlusion area is included into the
quantitative evaluation the numbers drop significantly. We did not find the reason for this
mismatch in the ITK implementation, however, we conclude here that the observation of
the visual quality of the registration result is equally important as looking at the numbers.

The second group of small-scale synthetic deformation experiments are grid-32-2 and
grid-32-4. Here we can see a very interesting behavior. Although the RMSdisp measure
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Simulated Breathing Experiments: Small-Scale
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Figure 7.10: RMS of intensity differences for small simulated breathing experiments simbr-
10-5 and simbr-25-10.

sees the curvature and symdemons approaches as the worst methods, a closer look at
MADdisp reveals that the RMS is influenced by outliers. By looking at the robust measure
these two algorithms perform better by an order of magnitude. The feature approach
does not deal well with this kind of deformation. This is due to the fact that the grid
experiment makes use of a regular grid of random displacement vectors, i.e. the warping is
performed rather locally and similar to local rotations. It can be assumed that this creates
severe problems for the repeatability of the feature extraction. The hybrid approach is
not able to use the feature information, it performs similar to the rest of the methods,
the median absolute deviations of the displacement fields are shown in Figure 7.12. The
visual results of this set of experiments on data set nlm using deformation grid-32-4 also
clearly show that the curvature and the symdemons approaches (c) perform best. The
opticflow and the hybrid approaches perform very similar, with problems at some of the
vascular structures, here the number of iterations presumably was too low. The low
quality of the feature approach underlines the short-comings of this method and supports
the quantitative results. Only a small number of feature correspondences were found
here. Finally it should be noted that this kind of synthetic deformation is not physically
justified, but was chosen since we found some publications in literature that use similar
transformations.
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Grid-based Synthetic Deformation Experiment
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Figure 7.12: Median absolute deviation of the displacement fields for small grid based
synthetic experiments grid-32-2 and grid-32-4.

7.4.3 Large-Scale Synthetic Deformation Experiments

We now investigate the performance on the large-scale simulated breathing experiments
(simbr-55-25 and simbr-70-30 ). While the simbr-55-25 experiment shows quite similar
results to the small-scale experiments, we will focus on the extremal simbr-70-30 experi-
ment, which was designed to show the limitations of the algorithms given a deformation
that is larger than a real diaphragm or rib cage movement will be during normal breath-
ing. Note that we already have a significant occlusion at the top part of the volume.
Figure 7.14 shows the distribution of the RMS of the displacement field differences for this
synthetic deformation. The quantitative results imply that the curvature registration gives
the best results. This is also supported by the edge overlap measure as depicted in Fig-
ure 7.15. The feature registration is not able to find enough correspondences. The hybrid
approach is able to register the data sets quite well, however, there are too few iterations
to converge. Similar problems apply to the elastic and opticflow methods. The bspline
method again shows excellent behavior which can also be seen from the qualitative results
in Figure 7.16d.
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Simulated Breathing Experiments: Large-Scale
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Figure 7.14: RMS of displacement fields for large-scale simulated breathing experiment
simbr-70-30.

7.4.4 Synthetic Airway Deformation Experiment

The physically most realistic synthetic experiment (airway) is performed on the large
volume data sets of size 512×512×512. It uses manually identified airway tree landmarks
as its basic building block and an EBS interpolation to get the dense synthetic displacement
field. Unfortunately two of the methods (bspline and curvature) did not successfully finish
the registration, we were not able to recover these problems of the ITK implementations.
The RMS and the median absolute deviation of the displacement field differences (compare
Table 7.10) show that the feature registration, the symdemons registration and the hybrid
registration perform very well, while the elastic and the opticflow methods are not able to
fully register the data. This outcome is supported by the intensity difference measures and
the edge overlap measure. An interesting fact is that the feature approach out-performed
the hybrid algorithm. The reason is, that the hybrid approach did not converge to a
minimum fast enough given only a restricted number of iterations. This restriction had
to be introduced due to the high computational effort of this method on the large data
sets. Figure 7.17 shows the result images for qualitative comparison. We can see the
result images of the feature approach in c) and the symdemons approach in d). Both are
visually nearly indistinguishable, there is only a slight misregistration of a bone in the
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Simulated Breathing Experiments: Large-Scale
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Figure 7.15: Edge overlap measure for large-scale simulated breathing experiment simbr-
70-30.

upper right part of the coronal image for the feature approach. Finally we also show the
elastic approach in e) which has problems with some of the vascular structures and the
bones.

7.4.5 Clinical Data Experiments

Our seven clinical data sets comprise of three different application scenarios. First, there
are three data sets (A,C,D) that only show very small breathing deformation. However,
these three data sets are composed of a native and a contrast-enhanced scan, i.e. we are
confronted with a violation of the brightness constancy assumption. Data set B also shows
an intensity change due to contrast-agent, but in addition there is also a certain amount
of breathing deformation. Data sets E,F and G are composed of two native scans, where
E and F both show a significant breathing deformation and G a medium-sized breathing
deformation. These latter three data sets are all very challenging, since in addition to the
intensity changes from partial volume effects due to breathing, all of them show more or less
severe kinds of lung diseases. We expect data sets E,F and G to be very hard to register.
In the following we concentrate on the four data sets B,C,E and G, as representatives for
the rest.
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Intensity Measures airway - sheep Deformation Measures airway - sheep

affine [HU] 63.428 initial [mm] 13.405
symdemons [HU] 5.096 symdemons [mm] 0.402
elastic [HU] 43.148 elastic [mm] 9.678
feature [HU] 4.532 feature [mm] 0.476
opticflow [HU] 46.351 opticflow [mm] 10.204

R
M

S
in

t

hybrid [HU] 8.596 R
M

S
d
is

p

hybrid [mm] 1.401

affine [HU] 30 initial [mm] 5.253
symdemons [HU] 1 symdemons [mm] 0.043
elastic [HU] 10 elastic [mm] 2.928
feature [HU] 1 feature [mm] 0.096
opticflow [HU] 12 opticflow [mm] 3.287

M
A

D
in

t

hybrid [HU] 2 M
A

D
d
is

p

hybrid [mm] 0.241

affine 0.1237 initial [mm] 27.664
symdemons 0.8871 symdemons [mm] 10.912
elastic 0.2916 elastic [mm] 22.258
feature 0.7691 feature [mm] 12.254
opticflow 0.2649 opticflow [mm] 22.929

N
M

I i
n

t

hybrid 0.6734 M
A

X
d
is

p

hybrid [mm] 16.736

affine 0.2361
symdemons 0.0230
elastic 0.2141
feature 0.0595
opticflow 0.2203

E
D

G
E

in
t

hybrid 0.1124

affine [HU] 923
symdemons [HU] 12
elastic [HU] 214
feature [HU] 20
opticflow [HU] 300

M
A

X
in

t

hybrid [HU] 42

Table 7.10: Airway synthetic transformation results in terms of intensities and displace-
ments.

Data set D only shows a minor breathing deformation. All of the algorithms are able to
recover this small deformation, however, the measures on the RMS and the median absolute
deviation of the intensity differences imply a different behavior. Of course here one has to
take into account the influence of the contrast agent, which misleads these two measures.
Therefore, we rely on the NMI measure for comparing the algorithms performance (see
Table 7.11). Here, the performance is very similar for the compared algorithms, which is
consistent with the selected visual results depicted in Figure 7.18. As a consequence of
these similar results, we restrict ourselves to the feature and bspline approaches here. Note
that the intensity differences in the vascular structures of the registered images are due
to the contrast agent. The feature-based approach shows a slight misregistration at the
extremal regions of the diaphragm which comes from a lack of nearby extracted feature
information.

The second data set we want to focus on is data set B, here a medium breathing de-
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Measure A B C D E F G

affine [HU] 41.249 48.086 44.938 43.220 68.921 64.466 66.854
symdemons [HU] 25.750 24.814 30.134 25.454 36.830 36.178 32.269
curvature [HU] 31.811 29.313 37.628 30.160 42.171 39.529 40.705
bspline [HU] 41.357 42.700 49.362 38.714 69.941 68.740 64.824
elastic [HU] 36.390 39.400 41.684 34.487 70.836 70.322 65.865
feature [HU] 32.061 39.382 41.165 32.388 45.836 46.322 43.865
opticflow [HU] 34.373 33.632 39.826 31.634 50.014 46.937 48.023

R
M

S
in

t

hybrid [HU] 30.365 36.192 37.255 32.104 40.246 41.371 39.127

affine [HU] 12 12 16 10 47 30 41
symdemons [HU] 3 2 6 2 6 4 5
curvature [HU] 8 6 11 6 11 9 11
bspline [HU] 12 9 15 9 24 20 21
elastic [HU] 10 9 13 8 21 15 19
feature [HU] 9 8 11 8 32 27 26
opticflow [HU] 9 7 13 7 15 12 15

M
A

D
in

t

hybrid [HU] 9 7 10 8 12 13 13

affine 0.4263 0.3574 0.3520 0.4024 0.1574 0.1807 0.1634
symdemons 0.6269 0.6452 0.5174 0.6342 0.4889 0.4946 0.5289
curvature 0.5204 0.5442 0.4085 0.5331 0.4029 0.4249 0.4251
bspline 0.4463 0.4370 0.3591 0.4588 0.2511 0.2617 0.2640
elastic 0.4811 0.4541 0.3834 0.4876 0.2787 0.2991 0.2988
feature 0.5509 0.5009 0.4278 0.5564 0.2200 0.2338 0.2379
opticflow 0.5028 0.5017 0.4002 0.5180 0.3489 0.3625 0.3652

N
M

I i
n

t

hybrid 0.5728 0.5284 0.4567 0.5837 0.3964 0.3892 0.3732

affine 0.1524 0.2020 0.1935 0.1893 0.2487 0.2346 0.2380
symdemons 0.0905 0.1031 0.1478 0.1020 0.1656 0.1654 0.1454
curvature 0.1083 0.1190 0.1646 0.1198 0.1844 0.1777 0.1656
bspline 0.1273 0.1530 0.1757 0.1394 0.2162 0.2013 0.2074
elastic 0.1193 0.1557 0.1723 0.1396 0.2263 0.2164 0.2140
feature 0.1015 0.1235 0.1286 0.1498 0.2232 0.2208 0.2195
opticflow 0.1149 0.1367 0.1677 0.1308 0.2041 0.1984 0.1921

E
D

G
E

in
t

hybrid 0.1036 0.1036 0.1136 0.1347 0.1632 0.1723 0.1590

affine [HU] 162 383 168 243 958 981 905
symdemons [HU] 60 50 82 60 118 99 78
curvature [HU] 83 76 108 84 141 115 109
bspline [HU] 125 143 139 126 355 342 298
feature [HU] 129 168 122 141 885 861 734
elastic [HU] 93 139 111 97 380 307 283
opticflow [HU] 80 86 100 77 159 149 142

M
A

X
in

t

hybrid [HU] 75 84 99 73 158 140 140

Table 7.11: Clinical data evaluation results in terms of intensity-based measures.

formation in combination with an applied contrast agent is the problem domain. Again,
this registration task is performed very well by most of the algorithms, see also Table 7.11.
Selected visual results are shown in Figure 7.19. Here we can see the drawbacks of the
feature registration (c). Near the diaphragm borders there was not enough reliable feature
information extracted, therefore the approach fails to align these contours. This problem
was effectively solved by the hybrid approach (f). However, one will note that the vascu-
lar structures already show an excellent overlap for the efficient feature algorithm. The
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Figure 7.18: Selected clinical result images for data set D. a) affine registration, b) feature
registration, c) bspline registration.

symdemons and bspline algorithms also show very good registration behavior.
Data set E combines a large breathing deformation with a slight lung disease. In

this case now, we have reached the point where most of the investigated algorithms fail.
The quantitative results do not clearly show this behavior, the RMS and median absolute
deviations of the intensity differences as well as the NMI measure show that symdemons
should lead to accurate registration while the bspline method gives quite poor numbers.
In reality, symdemons and curvature show severe artifacts in the interior of the lung, de-
stroying the vascular structures. This can be seen on Figure 7.20c,d. We assume that
the regularization is not strong enough here, the calculated deformation field is physi-
cally implausible. Without proper regularization the SSD similarity measure is allowed to
match intensities without restriction, and due to the partial volume effect the brightness
constancy assumption is violated. The combination of these behaviors leads to the visible
problems. On the other hand, the bspline algorithm performs a much more meaningful
registration. No vascular structures are destroyed and the rough lung and bone structures
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are aligned accordingly, however, the alignment of the vascular structures is still far from
perfect. Also the hybrid (Figure 7.20f) approach shows physically plausible behavior, here
one has to keep in mind that the hybrid approach falls back to intensity registration only,
since there is nearly no feature information that could be found in the feature matching
algorithm. This is the reason why the feature result shows behavior that is even worse
than the original moving image.

Finally data set G poses a challenging problem since it contains a pathologic lung. On
the other hand, the breathing deformation between the inhalation and exhalation images
is only medium-sized. Now the registration results are much better, we assume that
the medium-sized breathing deformation is still in the capture range of the algorithms
as opposed to the large-size deformation from data set E. The feature approach again
does not find enough correspondences to be very accurate, especially some large-scale
structures like the diaphragm are not aligned well. Furthermore, it has to be mentioned
that the diseased regions in the upper parts of the lung do not exhibit structure, which
prevents features from being extracted there. The symdemons and curvature approaches
are prone to smearing effects again in the lower part of the right lung. The bspline
method shows a good registration result, while the quantitative evaluations from Table 7.11
suggests the contrary. We note that the resulting warped image from bspline appears more
smoothed than the other methods, presumably due to the internal B-spline interpolations.
The hybrid approach shows a reasonable result, however, a converged state has not been
reached.

7.4.6 Conclusions

In this extensive evaluation study, we found that the simple Symmetric Demons algorithm
often out-performs the other compared methods while still needing moderate run-times.
This is especially true for the synthetic deformation experiments. Also the curvature
algorithm leads to appealing results, however, there are some cases where it leads to
border artifacts that shrink the warped volume. Both approaches have their difficulties
when it comes to clinical data registration of data sets that differ by large breathing
motion. Interestingly, the registration of small-to-medium sized breathing differences in
the presence of contrast agents does not prevent these methods from successful registration,
although the important constant brightness assumption is violated. At this point we also
want to remark that, compared to the evaluations in Chapter 5 we have chosen a larger
number of iterations for the Symmetric Demons algorithm, which explains the performance
improve (at the cost of run-time).

The trade-off between run-time and accuracy inevitably leads to the feature algorithm.
It is the fastest algorithm of our study due to its inherent reduction of the problem
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domain to a feature subset and it shows acceptable performance on a number of synthetic
experiments. It also masters the clinical data sets very well, however, there are some
cases where it totally fails due to a too small number of extracted feature correspondences
or their uneven distribution. These cases are all experiments that involve large-scale
deformations. The largest potential of this method is that unlike the intensity-based
methods it scales very well when further increasing volume size. We also want to note here,
that the downsampling of volumes (which involves smoothing) is a severe disadvantage
for the feature extraction steps. In our experience (and this was also demonstrated in
the synthetic airway experiment) the feature extraction step is much more reliable when
performed on the original volume sizes, since the features we are interested in mostly are
located on this original scale. Yet, to be able to perform a fair comparison with the other
methods we decided to perform this method to the downsampled images. We conclude
that further investigation of feature-based approaches are definitely a promising direction
to follow.

The shortcomings of the feature method were effectively prevented by the hybrid al-
gorithm. This method is very appealing from a theoretical point of view, however, the
practical suitability is largely reduced due to its high computational cost. Further inves-
tigation of speeding up this method should definitely be performed.

The elastic and the opticflow methods did not convince in our experimental study.
Both methods use a regularization scheme that is too restrictive for matching of rather
large breathing deformations. An increase in the number of iterations per multi-resolution
level would be necessary to get more accurate results. This was also shown in other
publications (e.g. [Modersitzki, 2004] for elastic registration). In combination with the
rather high computational effort that is necessary for these methods (especially the elastic
scheme) we do not intend to investigate them further.

B-spline mutual information registration depends on a regularly-sized grid defining
the B-spline control points. This has two severe drawbacks. First, the granularity of
the grid can not be adapted to the underlying image information. Background or large
homogeneous tissue regions get more control points than necessary, while regions that show
much high-frequency information (lung tissue including airways and vascular structures)
get fewer. Therefore it is very hard to determine the necessary grid spacing in practice.
The second drawback is its large number of parameters that have to be tuned to be able to
get a decent registration. From the ITK algorithms that we investigated, we spent most
of the time tuning the bspline parameters. Despite these efforts we were unable to register
the airway experiment. However, if meaningful parameters can be found, the performance
of the registration is very well on synthetic and clinical data. Note that in practice, the
large amount of parameters that have to be optimized in this method pose a restriction
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on the B-spline grid size to use, so we conclude that this algorithm has the worst scaling
behavior when volume sizes increase.

Another interesting fact the bspline algorithm showed, is that one can not always trust
the quantitative results that we computed from the experiments. Apart from the necessity
to look at intensity measures only in combination with the ground-truth deformation field
measures, we also found that it is very important to look at the result images as well. We
conclude that our automated evaluation framework is not yet capable of presenting visual
results in connection with the quantitative result, so we have to think of a way how to tackle
this problem. Nevertheless, we are convinced that the only way for thorough evaluation of
nonlinear registration is to use an automated framework, since the computation and the
sighting of all these experiments is a time-consuming, tedious process.



Chapter 8

Summary and Conclusion

This thesis is concerned with the investigation of a variety of nonlinear registration al-
gorithms for application to intra-modality medical image CT data sets. The investigation
lead to a number of contributions to the current state-of-the-art in intra-modality regis-
tration. Special concern was laid on the topics of CTA registration concerning brain and
soft tissue thoracic image data sets. The topic of nonlinear registration is considered as
an important research area in the medical imaging community, a fact that is reflected in
our extensive literature review presented in Chapter 2. Algorithms make use of anatomi-
cal landmarks, segmented structures or whole intensity volumes, their complexity ranges
from simple block-matching techniques to full-grown frameworks based on energy func-
tionals that require systems of partial differential equations to be solved. There is a large
space of methods inbetween these complexity extrema, the most promising techniques
provide an approximation to the full-grown functional minimizers as a natural trade-off
between computational effort and theoretical performance. Many researchers also begin to
fuse anatomical landmark and intensity-based methods to hybrid approaches. Evaluation
of nonlinear registration is far from being a straight-forward topic, this is reflected in the
small number of existing evaluation studies for thoracic soft-tissue registration algorithms.
Among these topic areas we have contributed in several parts, summarized in the following
section.

8.1 Summary of our Contributions

There are situations in clinical practice when brain CTA images have to be registered in
the presence of several independently moving bone structures. Current methods from
the literature either ignore this fact or try to solve it using highly complex segmentation
steps as a pre-processing step for registration. In Chapter 3 we have proposed a novel
approach to deal with the problem of several rigid movements occurring during a single or

143
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between native and contrast-enhanced scans of a brain CTA study. Our method makes use
of a joint segmentation and registration algorithm that iteratively refines the registration
while adding more and more rigid model assumptions to the independently moving bone
structures. We have shown a comparison with a standard approach from the literature
that neglects independent movements and have proved that our algorithm performs more
accurately by the means of quantitative and qualitative comparisons. We also showed
that the proposed method is efficient to compute which is very important giving the size
of current clinical brain CTA input data. A first clinical evaluation study on a large number
of data sets has already been published in [Lell et al., 2006b], who show promising results
of the MIP visualizations compared to the standard methods.

Despite its large diversity the literature on nonlinear soft tissue registration lacks in
automatic landmark extraction, matching and registration methods, a work-flow that is
very popular in the more traditional computer vision literature, where it is used for top-
ics like two- and multi-view 3D reconstruction or optical flow motion computation. In
this thesis we investigated several popular computer vision standard techniques for its
applicability to medical image data. First, we focused on the use of the shape context
descriptor for point matching, leading to a pipeline consisting of shape segmentation from
thoracic image data (lungs, airway tree, diaphragm), 3D surface approximation, regular
point sampling, graph-based matching of shape points using a combined cost function
from the shape context descriptor and the normalized cross correlation, and dense dis-
placement field interpolation using the TPS framework. This work-flow was described in
Chapter 4. We found that given the segmentation of organs of interest this method can
be a very useful approach for efficient feature-based nonlinear registration. The shape
context registration was used to register several sheep thorax data sets to study the static
behavior of breathing. The research interest from the medical point of view is the better
understanding of the physiology of breathing. Our evaluations showed that it is possible
to predict a simple breathing model with this approach.

One of the drawbacks of the shape context based approach was the need for segmen-
tation as a pre-processing step. On the high-contrast and low Signal to Noise Ratio (SNR)
sheep data sets the segmentation was rather easy, however, on real-world clinical patient
data segmentation is a much more complex task. To get away from this need for segmen-
tation we established a feature-based registration pipeline (compare Chapter 5), consisting
of a Förstner point(s) of interest (POI) detection scheme, a combined local and global POI
descriptor calculation using SIFT and shape context, a robust forward-backward matching
and a displacement field densification using approximating TPS. This approach was de-
signed with computational efficiency and accurate matching of small vessel structures in
mind. We showed that the computational effort of the automatic pipeline scales with the
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number of extracted features as opposed to the number of voxels like in intensity-based
methods. This becomes more and more important if one considers the increasing sizes of
clinical volume data sets. Our quantitative evaluations showed comparable behavior to
the Demons algorithm, with lower computational effort. However, we also identified the
need for evenly distributed feature matches over the volume as a slight disadvantage of
the method.

In Chapter 6 we investigated a hybrid nonlinear registration framework that unifies
feature- and intensity-information. Our general framework makes use of a formulation as a
variational energy functional. We created a special instance of our registration framework
using an optical flow SSD data term, an anisotropic image-driven diffusion regularization
term and a feature constraint term derived from the feature-matching algorithm of Chap-
ter 5. This model is a full-grown nonlinear registration scheme that integrates the theory of
regularization of ill-posed inverse problems and the wide-spread optical flow concept with
our novel feature-based registration. The minimization of the energy functional leads to
solving the Euler-Lagrange partial differential equation system in order to get to a solution
of the desired nonlinear transformation. However, the obvious drawback of this full-grown
model is its increased computational effort. Despite the feature-based solution being able
to speed up the convergence of the PDE solver, the runtime is in our opinion not yet low
enough to apply the method to real-world clinical application areas. Our quantitative and
qualitative evaluations of the method have shown the excellent behavior on synthetic and
real-world data.

Our final contribution was a comparison study of several state-of-the-art nonlinear
registration algorithms with our proposed algorithms using a number of synthetic trans-
formations and evaluation measures in addition to real-world clinical data. For the syn-
thetic transformations we knew the ground-truth, so an exact quantitative comparison
was possible, however, the findings should be interpreted with care. Especially in the area
of nonlinear registration, the definition of meaningful evaluation methods is a very hard
problem. We argued that a combination of several different synthetic transformations in
combination with a large number of measures describing different quantitative informa-
tion and with a fully-automated evaluation framework may be used to derive meaningful
statistics. This study is presented in Chapter 7. The outcome of the study showed that
the efficient feature-based algorithm is competitive with standard algorithms like Sym-
metric Demons. It also showed that for extremal deformations, the performance of the
feature-based approach decreases. By putting the feature matches into a hybrid varia-
tional framework approach it was possible to make it robust to feature mismatches. The
cost was a dramatic increase in computation time. We also found that, although we tested
a large number of different algorithms, it was not possible to accurately register our more



146 Chapter 8. Summary and Conclusion

difficult clinical data sets. This leaves more space for future developments.

8.2 Directions for Future Work

From the findings of this thesis a number of directions for future work have emerged,
which have already been discussed in the final sections of the chapters of this thesis. Here
we would like to summarize these directions and present them in a compact manner in
addition to further more general ideas.

The partially rigid registration could be improved by investigating joint segmentation
and registration frameworks like the one presented in [Yezzi et al., 2003]. A variational
formulation could e.g. minimize the similarity measure while at the same time mod-
eling the segmentation of the bone structures using the Mumford-Shah functional for
segmentation. An additional constraint would keep the number of different rigid registra-
tion models low and implicitly perform the interpolation of adjacent registration matrices.
However, it is to be expected that such a model would not be efficient to compute anymore.
The approach could also benefit from a comparison to elastic registration approaches like
in [Bentoutou et al., 2002] or similar to [Little et al., 1997], however, the need for manual
interaction has to be reduced. An interesting approach to look into is [Arsigny et al., 2005],
where a novel class of geometrical transformations is presented (polyrigid/polyaffine trans-
formations). These transformations have few DoF, however, by proper weighting of few
rigid/affine transformations a model suitable for our registration purpose could be built.
Also the algorithm of [Keeling and Ring, 2005] which provides a nonlinear registration
method with maximal rigidity constraints should be considered for future work.

Future work on the surface-based registration approach should analyze the various
pipeline stages for their respective contribution to the overall registration error. We assume
that the shape discretization and the shape matching stage have the largest effect on the
error. Therefore, fine-tuning these stages by a more dense point sampling and by adding
an outlier robustness term to the matching should be performed. Another way of using the
results of the surface-based registration is, by incorporating them in a more generic feature
registration framework, where correspondences from landmarks and surfaces are combined.
A comparison of the shape context method with other standard methods like robust point
matching [Chui et al., 2003] or relaxation labeling [Zheng and Doermann, 2006] should
prove our assumption (which was derived from the two-dimensional equivalents) that the
shape context is most suitable for our purpose.

The landmark-based feature registration approach is a very promising
way for efficient nonlinear image registration. However, we still see some
ways of improvement, since we only started the investigation of dense feature
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based registration methods. The method could benefit from a compari-
son of further landmark feature extraction methods like those presented
in [Kitchen and Rosenfeld, 1982, Thirion and Gourdon, 1995, Loy and Zelinsky, 2003].
Based on previous work of our group presented in [Pock et al., 2005a] we also
think of using the centerlines of the vascular structures or their branching
points [Tschirren et al., 2005b] as features for matching. Centerline matching could be
performed by a relaxation labeling approach [Zheng and Doermann, 2006]. In the long
run, it would be interesting to define a framework using a large number of different
features that were extracted using several methods. Unifying these features in a common
mathematical formulation, that also incorporates a robustness term, should be a primary
goal for future contributions. A large number of publications from the traditional
computer vision literature deals with learning-based feature definition/detection. To
achieve more robustness in terms of lung diseases this could be the way to go.
Apart from the feature extraction we would also improve the feature matching by tiling
the images into sub-volumes and extracting a certain number of features in each of
these sub-volumes. This way it could be guaranteed that we have an even distribution
of feature for the TPS registration step. However, one has to keep in mind that the
nonlinear deformations might move features from one sub-volume to the other and
that the matching cost threshold determining a valid match will have to be reduced,
thereby leading to more outliers. An idea for outlier removal is the incorporation of
a robust median filtering procedure on the displacement field vectors, which would
remove those correspondences that do not fit into the overall thoracic movement
model. Finally, the TPS approximation is still the bottle-neck of the method, this
could be improved by using e.g. a moment-based method for fast radial basis function
approximation [Beatson and Newsam, 1998], which would improve the displacement field
calculation by an order of magnitude.

The hybrid landmark and intensity-based registration approach is very appealing from
a theoretical point of view. Obviously its most important drawback is the larger compu-
tation time compared to other methods. Since we are solving a large system of partial
differential equations and need an outer iteration stage to linearize the inherent nonlin-
earity of the energy functional, there is the need to come up with more efficient schemes.
One idea would be similar to the ideas used in the Demons [Thirion, 1998] algorithm,
where the homogeneous optical flow equation system is approximated by an alternat-
ing scheme of optical flow constraint equation calculation and Gauss-filtering to perform
the displacement field regularization. Since the Gauss-filter approximates the Lapla-
cian, this is a valid assumption [Bro-Nielsen and Gramkow, 1996]. In our case we use an
anisotropic image-driven regularization, therefore an obvious way for approximation would



148 Chapter 8. Summary and Conclusion

be an anisotropic diffusion filtering of the displacement field [Perona and Malik, 1990,
Weickert et al., 1998]. Extensions of these methods on vector fields have been shown
e.g. in [Weickert and Brox, 2002]. Another important research direction is the multi-grid
method [Briggs et al., 2000], more specifically a Full Multi-Grid Cycle with pre- and post-
smoothing, for efficiently solving the elliptic partial differential equation system. This
method is the current state-of-the-art in solving PDE systems, however, its implementation
is far from straight-forward.

Another important concept that has to be researched further is the incorporation of
more robust similarity measures into the intensity-based registration framework. The SSD

measure is not very suitable for non-Gaussian noise cases and if outliers have to be taken
into account. In our case partial volume effect due to large breathing differences, contrast
agent application and lung disease lead to geometrical and intensity outliers that currently
are not modeled in our approach. A promising research direction for this problem is to
use robust M-estimators on the terms (see [Hellier et al., 2001] for details).

Concerning the evaluation framework we would like to include more types of synthetic
deformations. One method that is especially interesting is the finite-element method based
approach from [Schnabel et al., 2003]. We also think of using our interactive segmentation
refinement tools [Bornik et al., 2004] to generate simulated deformations. Experimenting
with the framework’s capability to add another dimension, different parameterizations of
the algorithms that are investigated, seems to be another promising direction, however,
one starts to run into problems due to the combinatorial explosion of necessary algo-
rithm runs, distributed grid-based computer networks would be a possible way to still
compute results in acceptable times (see [Glatard et al., 2006]). Incorporating further
similarity measures as well as nonlinear registration methods obviously would contribute
to the significance of evaluation studies. This is a task where feedback from the research
community would be most welcome. In combination with the open-source Insight Seg-
mentation and Registration Toolkit [ITK, 2006], one could think of a web-based version
of our evaluation framework, where open-source data sets (like ones taken from the NLM
database [NLM, 2006]) could be transformed with pre-defined, adjustable synthetic defor-
mations, and one could upload his nonlinear registration algorithm and perform the tests
comparing it with other methods and with the known ground-truth data. Such an effort
would need a community that supports this idea, similar to the stereo evaluation project
from Middlesbury College [Scharstein and Szeliski, 2002].
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Acronyms and Symbols

List of Acronyms

BFGS Broyden-Fletcher-Goldfarb-Shanno
CT X-ray Computed Tomography
CTA CT Angiography
DoG Difference of Gaussian
DSA Digital Subtraction Angiography
EBS Elastic Body Spline
FRC Functional Residual Capacity
GEBS Gaussian Elastic Body Spline
HU Hounsfield Unit
LRTPS locally restricted thin-plate-spline
MIP Maximum Intensity Projection
MI Mutual Information
MMBE Matched Mask Bone Elimination
MRI Magnetic Resonance Imaging
MSCT Multi-slice Spiral CT
NCC Normalized Cross Correlation
NMI Normalized Mutual Information
PDE partial differential equation
PDF Probability Distribution Function
PET Positron Emission Tomography
POI point(s) of interest
RBF radial basis function
RMS root-mean-square
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RVOE relative volume overlapping error
SNR Signal to Noise Ratio
SPECT Single Photon Emission Computed Tomography
SAD Sum of Absolute Differences
SIFT Scale-Invariant Feature Transform
SSD Sum of Squared Differences
SVD Singular Value Decomposition
TLC Total Lung Capacity
TRE target registration error
TPS Thin-Plate-Spline
US Ultrasound



Appendix B

Implementation Details

B.1 Thin-Plate-Spline Interpolation/Approximation

The TPS interpolation is a method for nonlinear function interpolation from a set of given
points. It is a multi-dimensional generalization of the one-dimensional cubic splines, which
can be used for function interpolation using an arbitrary number of data points. Cubic
splines are low-order representations that are joined together at the interpolation points
and twice continuously differentiable everywhere, thus preventing the interpolation func-
tion from oscillating like high-order polynomials would do. TPS interpolation now gen-
eralizes this concept in two or more dimensions by decomposing the multi-dimensional
deformations into several coupled one-dimensional interpolation problems.

[Bookstein, 1989] was the first who proposed TPS for point-based image registration.
TPS interpolation can be seen as the problem of finding a continuous transformation ϕ :
Rd → Rd that minimizes a given energy functional subject to the interpolation conditions
(assuming the number of landmark correspondences as n)

xF,i = ϕ (xM,i) , i = 1, · · · , n

i.e. the transformed points of one image have to be located exactly at the corresponding
points of the other image. This condition clearly resembles the step from estimating a
dense displacement field from sparse correspondences. In addition to the interpolation
conditions, the choice of the energy functional also defines the behavior of this estimation.
To arrive at the TPS interpolation scheme this energy functional represents the bending
energy of a thin plate separately for each dimension component of ϕ. In the following we
will assume d = 3, i.e. 3D TPS interpolation. The problem now can be decomposed into
three sub-problems according to the components of ϕ, (u(x), v(x), w(x))T . For the first
sub-problem in u, the energy functional reads
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J [u] =
∫∫∫

R3

u2
xx + u2

yy + u2
zz + 2

(
u2

xy + u2
xz + u2

yz

)
dxdydz

with the other two being defined equivalently. Under some very general conditions
concerning the minimum number of landmark correspondences and uniqueness of least
squares regression of the nullspace of the energy functional [Duchon, 1976, Wahba, 1990],
the minimization problem has a unique solution that can be calculated analytically

u(x) = a0 + a1x + a2y + a3z +
n∑

i=1

wiU (x,xM,i) .

Here a0, a1, a2, a3, wi is a set of weights and U(r) is the TPS basis function which is
defined as U(r) = − 1

8π r, with r the distance of a given point to a landmark point. If one
summarizes the weights by a = (a0, · · · , a3)

T and w = (w0, · · · , wn−1)
T their derivation

can be posed as the solution of the linear equation system

Pa + Kw = v

PTw = 0

where K = (Kij) ,Kij = U (ri), P = (Pij) , Pij = φj (xM,i) and v is the column vector
of one component of the coordinates of the target landmark correspondences xF,i. φ is
a compact representation of the vector (1, x, y, z)T . This linear equation system can be
solved by standard methods, e.g. using an LU decomposition [Press et al., 1992]. For
more information on TPS interpolation the reader may refer to [Rohr, 2001], where the
relation of this functional to elasticity theory and to the Navier equation are given.

B.1.1 Approximating Thin-Plate-Splines using Landmark Errors

A generalization of the interpolating TPS weakens the hard interpolation constraint to
take into account localization and matching errors that occur in practice during landmark
localization [Rohr, 2001]. The approximation condition now reads

xF,i ≈ ϕ (xM,i) , i = 1, · · · , n

A similar derivation compared to the interpolating case leads to an energy functional
that consists of s SSD term of the landmark correspondences and the same regularization
term as above. Interestingly this regularization problem also has a direct, analytical solu-
tion that uses the same basis functions as the interpolating TPS. The final linear equation
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system is given as

Pa +
(
K + nλW−1

)
w = v

PTw = 0

where λ is the global regularization weight and W−1 denotes the diagonal matrix
of variances representing the landmark localization/matching uncertainties. The whole
system is very similar to the equation system from the interpolating TPS scheme. An
additional benefit is, that the uncertainty term makes the system more numerically stable,
since the diagonal entries of K now become non-zero. With this derivation it is possible
to prevent folding of the estimated dense displacement field, thus better approximating a
diffeomorphic mapping.

B.2 B-spline Deformable Registration

The B-spline nonlinear registration method defines the transformation ϕ : Rd → Rd, which
relates fixed and moving images IF (x),IM (x) as

ϕ(xF ) = ϕglobal(x) + ϕlocal(x)

The global transformation is parameterized as a 12 degree of freedom affine trans-
formation. The local motion model is described by means of a free form deformation
model based on the tensor product of the one-dimensional cubic B-splines. An underlying
mesh of uniformly-arranged control points allows to deform the moving image. Denot-
ing the image domain Ω = {(x, y, z)|0 ≤ x < X, 0 ≤ y < Y, 0 ≤ z < Z}, a grid resolution
nx×ny ×ny, a uniform grid spacing δ and the control points φi,j,k, the definition of a free
form deformation is:

ϕlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n

with

i =
⌊

x
nx

⌋
− 1, j =

⌊
y
ny

⌋
− 1, k =

⌊
z
nz

⌋
− 1,

u = x
nx
−
⌊

x
nx

⌋
, v = y

ny
−
⌊

y
ny

⌋
, w = z

nz
−
⌊

z
nz

⌋
and where Bl(u), Bm(v), Bn(u) represent the {l,m,n}-th basis functions of the B-splines

B0(u) = (1−u)3

6
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B1(u) = 3u3−6u2+4
6

B2(u) = −3u3+3u2+3u+1
6

B3(u) = u3

6

The optimization algorithm has to minimize the free parameters of the free form de-
formation model. In order to make optimization more time-efficient and robust to local
minima, a multi-resolution approach is used. The resolution of control points is increased
in each multi-resolution step. Optimization starts with a low resolution to rapidly obtain a
rough estimate of the overall local deformation. For each resolution an increasing number
of control points is defined to refine the estimated deformation from the previous level.
The resulting additional transformation parameters are calculated by a B-spline subdivi-
sion algorithm. For each of the L resolutions a new ϕl

local is calculated. The overall local
transformation is defined as the sum of the individual transformations:

ϕlocal(x) =
L∑

l=1

ϕl
local(x)

The similarity measure of the algorithm is the normalized mutual information as pre-
sented in Section 2.1.2.3. [Rueckert et al., 1999] propose a simple gradient descent tech-
nique for the optimization of the similarity cost functions for the local and global trans-
formation models, respectively. However a far more suitable optimization method in case
of a large number of free parameters is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) ap-
proach [Nocedal and Wright, 1999], which is a quasi-Newton optimization technique. The
pseudo code in Algorithm 3 outlines the main steps of the deformable B-spline algorithm.

Algorithm 3 B-spline Nonlinear Registration Algorithm
1: calculate the optimal affine transformation parameters Θ
2: initialize the control points φ
3: repeat
4: calculate the gradient vector of the cost function C with respect to the nonrigid

transformation parameters φ:

∇C = ∂(Θ,φl)
∂φl

5: while ‖∇C‖ > ε do
6: recalculate the control points φ = φ + µ ∇C

‖∇C‖
7: recalculate the the gradient vector ‖∇C‖
8: end while
9: increase the control point resolution φl → φl+1

10: increase the image resolution
11: until finest level of resolution is reached
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A disadvantage of nonlinear registration using free form deformations is the high com-
putational effort, mainly due to the need for optimization of a large number of parameters.
In [Klein et al., 2005] an improvement is proposed and the influence of different gradient
estimation techniques which are needed to find a search direction in the optimization
process is investigated. Three different gradient estimation methods are compared and
its effects on the gradient descent optimization strategy are shown. The most promis-
ing method is the one using an analytic approach for cost function gradient derivation.
Mutual information is assumed a continuous and differentiable function, thus the method
by [Thevenaz and Unser, 2000] can be used for computing the gradient vector. Another
important improvement proposed by [Klein et al., 2005] is a random selection of samples
for the mutual information computation.

B.3 Elastic Intensity-Based Deformable Registration

We describe the elastic registration scheme [Bajcsy and Kovacic, 1989, Modersitzki, 2004]
according to the variational framework from Section 1.4. In terms of J [ϕ], the similarity
metric used is the SSD measure:

DSSD[IF , IM ;ϕ] =
∫∫∫

Ω

(IF (x)− IM (ϕ (x)))2dx.

In the elastic registration scheme, the regularization term is

S[ϕ]E :=
∫∫∫

Ω

λ

2
(ux + vy + wz)

2 + µ
{

(ux)2 + (vy)
2 + (wz)

2
}

+

µ

2

{
(vx + uy)

2 + (wx + uz)
2 + (wy + vz)

2
}

dx.

The derivation of a solution algorithm for this variational problem now involves the
Gâteaux derivative of the functional J [ϕ]. A necessary condition for a minimizer ϕ of
J [ϕ] is that the Gâteaux derivative of J [ϕ] vanishes for all suitable perturbations. This
analysis of the first variation of J [ϕ] leads to the Euler-Lagrange equations, a system of
partial differential equations. Its numerical solution determines a minimizer ϕ. The Euler-
Lagrange equations of the elastic regularization term are also known as the Navier-Lamé
equations

f = µ∇2ϕ + (λ + µ)∇divϕ

where f is an external force working against the internal elasticity constraints. For
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this specific regularization term and the SSD similarity measure the final system of Euler-
Lagrange equations reads:

1. 2 (IF (x)− IM (ϕ (x)))
∂IM

∂x
+ (λ + 2µ) uxx + µuyy + µuzz + (λ + µ) (vxy + wxz) = 0

2. 2 (IF (x)− IM (ϕ (x)))
∂IM

∂y
+ µvxx + (λ + 2µ) vyy + µvzz + (λ + µ) (uxy + wyz) = 0

3. 2 (IF (x)− IM (ϕ (x)))
∂IM

∂z
+ µwxx + µwyy + (λ + 2µ) wzz + (λ + µ) (uxz + vyz) = 0

For the numerical solution of this functional a semi-implicit fixed-point approach can
be used. A Taylor approximation neglecting the second- and the higher order terms
linearizes the nonlinearity IM (ϕ (x)) leading to a number of outer iterations to approxi-
mate the equation system. Each iteration consists of an iterative relaxation scheme (e.g.
Gauss-Seidel or Successive Over-Relaxation (SOR)) to solve the resulting linear equation
system with all of the displacements on the image grid as its unknown. The discretiza-
tion of the PDE is commonly performed using finite differences. Other numerical solution
methods for this approach include the finite-element model [Gee et al., 1994] or an FFT

technique [Fischer and Modersitzki, 1999].

B.4 Demons Registration

The ”Demons” registration approach [Thirion, 1998] has its origin in the work on de-
formable model matching. The novel idea of this method is that instead of attracting
a deformable model defined in the moving image to a given fixed image by internal and
external forces, it provides a regular grid of ”Demons” (in accordance with Maxwell’s
demons introduced in physics) defined on the fixed image that pushes the iso-intensity
surfaces of the moving image in the normal direction of the iso-intensity surfaces of the
fixed image. The direction of these pushes depends on the current grid point being inside
or outside the model iso-intensity surface. Intuitively, this tends to push the content of the
moving image inside the object shape, and rejects the background of the moving image
outside the object shape, where an object is regarded as an iso-intensity surface (but may
also be a segmented surface).

A 3D grid of ”Demons”, which can be used for nonlinear intensity registration, is
composed of the iso-intensity surfaces that pass through each voxel where the norm of the
intensity gradient does not vanish. In that case we have an oriented normal ∇IF (x). The
demon in each voxel x pushes the moving image according to ∇IF (x) if IF (x) < IM (x)
and according to −∇IF (x) if IF (x) > IM (x). The standard demons algorithm now uses
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the following transformation update equation derived from the optical flow constraint

ϕupdate =
IM (ϕ (x))− IF (x)

|∇IF (x)|2
∇IF (x).

One has to take care in situations when ∇IF (x) vanishes, in this case the transfor-
mation update goes to infinity. Therefore a numerically stable version makes use of an
additional stability term in the denumerator of the equation. In order to avoid an addi-
tional parameter this stability term is the square of the intensity difference leading to the
following stable Demons update equation

ϕupdate =
IM (ϕ (x))− IF (x)

|∇IF (x)|2 + (IM (ϕ (x))− IF (x))2
∇IF (x).

The algorithm now iterates in the following way. Starting from an initial transfor-
mation ϕ0 at each iteration the transformation update is calculated for every grid point
x, then a Gauss-filtering step is applied to the components of the deformation field to
approximate the global regularization. In [Bro-Nielsen and Gramkow, 1996] it is proven
that the Gauss-filter approximates the Laplacian of the displacement field, i.e. Tikhonov
regularization.

In practice one often uses another formulation of the ”Demons” algorithm, which is
more symmetric in the role of the fixed and the moving image [Thirion, 1995]. We will refer
to this method as ”Symmetric Demons” in the following. The only difference compared
to the original formulation is its transformation update equation, which reads

ϕupdate =
2 (IM (ϕ (x))− IF (x))

(|∇IF (x)|+ |∇IM (x)|)2 + (IM (ϕ (x))− IF (x))2
(∇IF (x) +∇IM (x)) .

Here one can easily see, that the gradients of fixed and moving image are considered
concurrently, which makes the scheme more stable to outliers that appear only in one
of the images. However, this advantage comes at the cost of higher computational and
memory efforts in the implementation.

The relation of the ”Demons” algorithm to standard optical-flow methods has been
shown in [Modersitzki, 2004], further attempts to understand the relationships and impli-
cations of this method are given in [Bro-Nielsen and Gramkow, 1996, Pennec et al., 9999].

B.5 Curvature Registration

The curvature registration scheme [Fischer and Modersitzki, 2003b] is described according
to the variational framework from Section 1.4. The similarity metric used is the SSD
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measure:

DSSD[IF , IM ;ϕ] =
∫∫∫

Ω

(IF (x)− IM (ϕ (x)))2dx.

The regularization term is defined as

S[ϕ]C :=
∫∫∫

Ω

1
2

((
∇2u

)2 +
(
∇2v

)2 +
(
∇2w

)2) dx

and therefore quite similar to Tikhonov regularization, however, here the second deriva-
tives of the components of the displacement field are penalized, instead of the first deriva-
tives. This prevents oscillations and another interesting aspect is, that this regularizer has
a non-trivial kernel that contains affine linear transformations. As a consequence, it does
not penalize affine linear transformations and there is no theoretical need for affine pre-
registration. Another interesting fact about curvature registration is its similarity to the
TPS energy functional that describes the minimization of the bending energy of a function.

The resulting Euler-Lagrange equations incorporate the squared Laplacians of the dis-
placement field components. This fourth order PDE system (a biharmonic equation) under
Neumann boundary conditions can be solved by introducing an artificial time variable
and computing the steady state solution in a semi-implicit scheme. The PDE is discretized
using finite differences on the whole voxel grid, the system is only coupled via the external
forces (similarity measure) and not via the internal energies, therefore it can be solved
independently for each component. This leads to a fast and stable way of solution by
discrete cosine transformations in an O(N log N) scheme. The final decoupled equation
system reads

1.
(
IN + ταA2

)
ut+1 = ut + τF t

u

2.
(
IN + ταA2

)
vt+1 = vt + τF t

v

3.
(
IN + ταA2

)
wt+1 = wt + τF t

w

where τ is the time-step, t is the iteration variable that proceeds along the time axis
towards infinity, IN is an N -dimensional identity matrix, A is the system matrix derived
from the finite difference approximation of the Laplacian on the voxel grid given Neumann
boundary conditions and Fl, l ∈ {u, v, w} are the force components derived from the SSD
measure.
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B.6 Synthetic Simulated Breathing Transformation

The synthetic breathing transformation ϕ is simulated by applying a translational force to
the diaphragm surface in the data sets negative z direction. A nonlinear force is calculated
by weighting the constant translation tvertical with a two-dimensional Gaussian distribution
that depends on the x− and y− coordinates of the data set, i.e. the further away from
the center of the diaphragm surface a point is, the smaller is the negative z translation.
Mathematically a displacement vector d1 = (0, 0, z′) is applied to each point (x, y, z)T

that maps it to (x, y, z′)T with

z′ = z − tverticale
− (x−µx)2+(y−µy)2

2σ2

where (µx, µy) corresponds to the x− and y− coordinates of the center of gravity of the
diaphragm points and σ is chosen such that points lying at the exterior of the diaphragm
surface (where the diaphragm is attached to the rib cage) nearly remain fixed.

In a similar fashion, simulation of rib cage behavior during breathing leads to the de-
velopment of another displacement force component. A radial, center-directed translation
tinward is used to form a second displacement d2 = (x′, y′, 0) that maps points (x, y, z)T

to (x′, y′, z)T with (
x′

y′

)
=

(
µx

µy

)
+ t′ ∗ c

|c|

where

c =

(
x− µx

y − µy

)
and t′ = |c| − tinward ∗ (1− e−

(x−µx)2+(y−µy)2

2σ2 )

Combining displacements d1 and d2 gives a total displacement d that is equivalent to a
non-linear transformation ϕ = x + d.

Finally, to simulate a change in lung gray-values due to inhalation, all gray values
smaller than -800 Hounsfield Units (HU) are increased by a random number drawn from
a normal distribution centered at 25 HU with a standard deviation of 3 HU.

B.7 Grid-based Random Synthetic Transformation

This synthetic transformation is calculated using a number of evenly distributed landmark
points and randomly assigning displacements to these landmarks. The amount of the
displacement is increased towards the sampling grid inter-point distance of the landmark
distribution. These displacements are not exactly physically motivated due to their regular
placing, and the larger the assigned displacements are the harder it is to correct them.
The dense synthetic displacement field is calculated using an EBS interpolation. This
method goes back to [Davis et al., 1997], who proposed it as an alternative method to
TPS interpolation (see Appendix B.1). The EBS method also uses a spline kernel transform
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framework, however, the kernel basis function is derived from the Navier partial differential
equations describing elastic body deformations. [Davis et al., 1997] motivate their method
with an improved realism for deforming tissues in medical imaging data sets compared to
the TPS method. A drawback of this method is the increased computational effort, since
the interpolation functions for three dimensions do not decouple as in the TPS case.

As an example for the grid-based synthetic transform, consider a data sets size of
256 × 256 × 256. If we choose a grid size of 32, then every 32 voxels a grid point is
placed. The maximal deviation is the second important parameter of this transformation,
it resembles the maximal amount of deformation that may be calculated per grid point.
The three-dimensional displacement vector is randomly drawn from a normal distribution
between 0 and the maximal amount of deformation. The main motivation for this synthetic
transformation is to determine the degree of deformation where algorithms are not capable
to register the data anymore, in some sense this can be seen as an algorithms breakdown
point.



Appendix C

Evaluation Framework

Quantitative Results

simbr10-5 simbr25-10

Measure nlm sheep human nlm sheep human

initial [mm] 3.349 3.594 3.543 7.937 8.762 8.604
symdemons [mm] 3.202 2.313 1.958 6.710 7.130 5.368
curvature [mm] 2.975 2.063 0.872 5.266 3.810 3.696
bspline [mm] 1.598 4.566 4.166 1.607 2.122 8.617
elastic [mm] 1.623 1.656 1.690 3.771 4.156 4.139
feature [mm] 1.033 0.471 0.539 2.653 1.237 1.430
opticflow [mm] 1.930 1.630 1.418 3.312 3.871 3.559

R
M

S
d
is

p

hybrid [mm] 1.023 0.422 0.59 1.950 1.237 1.430

initial [mm] 1.185 1.219 1.209 2.479 2.826 2.752
symdemons [mm] 0.077 0.085 0.023 0.137 0.130 0.140
curvature [mm] 0.046 0.052 0.010 0.057 0.067 0.013
bspline [mm] 0.515 0.591 1.043 0.634 0.492 2.232
elastic [mm] 0.652 0.761 0.732 1.455 1.839 1.684
feature [mm] 0.072 0.060 0.024 0.092 0.084 0.041
opticflow [mm] 0.617 0.794 0.598 1.401 1.699 1.515

M
A

D
d
is

p

hybrid [mm] 0.054 0.054 0.023 0.047 0.059 0.035

initial [mm] 7.293 7.991 7.874 18.340 20.114 19.827
symdemons [mm] 4.546 3.664 1.959 12.501 8.153 7.156
curvature [mm] 5.169 4.093 0.443 11.502 5.848 2.787
bspline [mm] 2.762 6.343 5.800 2.373 2.673 12.708
elastic [mm] 3.137 3.094 3.206 6.950 7.901 8.078
feature [mm] 2.625 1.191 1.450 7.085 3.164 3.976
opticflow [mm] 2.967 3.177 2.861 6.606 8.045 7.096

M
A

X
d
is

p

hybrid [mm] 2.335 2.547 2.314 4.715 5.149 4.844

Table C.1: Simulated breathing transformation simbr10-5 and simbr25-10. Registration
results in terms of displacement field measures.
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simbr10-5 simbr25-10

Measure nlm sheep human nlm sheep human

affine [HU] 52.112 50.621 57.147 60.7764 59.357 63.981
symdemons [HU] 18.933 17.287 17.237 24.2617 26.529 29.335
curvature [HU] 15.339 10.118 10.413 19.6199 19.598 24.201
bspline [HU] 18.215 21.861 24.562 21.1404 22.313 34.013
elastic [HU] 30.271 27.410 36.925 39.4448 38.803 47.847
feature [HU] 19.304 13.506 16.551 27.3814 20.354 19.225
opticflow [HU] 18.914 20.102 26.103 25.2813 29.892 38.193

R
M

S
in

t

hybrid [HU] 14.408 11.240 12.772 16.3982 11.316 12.464

affine [HU] 11 12 23 22 21 34
symdemons [HU] 1 1 1 1 1 1
curvature [HU] 1 1 1 1 1 1
bspline [HU] 1 2 3 2 2 4
elastic [HU] 5 4 10 6 7 16
feature [HU] 2 1 2 2 2 3
opticflow [HU] 3 3 8 4 6 12

M
A

D
in

t

hybrid [HU] 1 1 1 2 1 1

affine 0.293 0.339 0.250 0.212 0.242 0.182
symdemons 0.777 0.882 0.860 0.764 0.823 0.901
curvature 0.764 0.879 0.881 0.758 0.837 0.795
bspline 0.705 0.726 0.653 0.671 0.739 0.619
elastic 0.489 0.583 0.427 0.388 0.446 0.326
feature 0.647 0.825 0.712 0.634 0.750 0.705
opticflow 0.577 0.638 0.505 0.485 0.513 0.391

N
M

I i
n

t

hybrid 0.721 0.794 0.750 0.690 0.794 0.736

affine 0.197 0.178 0.223 0.199 0.183 0.226
symdemons 0.014 0.025 0.015 0.020 0.030 0.041
curvature 0.015 0.031 0.012 0.016 0.033 0.014
bspline 0.046 0.058 0.066 0.058 0.058 0.082
elastic 0.120 0.117 0.166 0.151 0.144 0.197
feature 0.072 0.048 0.052 0.077 0.061 0.067
opticflow 0.092 0.105 0.140 0.108 0.123 0.170

E
D

G
E

in
t

hybrid 0.041 0.036 0.047 0.069 0.052 0.070

affine [HU] 602 515 555 835 846 871
symdemons [HU] 8 4 6 10 6 7
curvature [HU] 15 8 7 16 9 13
bspline [HU] 32 35 34 37 32 39
elastic [HU] 88 76 102 172 148 192
feature [HU] 53 20 28 74 42 39
opticflow [HU] 38 44 58 60 81 101

M
A

X
in

t

hybrid [HU] 18 22 33 26 21 39

Table C.2: Simulated breathing transformation simbr10-5 and simbr25-10. Registration
results in terms of intensity measures.
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simbr55-25 simbr70-30

Measure nlm sheep human nlm sheep human

initial [mm] 18.408 20.173 19.897 23.280 25.727 25.349
symdemons [mm] 8.264 19.230 15.963 9.689 19.151 18.588
curvature [mm] 6.771 7.798 7.702 7.112 8.401 11.601
bspline [mm] 10.407 6.000 27.739 8.808 10.039 15.318
elastic [mm] 11.176 11.092 11.792 15.183 14.346 16.512
feature [mm] 7.889 5.302 6.748 18.163 12.975 12.393
opticflow [mm] 11.332 12.607 11.750 14.754 16.213 16.148

R
M

S
d
is

p

hybrid [mm] 7.202 4.849 5.817 12.350 10.974 10.711

initial [mm] 5.945 6.974 6.805 7.280 8.743 8.458
symdemons [mm] 0.215 0.590 0.233 0.674 0.894 1.117
curvature [mm] 0.075 0.104 0.019 0.094 0.118 0.023
bspline [mm] 2.242 1.713 11.87 1.973 3.490 6.290
elastic [mm] 4.738 4.763 4.736 6.128 6.127 6.167
feature [mm] 1.468 1.107 1.223 4.329 3.398 3.924
opticflow [mm] 4.504 4.913 4.474 5.859 6.201 5.703

M
A

D
d
is

p

hybrid [mm] 1.229 1.008 2.336 3.160 3.994 3.463

initial [mm] 41.399 45.119 44.639 52.978 57.687 57.133
symdemons [mm] 21.368 43.101 37.229 23.461 44.392 44.838
curvature [mm] 13.595 10.348 11.225 15.729 11.517 17.044
bspline [mm] 15.342 8.529 53.223 13.147 15.132 42.291
elastic [mm] 22.602 21.846 24.447 31.842 28.065 35.510
feature [mm] 21.012 13.864 12.582 29.726 28.441 26.362
opticflow [mm] 23.747 25.010 23.807 30.526 31.615 31.833

M
A

X
d
is

p

hybrid [mm] 15.142 17.525 17.205 25.639 24.732 21.341

Table C.3: Simulated breathing transformation simbr55-25 and simbr70-30. Registration
results in terms of displacement field measures.
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simbr55-25 simbr70-30

Measure nlm sheep human nlm sheep human

affine [HU] 73.827 70.898 72.889 77.131 73.868 75.375
symdemons [HU] 28.641 41.269 46.390 30.635 41.868 50.348
curvature [HU] 24.172 27.381 33.361 25.012 28.395 35.692
bspline [HU] 34.785 29.118 71.843 29.459 34.498 52.456
elastic [HU] 54.821 49.949 56.644 58.915 52.855 59.101
feature [HU] 37.758 24.000 29.485 48.573 38.746 45.461
opticflow [HU] 36.274 43.121 49.196 39.412 45.967 51.384

R
M

S
in

t

hybrid [HU] 27.118 16.956 22.305 32.383 27.935 26.306

affine [HU] 76 62 67 95 87 87
symdemons [HU] 1 1 1 1 1 1
curvature [HU] 1 1 0 1 1 1
bspline [HU] 2 2 52 3 2 13
elastic [HU] 15 13 23 22 16 26
feature [HU] 3 2 4 7 4 12
opticflow [HU] 7 11 17 8 13 19

M
A

D
in

t

hybrid [HU] 2 2 2 6 7 9

affine 0.1315 0.1480 0.1129 0.1183 0.1289 0.0986
symdemons 0.7114 0.6893 0.5742 0.6614 0.6794 0.5343
curvature 0.6912 0.7614 0.6846 0.6501 0.7396 0.6570
bspline 0.6365 0.7236 0.1646 0.6475 0.6787 0.4936
elastic 0.2463 0.3142 0.2314 0.2123 0.2753 0.2047
feature 0.6333 0.7202 0.6061 0.5181 0.5693 0.5569
opticflow 0.3641 0.3651 0.2795 0.3249 0.3244 0.2539

N
M

I i
n

t

hybrid 0.6383 0.7345 0.6905 0.6803 0.6904 0.6906

affine 0.1924 0.1792 0.2223 0.1892 0.1771 0.2208
symdemons 0.0203 0.0444 0.0453 0.0330 0.0447 0.0616
curvature 0.0182 0.0368 0.0195 0.0205 0.0381 0.1238
bspline 0.0599 0.0642 0.2118 0.0618 0.0712 0.2177
elastic 0.1774 0.1599 0.2103 0.1809 0.1621 0.2114
feature 0.1048 0.1088 0.1326 0.1452 0.1567 0.1667
opticflow 0.1286 0.1388 0.1860 0.1311 0.1412 0.1867

E
D

G
E

in
t

hybrid 0.0761 0.0801 0.0876 0.1075 0.1068 0.1088

affine [HU] 923 963 988 939 994 1013
symdemons [HU] 12 15 41 14 17 62
curvature [HU] 22 14 26 23 15 30
bspline [HU] 39 37 975 41 46 93
elastic [HU] 435 320 353 555 381 447
feature [HU] 235 126 151 414 192 233
opticflow [HU] 116 157 180 138 194 212

M
A

X
in

t

hybrid [HU] 31 41 40 33 48 49

Table C.4: Simulated breathing transformation simbr55-25 and simbr70-30. Registration
results in terms of intensity measures.
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grid-32-2 grid-32-4

Measure nlm sheep human nlm sheep human

initial [mm] 1.850 1.772 1.723 3.517 3.244 3.090
symdemons [mm] 2.722 1.382 2.228 2.478 1.649 1.816
curvature [mm] 2.219 0.716 0.641 2.964 1.073 1.877
bspline [mm] 1.543 2.044 2.569 5.638 4.097 2.512
elastic [mm] 1.456 1.534 1.466 3.064 2.792 2.680
feature [mm] 1.751 1.671 1.503 3.510 3.047 2.815
opticflow [mm] 1.484 1.550 1.479 3.021 2.823 2.682

R
M

S
d
is

p

hybrid [mm] 1.304 1.410 1.361 2.836 2.614 2.450

initial [mm] 0.706 0.672 0.651 1.332 1.252 1.150
symdemons [mm] 0.062 0.059 0.028 0.091 0.078 0.037
curvature [mm] 0.022 0.022 0.005 0.028 0.025 0.007
bspline [mm] 0.385 0.658 0.608 1.199 1.072 0.832
elastic [mm] 0.527 0.527 0.514 1.078 0.991 0.941
feature [mm] 0.634 0.586 0.532 1.329 1.093 0.983
opticflow [mm] 0.550 0.546 0.524 1.060 1.018 0.965

M
A

D
d
is

p

hybrid [mm] 0.423 0.446 0.408 0.883 0.840 0.758

initial [mm] 3.439 3.395 3.268 6.795 6.353 5.892
symdemons [mm] 4.616 2.167 4.435 5.466 3.084 3.350
curvature [mm] 3.800 0.886 0.358 4.407 1.149 1.321
bspline [mm] 3.407 4.184 4.110 9.626 7.470 5.087
elastic [mm] 2.869 3.121 2.925 6.185 5.754 5.279
feature [mm] 3.485 3.377 2.968 6.937 6.312 5.613
opticflow [mm] 2.944 3.139 2.964 6.116 5.747 5.358

M
A

X
d
is

p

hybrid [mm] 2.702 2.940 2.856 5.981 5.561 5.055

Table C.5: Grid synthetic transformation grid-32-2 and grid-32-4. Registration results in
terms of displacement field measures.
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grid-32-2 grid-32-4

Measure nlm sheep human nlm sheep human

affine [HU] 42.492 40.722 47.046 48.793 48.405 53.232
symdemons [HU] 14.357 15.364 14.542 13.888 14.585 13.808
curvature [HU] 13.868 12.307 11.721 14.676 12.545 15.716
bspline [HU] 22.607 24.664 27.700 36.087 35.543 35.557
elastic [HU] 27.529 27.549 33.022 36.031 36.162 41.953
feature [HU] 20.123 18.553 21.520 27.505 26.332 29.633
opticflow [HU] 19.097 23.722 28.879 25.795 32.874 37.964

R
M

S
in

t

hybrid [HU] 15.068 16.248 19.561 20.092 20.450 21.015

affine [HU] 6 6 15 9 10 19
symdemons [HU] 1 1 1 1 1 1
curvature [HU] 1 1 1 1 1 1
bspline [HU] 3 3 6 5 5 9
elastic [HU] 4 4 9 6 6 12
feature [HU] 2 2 3 2 2 4
opticflow [HU] 3 4 8 4 6 11

M
A

D
in

t

hybrid [HU] 2 2 3 2 2 3

affine 0.3797 0.4455 0.3365 0.3092 0.3500 0.2764
symdemons 0.8085 0.8913 0.7816 0.8095 0.8855 0.8215
curvature 0.7793 0.8784 0.8246 0.7750 0.8715 0.8270
bspline 0.6186 0.6483 0.5616 0.4975 0.5440 0.4626
elastic 0.5242 0.5903 0.4651 0.4365 0.4939 0.3896
feature 0.6999 0.7859 0.6954 0.7343 0.8033 0.8143
opticflow 0.5812 0.6142 0.4950 0.5044 0.5184 0.4228

N
M

I i
n

t

hybrid 0.7519 0.8195 0.7102 0.7529 0.8166 0.8315

affine 0.1663 0.1523 0.1950 0.1844 0.1713 0.2158
symdemons 0.0191 0.0260 0.0268 0.0214 0.0264 0.0223
curvature 0.0202 0.0245 0.0130 0.0221 0.0248 0.0205
bspline 0.0790 0.0945 0.1165 0.1182 0.1255 0.1623
elastic 0.1111 0.1120 0.1498 0.1391 0.1374 0.1844
feature 0.1594 0.1423 0.1801 0.1783 0.1694 0.2119
opticflow 0.0928 0.1028 0.1393 0.1103 0.1237 0.1676

E
D

G
E

in
t

hybrid 0.0758 0.0865 0.1153 0.0913 0.1062 0.1433

affine [HU] 325 249 271 483 454 428
symdemons [HU] 8 4 10 8 4 9
curvature [HU] 15 8 8 16 8 14
bspline [HU] 47 57 52 93 105 97
elastic [HU] 72 71 85 120 122 135
feature [HU] 272 199 187 422 371 343
opticflow [HU] 37 53 63 58 87 98

M
A

X
in

t

hybrid [HU] 22 31 43 37 53 64

Table C.6: Grid synthetic transformation grid-32-2 and grid-32-4. Registration results in
terms of intensity measures.
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List of Publications

In this appendix we give a list of relevant publications that arose from the work on this
thesis:

Partially Rigid Bone Registration in CT Angiography

In this work we have presented a partially rigid bone registration algorithm for CTA images
and evaluated this algorithm quantitatively and qualitatively on several head data-sets
using MIP visualization. [Urschler et al., 2006b]

Matching 3D Lung Surfaces with the Shape Context Approach

This publication presented our first results on shape matching approaches based on a 3D
extension of the shape context method. Segmented lung surfaces were matched automat-
ically and compared to a synthetic ground-truth. [Urschler and Bischof, 2004a]

Registering 3D Lung Surfaces with the Shape Context Approach

The shape context matching approach was put into a TPS registration framework
in this publication, which showed promising results on real and synthetic data
sets. [Urschler and Bischof, 2004b]

Assessing breathing motion by shape matching of lung and diaphragm surfaces

In this work the shape context matching and registration was finalized and evaluated on
a large number of different shapes extracted from CT data sets. These shapes were airway
tree, diaphragm and lung surface segmentations. [Urschler and Bischof, 2005]
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SIFT and Shape Context for Feature-Based Nonlinear Registration of
Thoracic CT Images

A feature-based automatic nonlinear registration pipeline for thoracic CT data sets was
presented that consisted of feature extraction, matching and TPS registration. Evaluation
on real and synthetic data showed that feasibility of this approach. [Urschler et al., 2006a]

Automatic Point Landmark Matching for Regularizing Nonlinear Intensity
Registration: Application to Thoracic CT Images

Tackling the drawbacks of the feature-based registration approach was the purpose of this
publication. Herein the feature extraction and matching steps are used to determine cor-
respondences, while a hybrid variational intensity registration incorporates an optical-flow
based data term with an anisotropic image-driven regularization and a feature constraint
term. [Urschler et al., 2006c]
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Model evaluation and calibration for prospective respiratory motion correction in coro-
nary MR angiography based on 3-D image registration. IEEE Transactions on Medical
Imaging, 21(9):1132–1141.

[Martin-Fernandez et al., 2005] Martin-Fernandez, M. A., Munoz-Moreno, E., Martin-
Fernandez, M., and Alberola-Lopez, C. (2005). Articulated registration: elastic reg-
istration based on a wire model. In Fitzpatrick, J. M. and Reinhardt, J. M., editors,
Proc SPIE Conf on Medical Imaging: Image Processing, volume 5747, pages 182–191.

[Mattes et al., 2003] Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K., and Eubank,
W. (2003). PET-CT Image Registration in the Chest Using Free-form Deformations.
IEEE Transactions on Medical Imaging, 22(1):120–128.

[McInerney and Terzopoulos, 1995] McInerney, T. and Terzopoulos, D. (1995). A Dy-
namic Finite Element Surface Model for Segmentation and Tracking in Multidimen-
sional Medical Images with Application to Cardiac 4D Image Analysis. Computerized
Medical Imaging and Graphics, 19(1):69–83.

[Meijering et al., 1999] Meijering, E. H. W., Niessen, W. J., and Viergever, M. A. (1999).
Retrospective motion correction in digital subtraction angiography: A Review. IEEE
Transactions on Medical Imaging, 18(1):2–21.

[Meijering et al., 2001] Meijering, E. H. W., Niessen, W. J., and Viergever, M. A. (2001).
Quantitative evaluation of convolution-based methods for medical image interpolation.
Medical Image Analysis, 5(2):111–126.



BIBLIOGRAPHY 183

[Mikolajczyk and Schmid, 2005] Mikolajczyk, K. and Schmid, C. (2005). Performance
Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(10):1615–1630.

[Miller et al., 2002] Miller, M. I., Trouve, A., and Younes, L. (2002). On the metrics and
Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical
Engineering, 4:375–405.

[Modersitzki, 2004] Modersitzki, J. (2004). Numerical Methods for Image Registration.
Oxford University Press.

[Mortensen et al., 2005] Mortensen, E. N., Deng, H., and Shapiro, L. (2005). A SIFT
Descriptor with Global Context. In Proc Conf on Computer Vision and Pattern Recog-
nition (CVPR), pages 184–190.

[Nagel, 1987] Nagel, H.-H. (1987). On the estimation of optical flow: Relations between
different approaches and some new results. Artifical Intelligence, 33(3):299–324.

[NEJM-Editors, 2000] NEJM-Editors (2000). Looking Back on the Millennium in
Medicine. New England Journal of Medicine, 342:42–49.

[Ng and Ibanez, 2004] Ng, L. and Ibanez, L. (2004). Medical Image Registration: Con-
cepts and Implementation. In Yoo, T. S., editor, Insight into Images, chapter 10, pages
239–306. A K Peters, Ltd.

[NLM, 2006] NLM (2006). National Library of Medicine Image Data Collection Project.
http://nova.nlm.nih.gov/Mayo/.

[Nocedal and Wright, 1999] Nocedal, J. and Wright, S. J. (1999). Numerical Optimiza-
tion. Springer, 2nd edition.

[Oatridge et al., 2001] Oatridge, A., Hajnal, J. V., and Bydder, G. M. (2001). Registration
and Subtraction of Serial Magnetic Resonance Images of the Brain: Image Interpretation
and Clinical Applications. In Hajnal, J., Hill, D., and Hawkes, D. J., editors, Medical
Image Registration, chapter 7, pages 143–182. CRC Press, Boca Raton.

[Osher and Fedkiw, 2003] Osher, S. and Fedkiw, R. (2003). Level Set Methods and Dy-
namic Implicit Surfaces. Applied Mathematical Sciences. Springer Verlag.

[Palagyi et al., 2003] Palagyi, K., Tschirren, J., and Sonka, M. (2003). Quantitative Anal-
ysis of Intrathoracic Airway Trees: Methods and Validation. In Proc Information Pro-
cessing in Medical Imaging, volume 2732 of LNCS, pages 222–233. Springer.

[Papademetris et al., 2004] Papademetris, X., Jackowski, A. P., Schultz, R. T., Staib,
L. H., and S., D. J. (2004). Integrated Intensity and Point-Feature Nonrigid Reg-
istration. In Barillot, C., Haynor, D. R., and Hellier, P., editors, Proc Intern Conf
on Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume
3216 of LNCS, pages 763–770, Rennes, France. Springer.



184 BIBLIOGRAPHY

[Pennec et al., 9999] Pennec, X., Cachier, P., and Ayache, N. (19999). Understanding
the Demon’s algorithm. In Taylor, C. and Colchester, A., editors, Proc Intern Conf
on Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume
1679 of LNCS, pages 597–605, Cambridge, England. Springer.

[Perona and Malik, 1990] Perona, P. and Malik, J. (1990). Scale-Space and Edge Detec-
tion by Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(7):629–639.

[Pietrzyk, 2001] Pietrzyk, U. (2001). Registration of MRI and PET images for clinical
applications. In Hajnal, J., Hill, D., and Hawkes, D. J., editors, Medical Image Regis-
tration, chapter 9, pages 199–216. CRC Press, Boca Raton.

[Pitiot et al., 2003] Pitiot, A., Malandain, G., Bardinet, E., and Thompson, P. M. (2003).
Piecewise Affine Registration of Biological Images. In Gee, J. C., Maintz, J. B. A.,
and Vannier, M. W., editors, Second International Workshop on Biomedical Image
Registration WBIR’03, volume 2717 of Lecture Notes in Computer Science, pages 91–
101. Springer Verlag.

[Pluim et al., 2003] Pluim, J. P. W., Maintz, J. B. A., and Viergever, M. A. (2003).
Mutual-Information-Based Registration of Medical Images: A Survey. IEEE Trans-
actions on Medical Imaging, 22(8):986–1004.

[Pock et al., 2005a] Pock, T., Beichel, R., and Bischof, H. (2005a). A Novel Robust Tube
Detection Filter for 3D Centerline Extraction. In Proc Scandinavian Conference on
Image Analysis (SCIA), volume 3540 of LNCS, pages 481–490. Springer.

[Pock et al., 2005b] Pock, T., Janko, C., Beichel, R., and Bischof, H. (2005b). Multiscale
Medialness for Robust Segmentation of 3D Tubular Structures. In Proceedings of the
Computer Vision Winter Workshop 2005.

[Press et al., 1992] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.
(1992). Numerical Recipes in C. The Art of Scientific Computing. Cambridge University
Press, Cambridge, England, 2nd edition.

[Rohlfing and Maurer Jr, 2001] Rohlfing, T. and Maurer Jr, C. R. (2001). Intensity-Based
Non-rigid Registration Using Adaptive Multilevel Free-Form Deformation with an In-
compressibility Constraint. In Niessen, W. and Viergever, M., editors, Proc Intern Conf
on Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume
2208 of LNCS, pages 111–119, Utrecht, The Netherlands. Springer.

[Rohlfing et al., 2003] Rohlfing, T., Maurer Jr, C. R., Bluemke, D. A., and Jacobs, M. A.
(2003). Volume-preserving nonrigid registration of MR breast images using free-form de-
formation with an incompressibility constraint. IEEE Transactions on Medical Imaging,
22(6):730–741.

[Rohlfing et al., 2001] Rohlfing, T., Maurer Jr, C. R., O’Dell, W. G., and Zhong, J. (2001).
Modeling liver motion and deformation during the respiratory cycle using intensity-
based free-form registration of gated MR images. In Mun, S. K., editor, Proc SPIE Conf



BIBLIOGRAPHY 185

on Medical Imaging: Visualization, Image-Guided Procedures, and Display, volume
4319, pages 337–348.

[Rohr, 2001] Rohr, K. (2001). Landmark-Based Image Analysis Using Geometric and
Intensity Models. Computational Imaging and Vision. Kluwer Academic Publishers.

[Rohr et al., 2001] Rohr, K., Stiehl, H. S., Sprengel, R., Buzug, T. M., Weese, J., and
Kuhn, M. H. (2001). Landmark-Based Elastic Registration Using Approximating Thin-
Plate Splines. IEEE Transactions on Medical Imaging, 20(6):526–534.

[Rueckert et al., 2006] Rueckert, D., Aljabar, P., Heckemann, R. A., Hajnal, J. V., and
Hammers, A. (2006). Diffeomorphic Registration Using B-Splines. In Larsen, R.,
Nielsen, M., and Sporring, J., editors, Proc Intern Conf on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), volume 4191 of LNCS, pages 702–709,
Copenhagen, Denmark. Springer.

[Rueckert et al., 2003] Rueckert, D., Frangi, A. F., and Schnabel, J. A. (2003). Auto-
matic construction of 3-D statistical deformation models of the brain using nonrigid
registration. IEEE Transactions on Medical Imaging, 22(8):1014–1025.

[Rueckert et al., 1999] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach, M. O.,
and Hawkes, D. J. (1999). Nonrigid Registration Using Free-Form Deformations: Ap-
plication to Breast MR Images. IEEE Transactions on Medical Imaging, 18(8):712–721.

[Scharr and Uttenweiler, 2001] Scharr, H. and Uttenweiler, D. (2001). 3D Anisotropic
Diffusion Filtering for Enhancing Noisy Actin Filament Fluorescence Images. In Radig,
B. and Florczyk, S., editors, Proc Pattern Recognition - DAGM Symposium, volume
2191 of LNCS, pages 69–75, Munich. Springer.

[Scharstein and Szeliski, 2002] Scharstein, D. and Szeliski, R. (2002). A Taxonomy and
Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Jour-
nal of Computer Vision, 47(1/2/3):7–42.

[Schnabel et al., 2003] Schnabel, J. A., Tanner, C., Castellano-Smith, A. D., Degenhard,
A., Leach, M. O., Hose, D. R., Hill, D. L. G., and Hawkes, D. J. (2003). Validation
of Nonrigid Image Registration Using Finite-Element Methods: Application to Breast
MR Images. IEEE Transactions on Medical Imaging, 22(2):238–247.

[Sclaroff and Pentland, 1995] Sclaroff, S. and Pentland, A. (1995). Modal Matching for
Correspondence and Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(6):545–561.

[Sebastian et al., 2003] Sebastian, T. B., Tek, H., Crisco, J. J., and Kimia, B. B. (2003).
Segmentation of carpal bones from CT images using skeletally coupled deformable mod-
els. Medical Image Analysis, 7(1):21–45.

[Segars et al., 2001] Segars, W. P., Lalush, D. S., and Tsui, B. M. W. (2001). Model-
ing Respiratory Mechanics in the MCAT and Spline-Based MCAT Phantoms. IEEE
Transactions on Nuclear Science, 48(1):89–97.



186 BIBLIOGRAPHY

[Sethian, 1999] Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods.
Cambridge University Press, 2nd edition.

[Shannon, 1948] Shannon, C. (1948). The mathematical theory of communication (parts
1 and 2). Bell Syst. Tech. J., 27:379–423 and 623–656. Reprint available from
http://www.lucent.com.

[Simon et al., 2005] Simon, B. A., Christensen, G. E., Low, D. A., and Reinhardt, J. M.
(2005). Computed Tomography Studies of Lung Mechanics. Proc American Thoracic
Society, 2:517–521.

[Slone et al., 1997] Slone, R. M., K., P. T., and Gierada, D. S. (1997). Lung volume
reduction surgery: Comparison of radiologic features and clinical outcome. Radiology,
204(3):685–693.

[Snel et al., 2002] Snel, J. G., Venema, H. W., and Grimbergen, C. A. (2002). Deformable
triangular surfaces using fast 1-D radial lagrangian dynamics-segmentation of 3-D MR
and CT images of the wrist. IEEE Transactions on Medical Imaging, 21(8):888–903.

[Sonka and Fitzpatrick, 2000] Sonka, M. and Fitzpatrick, J. M., editors (2000). Handbook
of Medical Imaging: Volume 2 - Medical Image Processing and Analysis. SPIE Press.

[Sonka et al., 1999] Sonka, M., Hlavac, V., and Boyle, R. (1999). Image Processing, Anal-
ysis and Machine Vision. Brooks/Cole Publishing Company, Pacific Grove, CA, USA,
2nd edition.

[Staring et al., 2005] Staring, M., Klein, S., and Pluim, J. P. W. (2005). Nonrigid Regis-
tration with Adaptive Content-Based Filtering of the Deformation Field. In Fitzpatrick,
J. M. and Reinhardt, J., editors, Proc SPIE Conf on Medical Imaging: Image Process-
ing, volume 5747, pages 212–221.

[Strikwerda, 1989] Strikwerda, J. C. (1989). Finite Difference Schemes and Partial Differ-
ential Equations. International Thomson Science.

[Studholme et al., 1999] Studholme, C., Hill, D. L. G., and Hawkes, D. J. (1999). An
overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition,
32(1):71–86.

[Tai et al., 1997] Tai, Y.-C., Lin, K. P., Hoh, C. K., Huang, S. C. H., and Hoffman, E. J.
(1997). Utilization of 3D Elastic Transformation in the Registration of Chest X-Ray
CT and Whole Body PET. IEEE Transactions on Nuclear Science, 44(4):1606–1612.

[Terzopoulos and Metaxas, 1991] Terzopoulos, D. and Metaxas, D. (1991). Dynamic 3D
Models with Local and Global Deformations: Deformable Superquadrics. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 13(7):703–714.

[Terzopoulos et al., 1988] Terzopoulos, D., Witkin, A., and Kass, M. (1988). Constraints
on Deformable Models: Recovering 3D Shape and Nonrigid Motion. Artificial Intelli-
gence, 36(1):91–123.



BIBLIOGRAPHY 187

[Thevenaz and Unser, 2000] Thevenaz, P. and Unser, M. (2000). Optimization of mu-
tual information for multiresolution image registration. IEEE Transactions on Image
Processing, 9(12):2083–2099.

[Thirion, 1995] Thirion, J.-P. (1995). Fast Non-Rigid Matching of 3D Medical Images.
Rapport de recherche 2547, Unite de recherche INRIA Sophia-Antipolis - Projet Epi-
daure.

[Thirion, 1998] Thirion, J.-P. (1998). Image matching as a diffusion process: An analogy
with Maxwell’s demons. Medical Image Analysis, 2(3):243–260.

[Thirion and Gourdon, 1995] Thirion, J.-P. and Gourdon, A. (1995). Computing the Dif-
ferential Characteristics of Isointensity Surfaces. Computer Vision and Image Under-
standing, 61(2):190–202.

[Thompson and Toga, 1996] Thompson, P. and Toga, A. W. (1996). A Surface-Based
Technique for Warping Three-Dimensional Images of the Brain. IEEE Transactions on
Medical Imaging, 15(4):402–417.

[Tikhonov and Arsenin, 1977] Tikhonov, A. and Arsenin, V. (1977). Solutions of Ill-Posed
Problems. Winston, Washington D.C.

[Tomandl et al., 2006] Tomandl, B. F., Hammen, T., Klotz, E., Ditt, H., Stemper, B., and
Lell, M. (2006). Bone-Subtraction CT Angiography for the Evaluation of Intracranial
Aneurysms. American Journal of Neuroradiology, 27(1):55–59.

[Tschirren et al., 2005a] Tschirren, J., Hoffman, E. A., McLennan, G., and Sonka, M.
(2005a). Intrathoracic Airway Trees: Segmentation and Airway Morphology Analysis
From Low-Dose CT Scans. IEEE Transactions on Medical Imaging, 24(12):1529–1539.

[Tschirren et al., 2005b] Tschirren, J., McLennan, G., Palagyi, K., Hoffman, E. A., and
Sonka, M. (2005b). Matching and Anatomical Labeling of Human Airway Tree. IEEE
Transactions on Medical Imaging, 24(12):1540–1547.

[Urschler et al., 2006a] Urschler, M., Bauer, J., Ditt, H., and Bischof, H. (2006a). SIFT
and Shape Context for Feature-Based Nonlinear Registration of Thoracic CT Images.
In Beichel, R. and Sonka, M., editors, Proc Computer Vision Applications to Medical
Image Analysis, volume 4241 of LNCS, pages 73–84. Springer.

[Urschler and Bischof, 2004a] Urschler, M. and Bischof, H. (2004a). Matching 3D Lung
Surfaces with the Shape Context Approach. In Wilhelm Burger, J. S., editor, 28th
Workshop of the Austrian Association for Pattern Recognition, pages 133–140. Oester-
reichische Computer Gesellschaft.

[Urschler and Bischof, 2004b] Urschler, M. and Bischof, H. (2004b). Registering 3D Lung
Surfaces Using the Shape Context Approach. In Proc Medical Image Understanding
and Analysis (MIUA), pages 212–215, Imperial College London.



188 BIBLIOGRAPHY

[Urschler and Bischof, 2005] Urschler, M. and Bischof, H. (2005). Assessing breathing
motion by shape matching of lung and diaphragm surfaces. In Proc SPIE Conf on
Medical Imaging: Physiology and Function from Multidimensional Images, volume 5746,
pages 440–452, San Diego.

[Urschler et al., 2006b] Urschler, M., Ditt, H., and Bischof, H. (2006b). Partially Rigid
Bone Registration in CT Angiography. In Proc of the Computer Vision Winter Work-
shop (CVWW), pages 34–39, Telc, Czech Republic.

[Urschler et al., 2006c] Urschler, M., Zach, C., Ditt, H., and Bischof, H. (2006c). Auto-
matic Point Landmark Matching for Regularizing Nonlinear Intensity Registration: Ap-
plication to Thoracic CT Images. In Larsen, R., Nielsen, M., and Sporring, J., editors,
Proc Intern Conf on Medical Image Computing and Computer-Assisted Intervention
(MICCAI), volume 4191 of LNCS, pages 710–717, Copenhagen, Denmark. Springer.

[van Straten et al., 2004] van Straten, M., Venema, H. W., Streekstra, G. J., Majoie, C.,
den Heeten, G. J., and Grimbergen, C. A. (2004). Removal of bone in CT angiography
of the cervical arteries by piecewise matched mask bone elimination. Medical Physics,
31(10):2924–2933.

[Veltkamp and Hagedoorn, 1999] Veltkamp, R. C. and Hagedoorn, M. (1999). State of
the Art in Shape Matching. Technical Report UU-CS-1999-27, Utrecht University,
Netherlands, Utrecht.

[Venema et al., 2001] Venema, H. W., Hulsmans, F. J. H., and den Heeten, G. J. (2001).
CT Angiography of the Circle of Willis and Intracranial Internal Carotid Arteries: Max-
imum Intensity Projection with Matched Mask Bone Elimination - Feasibility Study.
Radiology, 218(3):893–898.

[Viola and Jones, 2004] Viola, P. and Jones, M. J. (2004). Robust Real-Time Face Detec-
tion. International Journal of Computer Vision, 57(2):137–154.

[Viola and Wells III, 1997] Viola, P. and Wells III, W. M. (1997). Alignment by Maximiza-
tion of Mutual Information. International Journal of Computer Vision, 24(2):137–154.

[Wahba, 1990] Wahba, G. (1990). Spline Models for Observational Data. Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

[Weickert and Brox, 2002] Weickert, J. and Brox, T. (2002). Diffusion and Regularization
of Vector- and Matrix-Valued Images. Technical Report 58, University Saarbrücken,
Saarland University, Faculty of Mathematics and Computer Science.
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