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Telč, Czech Republic, February 6–8
Czech Pattern Recognition Society

Partially Rigid Bone Registration in CT Angiography

Martin Urschler1, Hendrik Ditt2, and Horst Bischof1

1Institute for Computer Graphics and Vision, Graz University of Technology, Austria
urschler@icg.tu-graz.ac.at, bischof@icg.tu-graz.ac.at

2Siemens Medical Solutions, CTE PA, Forchheim, Germany
hendrik.ditt@siemens.com
Abstract Maximum intensity projection (MIP) studies of
CT angiography (CTA) images are a widely used tool for
artery and vein visualization especially in the brain. Due to
their high CT intensity bone structures lead to visualization
artifacts in MIP studies, therefore they have to be removed
to get an undistorted view of the vessel structures. Often
this removal is possible by a rigid registration step of an ad-
ditional native scan to the contrast-enhanced CTA scan fol-
lowed by a bone mask subtraction. This technique is also re-
ferred to as ”Matched Mask Bone Elimination” [14]. How-
ever, sometimes several unrelated patient movements occur
during and between contrast-enhanced and native scans.
These intra- and inter-scan motion artifacts cannot be re-
moved by a single rigid registration step. To address these
problems in an efficient and general way we have developed
a refinement of the ”Matched Mask Bone Elimination” tech-
nique that incorporates a joint segmentation and registra-
tion method in an iterative fashion. We describe our exper-
iments and show our qualitative and quantitative results in
terms of decreasing numbers of misregistration voxels and
sum of squared intensity differences on several large volume
data sets of the head, where independent rigid movements
have been successfully removed.

1 Introduction
A maximum intensity projection (MIP) study of computed
tomographic angiography (CTA) scans is a widely used
imaging tool for artery and vein visualization especially in
the brain. This method allows the detection of cerebral
aneurysms, arterial stenosis, and other vascular brain anom-
alies. CTA studies are CT scans where a contrast agent is ap-
plied via intravenous injection. Often the contrast-enhanced
scan is accompanied by a native scan to be able to support
vessel visualization by subtraction techniques. More specif-
ically, if one ignores intra- and inter-scan patient movement,
CTA is performed by a subtraction of the native from the
contrast-enhanced scan, leaving solely the vascular struc-
tures. The resulting data set is visualized in 3D using a MIP,
where the maximum value in the CT volume data set is dis-
played along each ray through a pixel in the direction of the
viewpoint projection (see Figure 1 for MIP examples).

In practice patient movement between native and
contrast-enhanced scans often is inevitable. Therefore, a
subtraction algorithm has to deal with misregistered areas.
Due to their high CT intensity especially misregistered
bone structures lead to considerable visualization artifacts
in MIP studies (see Figure 1 for examples). These artifacts
have to be removed to get an undistorted view of the
otherwise obstructed vascular structures. In many cases
this removal is possible by a rigid registration of native
to contrast-enhanced scan followed by a subtraction of
a bone mask generated from the registered native scan.
This technique is also referred to as ”Matched Mask Bone
Elimination” [14].

However, sometimes several independent patient move-
ments occur during contrast-enhanced and native scans. Al-
though each of the independent movements can be regarded
as being rigid, the combination of these inter- and intra-scan
motion artifacts cannot be effectively removed by a single
rigid registration step. In the remainder of this paper we will
refer to the problem of independently moving bone struc-
tures as a ”partially rigid registration” problem. An exam-
ple of independent movements is a slight head rotation com-
bined with a different position of the jawbone due to swal-
lowing or yawning between scans. Further, one can eas-
ily imagine that the problem of independently moving bone
structures becomes even more important as soon as not only
the head is involved in the CTA study but the vascular struc-
tures of interest are extended into the neck and shoulder re-
gion [7]. Independent shoulder movements due to e.g. an
uncomfortable resting position of a patient additionally pose
registration problems.
To address these problems we have developed a refinement
of the ”Matched Mask Bone Elimination” technique that in-
corporates a joint segmentation and registration method in
an iterative fashion. Moreover our novel approach takes the
large size of current routinely acquired CT scans into ac-
count. With volume data sets that consist of several hundred
slices and an x-y resolution of 512 by 512 voxels memory
and run-time issues are a challenge in the development of
medical imaging algorithms.

The following section gives a literature review on exist-
ing techniques for bone removal in CTA applications. Next
we describe our approach in more detail. Section 4 explains
our experimental setup and shows the results of evaluating
our algorithm on clinical data. The final section concludes
the paper and gives an outlook on possible improvements.
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Figure 1: Maximum intensity projections of two different CTA data sets with bone artifacts obstructing vascular structures. Left image shows
data set A with an independently moving jawbone. Right image shows data set D with intra-scan artifacts in the skull region.
2 Related Work

In the literature there are mainly three directions to solve
the problems in CTA studies where the accurate removal of
bone structures is necessary to get rid of obstructed vessels.

First, many publications make use of a rigid registra-
tion step with or without a subsequent nonlinear refinement
stage. The approaches without refinement are of course not
able to adapt to independently moving bone structures. The
original ”Matched Mask Bone Elimination” (MMBE) tech-
nique was proposed by Venema et al. [14] in 2001. The
MMBE method finds in the native data set those bone voxels
that correspond to bone voxels in the contrast-enhanced data
set. Therefore, the two data sets are matched by a single au-
tomatic registration step involving a gray-value correlation
similarity function and using a downhill simplex optimizer
on the rigid transformation parameters. The registered im-
ages are combined to form a mask image which represents
the bone voxels that have to be masked from the contrast-
enhanced scan. In 2004 the same group published an exten-
sion of the MMBE method to deal with independently mov-
ing bone structures [13]. Their extended approach incorpo-
rates a watershed segmentation after the registration to sep-
arate the regions that can move independently with respect
to each other. Finally the separated regions are registered
individually to achieve a piecewise MMBE. They show that
their method is able to improve bone removal results on sev-
eral clinical data sets, however, there still remain problems
due to its dependence on the success of the fragile segmenta-
tion step. Luboldt et al. [9] describe an ”elastic” subtraction
algorithm for CTA studies where a rigid registration step is
followed by a nonlinear registration, however, few details
are given in this paper. Two more bone removal techniques
based on rigid registration may be found in Yeung et al. [15]
who develop a combination of feature-extraction and opti-
cal flow method to estimate the rigid transformation and in
Kwon et al. [6] who present a registration technique based
on normalized mutual information. Both of them neglect the
issue of independently moving bone structures.

Second, there are some publications that deal with the
2

partially rigid registration problem by using nonlinear (elas-
tic) registration schemes with deformation constraints at
rigid regions. Little et al. [8] locate rigid structures and
treat them as being rigid for the registration while all other
structures are treated as nonlinearly deformable. The non-
linear registration is performed by using manually selected
landmarks and radial basis functions for displacement inter-
polation. The nonlinear registration model is weighted by
using a distance map that specifies the distance to the rigid
anatomical structures. Separation of rigidly and nonlinearly
transformable parts is performed by a pre-segmentation of
the rigid structures of interest. Disadvantages of the method
are the need for manual selection of corresponding landmark
points, the need for manual segmentation of the rigid struc-
tures and the choice of the elastic model that interpolates the
displacements between landmarks. An extension of this ap-
proach has been published by Pitiot et al. [10] who remove
the needs for manual segmentation and landmark selection
by a block matching technique and a hierarchical clustering
to extract independent pairs of subimages which are rigidly
registered. Their approach was only shown on 2D images
and would require a high computational effort for 3D vol-
umes. Bentoutou et al. [2] have presented a feature-based
matching and registration approach using a thin-plate spline
elastic control point interpolation. Their algorithm works
well on coronary DSA images. However, the capability to
model large deformations like jawbone movement remains
an open question. Another interesting approach based on de-
formable registration can be found in [11] but in this work
the rigidity constraint is too weak for our purpose.

The final group of publications found in the literature
uses segmentation techniques solely in the contrast-
enhanced CTA scan. An overview of vessel tracking
algorithms used for segmentation of vascular structures can
be found in Felkel et al. [3]. Alyassin et al. [1] propose a
semi-automatic bone segmentation involving thresholding,
region growing and morphological operations. Kang et
al. [5] also show a bone segmentation involving region
growing based on local adaptive thresholds and morpholog-
ical operations followed by a boundary refinement. All of
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these approaches are prone to typical segmentation prob-
lems like leaking, unstable threshold selection procedures
and the need for parameter tuning. Semi-automatic methods
somehow overcome these problems but they add a lot of
expert effort to each investigation. For these reasons we
decided not to follow this direction any further.

3 Methods
This work presents a novel algorithm to prepare native and
contrast-enhanced CTA images for MMBE. As mentioned
in the previous sections, the algorithm has to deal with sev-
eral problems which may be summarized as follows:

• Accurate registration of native and contrast-enhanced
scans taking independently moving bone structures like
e.g. inter-scan skull and jawbone movement into account.

• Accurate registration despite local intra-scan errors like
rapid skull movements during a single acquisition.

• Memory- and runtime-efficiency due to large volume
data sets of several hundred slices.

We decided to follow a similar direction like vanStraten et
al. [13]. However, our approach replaces the error-prone
watershed segmentation step by a more robust approach that
uses joint segmentation and registration in an iterative fash-
ion. Therefore, no high-level or semi-automatic segmenta-
tion step is necessary, the algorithm is based on the combina-
tion of low-level segmentations and rigid registrations. Our
method guarantees that nonlinear deformations never occur
at the bone structures but are solely used for tissue structures
by a registration matrix interpolation step. The only impor-
tant assumption that we have to make is that it is possible
to rigidly register and remove independently moving bone
structures in sequential steps, i.e. each registration step in
the iterative loop has to remove a certain area of misregis-
tration. If this assumption does not hold anymore the algo-
rithm will terminate too soon. This situation might happen
if two independent misregistration areas cancel each other
out in terms of the registration metric.

The basic idea of the proposed algorithm is to iteratively
perform rigid registration on areas where large misregistra-
tions occur. The algorithm takes a native and a contrast-
enhanced volume as input and starts with an initial mutual
information based rigid registration that is restricted to bone
structures segmented by a bone threshold. Calculating the
misregistration error identifies areas where the registration
has to be refined. This refinement is performed in an itera-
tive manner as long as the number of misregistration errors is
too large. Each iteration consists of calculating the misregis-
tration area, a rigid registration step restricted to the current
misregistered area and an interpolation step that combines
the different registration results. Algorithm 1 shows this
algorithm in pseudo-code, while the following subsections
explain its behaviour in more detail.

3.1 Single Rigid Registration Step
Our technique consists of several rigid registration steps al-
ways using the same mutual information based matching
Algorithm 1 Partially Rigid Registration
1: Mutual information based rigid registration of native

and contrast-enhanced scan
2: Initialize data structure of resulting registration matrices

with initial transform
3: Calculate the misregistration area
4: while size of misregistration area larger threshold do
5: Derive a bone mask from the misreg. error area
6: Mutual information based registration restricted to

bone mask
7: Update registration matrix data structure by checking

if the new transform improves the error
8: Smooth and interpolate registration matrices
9: Update misregistration area

10: end while

method. Mutual information based registration has become
a standard method for rigid registration problems over the
last decade [4]. It uses a measure from information theory,
which is derived from the Shannon entropy measure H(A)
if an image A is regarded as consisting of a string of sym-
bols, with each symbol having a certain probability of ap-
pearance. The expected amount of information H(A) one
can obtain from image A by probing the gray value of one
(random) pixel is given by

H(A) = −
N∑

i=1

pild(pi).

Given two images A and B, the joint entropy H(A,B) is
defined as

H(A,B) = −
N∑

a=1

N∑
b=1

pabld(pab)

and resembles the amount of information obtained from
both images when probing pairs of gray values from the
two images. If images A and B are totally unrelated, the
joint entropy H(A,B) is the sum of the individual entropies.
Otherwise, the joint entropy is smaller than H(A) + H(B).
Joint entropy cannot be directly taken as a measure for im-
age similarity in registration, since the estimated probabili-
ties depend on the overlap of volumes which changes during
registration. Therefore, joint probability has to be measured
in relation to the individual entropies. The mutual informa-
tion (MI) measure I(A,B) = H(A) + H(B) − H(A,B)
overcomes this problem. MI can qualitatively be thought
of as measuring how well one image explains the other, it
is maximized at optimal alignment. However, the classic
MI measure does not fully solve all overlap problems dur-
ing registration. In our algorithm we use the normalized MI
measure

I(A,B) =
H(A) + H(B)

H(A,B)
proposed by Studholme et al. [12] which is currently re-
garded as the state of the art MI measure for registration.
Besides the normalized MI as image similarity metric a
registration algorithm also needs an optimization strategy,
an interpolation method and a transformation representation
3
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that provides the parameters to be optimized. Our optimizer
is a regular step gradient descent optimizer that takes larger
steps at the beginning of optimization and consecutively re-
duces its step size until a local minimum is reached. The in-
terpolation method is trilinear due to performance reasons.
Finally our transformation is composed of six parameters,
three representing 3D translation and the other three repre-
senting 3D rotation encoded as a unit quaternion.

3.2 Partially Rigid Registration - Initial Stage
The partially rigid registration algorithm starts with a thresh-
old based bone segmentation of the contrast-enhanced CTA
image. This bone segmentation is used as a mask restricting
the following initial mutual information based registration
procedure to bone structures. The result is a transformation
which is stored as the initial transformation in the result data
structure at bone voxel locations only. With this initial trans-
formation it is possible to calculate a misregistration area by
subtracting the accordingly warped native image from the
contrast-enhanced image. Now the iterative stage is entered.

3.3 Partially Rigid Registration - Iterative Stage
The iterative stage terminates if the misregistration area is
smaller than a certain threshold. The first step in this loop
is the creation of another bone segmentation mask to re-
strict the subsequent mutual information registration. The
bone segmentation mask is derived from the misregistra-
tion area, which is located at the edges of misregistered
bone structures, by a dilation into the bones nearby using a
distance-constrained region growing method. This dilation
step can be seen as a bone segmentation procedure, however
this bone segmentation is only used to focus the following
registration step on misregistered areas. The restricted reg-
istration step results in another transformation which over-
writes the result data structure after checking if the current
transformation is able to reduce the misregistration at each
bone voxel location. Now the transformation results have to
be smoothed in local neighborhoods to remove some noise
and to prepare the following transformation interpolation.
Since the rigid transformations are only stored at bone voxel
locations, it is necessary to find transformation parameters
for tissue voxels. This can be performed by a linear or a
nearest-neighbor interpolation. Although a linear interpo-
lation would be more accurate, we decided to use nearest-
neighbor interpolation due to reasons of reduced computa-
tion time and its low memory consumption. The evaluation
section will show that the accuracy of nearest-neighbor in-
terpolation is sufficient for our application. The final step in
the iterative stage is the warping of the native to the contrast-
enhanced image according to the transformation result data
structure. The result can be used to calculate another mis-
registration which gets checked if it is larger than a threshold
by the loop termination condition. After the loop has termi-
nated the MMBE method is used to remove bone structures
from the contrast-enhanced image.

3.4 Memory and Runtime Efficiency Issues
As already mentioned above the large size of current rou-
tinely acquired volume data sets always poses restrictions
on practically useful algorithms due to runtime and memory
4

consumption issues. CT data sets the proposed algorithm is
intended for easily have several hundred slices with x-y res-
olutions of 512 by 512 voxels respectively, thereby requiring
around 250 MB in memory due to a 12 bit gray level reso-
lution. Runtime efficiency requires the data sets to be fully
held in memory, therefore it is important to reduce the need
for intermediate data structures. The partially rigid registra-
tion algorithm only requires one additional volume data set
of the same size as the two input images to store intermedi-
ate results. This can be achieved by representing bone seg-
mentation results and registration error regions as single bits
and by using indices into a list of possible transformation
parameters to store the different registration results of the it-
erative algorithm. Since memory and time consumption al-
ways imposes some trade-off, we will show in the evaluation
section that our runtime results are nevertheless acceptable.

4 Experiments & Results
The presented approach was evaluated on several CT data
sets showing problems of state-of-the-art bone removal tech-
niques for CTA images based on maximum intensity projec-
tions. All of these data sets still have problems after one
single registration step for Matched Mask Bone Elimination
(compare first row of Figure 3). More specifically we used 5
clinical data sets whose characteristics are shown in Table 1.

DS Size Problem Characteristics
A 512,512,231 independent head & jaw movement
B 512,512,344 independent head & jaw movement
C 512,512,429 head movement & teeth artifacts
D 512,512,233 intra- and inter-scan movements
E 512,512,269 swallowing and teeth artifacts

Table 1: Evaluation data set characteristics

Most of the data sets show several independent movements
typical for CTA acquisitions. Data sets C and E also show
some artifacts in the tooth regions due to implanted gold
teeth disturbing the CT scans. In our experiments we cal-
culate two measures from the data sets. The first one is
the progression of the number of misregistration voxels dur-
ing our algorithm. The number of misregistration voxels
is calculated as the number of voxels which is larger than
a threshold from the difference between contrast-enhanced
and (partially) rigidly warped native image. Table 2 depicts
this measure, note that data sets A and E finished earlier due
to additional termination conditions in the main loop. The
first column specifies this measure before registration. To
restrict runtime the loop was terminated after four iterations.

DS 0 1 2 3 4
A 306 705 37 078 26
B 208 846 94 601 991 926 801
C 53 443 9 007 6 529 6 514 5 755
D 164 939 136 603 19 165 14 347 14 189
E 26 868 9 036 5 387

Table 2: Decrease of misregistration error voxels for evaluation
data sets A-E

The second measure is the progression of the sum of squared
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intensity differences (SSD) between the contrast-enhanced
image CE and the warped native image N ′ according to
the partially rigid registration transformations. The sum of
squared intensity difference is calculated as

SSD =
1
|Ω|

∑
Ω

(CE(x, y, z)−N ′(x, y, z))2

where Ω is the domain of the overlapping part of the images.
One should note that the SSD will never decrease to zero,
since there are always contrast differences in the images due
to contrast agent injection. Figure 2 shows the decrease of
the SSD for the five data sets.

Figure 2: Decrease of sum of squared difference measure for eval-
uation data sets A-E

The execution times of the algorithm for data sets A,B,C,D
and E were 93.25s, 233.95s, 276.02s, 205.67s and 93.27s,
respectively. The algorithm implementation was performed
under Windows in C++ and evaluation was executed on a
Pentium M with 2.0 GHz and 1.5 GB RAM.
In Figure 3 the three data sets A,B and D are shown to give
qualitative results as well. The first row is the MIP of each
data set after a MMBE with a single rigid registration to
take patient movement into account. One can clearly see
the bright bone structures that obstruct several portions of
the vascular structures. The second row shows the resulting
MIP after a MMBE using the novel partially rigid registra-
tion procedure.

4.1 Discussion
Our experiments show very clearly that our proposed algo-
rithm is capable to improve the MMBE method in those
cases where several independent rigid movements occur dur-
ing two scans in CTA studies. In all clinical test cases the
sum of squared intensity differences and the number of reg-
istration error voxels is significantly reduced after one or
two additional registration steps in our iterative algorithm.
We observe that both measures are going into a converged
state after a few iterations, therefore we decided to restrict
the additional registration steps to at most three. Data sets
A and B show the algorithms excellent behavior in the pres-
ence of independent head and jawbone movement. In data
set A the obstructing structures have been completely re-
moved, while data set B has improved a lot, although some
very small regions still remain. Data sets C and E show the
algorithms behavior in the presence of artifacts due to CT
scan errors from gold teeth or due to a patient swallowing
during scans. Both effects do not have a great impact on
the result, all obstructions are successfully removed. Finally
data set D has inter- and intra-slice scanning errors which
are also removed, however in this case a larger number of
obstructing bone structures remains. An important property
of the algorithm is that it never worsens a result if the regis-
tration is already accurate enough after a single registration
step. So it is very suitable as an additional refinement step if
the classical MMBE method does not succeed. The fact that
the algorithm runtime lies between two and five minutes on
a standard notebook computer underlines that the additional
computational effort is acceptable.

5 Conclusion & Outlook
In a number of medical applications the removal of bone
structures is of crucial importance for a high-quality CTA vi-
sualization using MIPs. This paper shows a novel algorithm
for bone removal that addresses the problems of indepen-
dent inter- and intra scan movements. It extends the classical
MMBE algorithm by a joint segmentation and registration
stage. The presented experimental results on clinical data
sets show examples of intra- and inter-scan patient move-
ments which were successfully registered with the proposed
algorithm. The improved MIP visualization quality under-
lines the usefulness of our novel method, while the quan-
titative evaluation of the number of registration voxels and
the progression of the sum of squared intensity differences
proves the algorithms correct behavior.
After this first prototypical evaluation it will be necessary
to perform a more thorough evaluation on a larger number
of clinical data sets to show the relevance of our refinement
algorithm. Another possible direction for future work is to
look into more sophisticated algorithms for joint segmen-
tation and registration like techniques working in a varia-
tional framework [16] or compare it to the elastic registra-
tion scheme in Bentoutou et al. [2].
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