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ABSTRACT

Studying complex thorax breating motion is an important research topic for accurate fusion of functional and
anatomical data, radiotherapy planning or reduction of breathing motion artifacts. We investigate segmented
CT lung, airway and diaphragm surfaces at several different breathing states between Functional Residual and
Total Lung Capacity. In general, it is hard to robustly derive corresponding shape features like curvature maxima
from lung and diaphragm surfaces since diaphragm and rib cage muscles tend to deform the elastic lung tissue
such that e.g. ridges might disappear. A novel registration method based on the shape context approach for
shape matching is presented where we extend shape context to 3D surfaces. The shape context approach was
reported as a promising method for matching 2D shapes without relying on extracted shape features. We use
the point correspondences for a non-rigid thin-plate-spline registration to get deformation fields that describe
the movement of lung and diaphragm. Our validation consists of experiments on phantom and real sheep thorax
data sets. Phantom experiments make use of shapes that are manipulated with known transformations that
simulate breathing behaviour. Real thorax data experiments use a data set showing lungs and diaphragm at 5
distinct breathing states, where we compare subsets of the data sets and qualitatively and quantitatively asses
the registration performance by using manually identified corresponding landmarks.

Keywords: Breathing motion, 3D shape matching, 3D volume registration

1. INTRODUCTION

According to the European Respiratory Society, lung diseases rank second behind cardiac diseases in terms of
mortality and cost of treatment†. Computerized methods for objective, accurate and reproducible analysis of
lung structure and function can provide important insights into these problems. However, due to the complexity
of the breathing motion, investigations and applications working with thoracic but also abdominal images are
often very complicated. There are several areas of application that would benefit from a proper treatment of
problems due to breathing motion. Accurate fusion of functional (i.e. lung perfusion, lung ventilation) and
anatomical data sets1 requires knowledge about the data sets’ positions in the breathing cycle and about the
possible soft-tissue deformations that are induced by diaphragm and rib cage movement. Problems with breathing
motion artifacts that occur due to time-consuming image acquisition protocols (e.g. SPECT imaging) demand
methods to reduce these artifacts in a post-processing step for example by using a pre-defined model of breathing
motion. In radiotherapy planning, which is an essential technique for treatment and cure of tumors confined in
closed regions, breathing motion leads to problems with patient positioning and target volume determination.2

Breathing motion estimation and compensation tools are therefore invaluable for the planning step. Registration
of pre- and intra-operative thoracic and abdominal images is nowadays being used more often by image-guided
intervention and surgery systems. An accurate registration of thoracic and abdominal soft-tissue regions has to
take breathing motion into account. An example for such a registration system used for liver interventions is
described in Blackall et al.3, 4
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The work presented in this paper is part of a long-term research effort to investigate breathing motion
in thoracic and abdominal tomographic images given intermodal CT data sets at several different breathing
states between Total Lung Capacity (TLC) and Functional Residual Capacity (FRC). In this context, non-linear
registration of soft tissue organs (lung, liver) over the breathing states will be used to derive motion models from
the data. Statistical models will be established, optionally using biomechanical constraints, for tasks like e.g.
breathing artifact reduction or breathing motion compensation in image fusion applications.

This paper specifically focuses on the non-linear registration task that has to be performed before one can
build statistical models. Basically the body of literature distinguishes between intensity- and feature based
non-linear registration methods. A survey on non-linear registration methods in medical image analysis can be
found in Maintz et al.5 Audette et al.6 give an algorithmic overview of surface registration techniques for medical
imaging. Zitova et al.7 recently published an overview of image registration techniques. The work in this paper
concentrates on non-linear registration based on a shape descriptor, more specifically finding correspondences via
shape matching8 and registering identified correspondences in the context of a thin-plate spline framework.9 In
many cases shape-based methods provide a more accurate solution since only the organ of interest is considered
as opposed to intensity-based methods. On the other hand, segmentation of the organs of interest is not always
an easy task and inaccuracies in the segmentation process have effects on the subsequent registration step.

Feature-based registration starts with a feature extraction step. After analyzing lung and diaphragm surfaces
over the breathing cycle one will notice that the shapes undergo certain deformations which make it hard to
robustly identify correspondences. Especially the deformations of the surface of the elastic lung tissue are hard to
describe. The lung surface is attached to the rib cage by adhesive forces and the diaphragm-induced cranio-caudal
forces move the lung tissue while at the same time the bones of the rib cage remain comparatively rigid. As a
consequence the rib cage forces its shape on the moving elastic lung tissue and it is not necessarily the case that
classical 3D features like ridges (or valleys) on the lung surface stay ridges (or valleys) during breathing. For this
reason a shape matching algorithm has to be developed that is independent of points of interest like curvature
maxima or similar 3D features. After reviewing the body of literature the shape context approach reported
by Belongie et al.10 was identified as a reasonable and promising approach for this purpose. This algorithm
was extended to 3D and adapted for the task at hand. The idea of extending the shape context descriptor to
3D has been independently proposed by Frome et al.11 for recognizing 3D objects in range scans. Given the
correspondences from the shape matching an estimate of the breathing motion in form of a displacement field
can be calculated in a non-linear registration step. Belongie et al. propose the thin-plate spline framework for
this task. Davis et al.12 argued that in the context of medical applications the elastic body spline is a more
accurate model for displacement field calculation.

This paper is organized as follows. Section 2 briefly describes the 3D image data used for this research.
In Section 3 the basic techniques and their extensions which were used to identify shape correspondences and
non-linearly register the image data are presented. Section 4 introduces setup and results of the synthetic and
real data experiments, while Section 5 discusses the obtained results and gives a conclusion.

2. 3D IMAGE DATA

Image data for this study comes from high-speed multi-detector spiral CT sheep scans. The sheep CT data was
provided by Prof. Eric Hoffman, University of Iowa, IA. The data was acquired at five different breathing states
between TLC and FRC by a protocol where breath is held at fixed inspiration levels during the 30 sec scan time.
This leads to a static breathing scheme, which has to be considered for the interpretation of derived motion
models from matched and registered shapes. A CT protocol to scan thorax anatomy at different breathing states
with high spatial resolution during dynamic (normal) breathing is not yet used routinely. The image dimensions
per breathing state are approximately 512x512x550 with voxel dimensions of 0.52mm x 0.52mm x 0.6mm. Fig. 1
shows some typical slices of the 3D image data. In this work a single data set composed of five different breathing
states was used.

3. METHODS

In the literature there are several related methods for registration and warping of lung surfaces. Betke et al.13

reported an automatic 3D registration technique for lung surfaces in CT scans. They use static anatomical lung



Figure 1. Typical slices of the 3D image data.

landmarks to obtain an initial registration and refine it with an iterative surface-to-surface registration method.
Both steps solely use an affine transformation model to describe the deformation. Fan et al.14 developed a
technique for motion field derivation from lung images by using an intensity-based 3D optical flow scheme
following a coarse pre-registration from corresponding airway tree branching points. Li et al.15 proposed an inter-
subject warping and registration scheme for lung CT images using a set of reproducibly extractable corresponding
feature points and a landmark and intensity-based consistent image registration algorithm. Tschirren et al.16

presented a registration scheme based on a branchpoint matching of segmented airway trees.

In this work the shape context approach was used to find correspondences on lung and diaphragm surfaces
followed by a non-linear thin-plate spline registration. This is a more general approach than the ones stated above,
since basically all kinds of extracted surfaces (e.g. segmented airway or vessel tree surfaces as well as skeletonized
trees) can be used in the same matching framework. Related work to the shape context approach can be found
in Sclaroff et al.17 who perform a modal matching algorithm based on the idea of describing objects in terms
of generalized symmetries. Another approach is the TPS-RPM (Thin-Plate Spline - Robust Point Matching)
method developed by Chui et al.18 who estimate the parameters of the correspondence problem and the non-
linear registration transformation simultaneously in a deterministic annealing driven expectation-maximization
scheme.

3.1. Shape Context Matching and Non-Rigid Registration

The shape context approach10 was reported as a reasonable and promising method for matching 2D shapes
(especially hand-written digits and letters) and 2D object recognition without relying on extracted features. It
combines global (by regarding all points of a shape) and local (by storing information about the relation of all
possible point pairs) shape knowledge in a clever way. Objects are treated as (possibly infinite) point sets and it
is assumed that the shape of an object is captured by a finite subset of its points, giving a set P = {p1, ..., pn}.
The points can be obtained as locations of edges from an edge detector or from another method to sample
contour/surface points from a shape. The points need not and typically will not correspond to key points or
structures such as maxima of curvature, inflection points or surface ridges. If one looks at the set of vectors
emitted from one point pk to all other points pi of a shape with i 6= k, this set can be interpreted as a rich
description of the shape configuration relative to pi. Since this description is much too detailed, the relative
distribution of this set of vectors is taken as a compact, yet highly discriminative descriptor instead. Therefore,
for each point pi a histogram hi of the relative positions of the remaining points is calculated which is called
the shape context. This histogram uses bins that are uniform in a three-dimensional spherical coordinate system
(θ,φ,r). The r coordinate axis is logarithmically sampled, such that positions of nearby sample points have
stronger influence on the descriptor than ones located farther away. Fig. 2a shows the bin structure of 3D shape
context histograms.
Now for each point pi on the first shape, the ”best” matching point qj on the second shape has to be located.



For a point tuple < pi, qj >, let

Cij = C(pi, qj) =
1
2

K∑

k=1

[hi(k)− hj(k)]2

hi(k) + hj(k)

denote the cost of matching these two points. This cost function is simply based on the χ2 test statistic which
is a natural choice for comparing histograms. Given the set of costs Cij between all pairs of points on first
and second shape, one wants to relate each point from the first shape with exactly one point from the second
shape under the constraint that the total cost of this mapping is minimized. This problem can be formulated
in a graph framework by taking the sample points from both shapes as graph nodes in a bipartite graph, i.e.
there are only graph edges between the two sets of sample points, no edges between sample points of a single set.
Edges in the graph are weighted with the cost function Cij . This graph setup is illustrated in Fig. 2b. Finding a
cost-minimizing mapping between point sets now transforms to a graph matching problem which is an instance
of the weighted bipartite assignment problem. It can be solved in polynomial time, e.g. with the Hungarian
algorithm in O(N3) time, with N being the number of nodes in the bipartite graph. The final result of the graph
matching step is a one-to-one mapping of corresponding points from the two shapes.

Figure 2. Components from the 3D shape context descriptor calculation. a) shows the histogram bin structure embedded
in a spherical coordinate system (θ,φ,r). b) depicts the bipartite graph structure used for the graph matching algorithm,
with nodes pi and qj representing all sample points from first and second shape, respectively, and edges weighted with
Ci,j representing the cost function to match a pair of points.

Belongie et al. give some arguments about invariance and robustness of the shape context approach. It
is implicitly invariant to translation, since all measurements are taken with respect to object points. Scale
invariance can easily be achieved by normalizing the radial distances by the mean distance. If this is desirable
for an application, rotation invariance can also be achieved by incorporating local coordinate systems based on
the tangent vector at each point instead of using a common global coordinate system. Rotation invariance is not
an issue for this work, since data sets are either already in a similar position and orientation, or will be brought
into similar orientation by a pre-processing step. Outlier handling can be introduced by using ”dummy” nodes
attached to each point set, whose cost is chosen in a way that outliers have larger cost values.

After establishing the point correspondences Belongie et al. make use of the thin-plate spline framework9 for
non-linear registration. The thin-plate spline approach leads to a transformation that consists of an affine part
and a non-linear deformation part depending on the identified correspondences. The parameters of the thin-plate
spline model are calculated from the constraints that the displacement at corresponding points is zero (exact
interpolation of the displacement field) and that the spline model between corresponding points yields regular
and smooth displacements tending to zero the further away from the corresponding points they are.



3.2. The Shape Registration Pipeline

A shape registration pipeline was implemented able to derive a displacement field given two image data sets at
two distinct states of the breathing cycle. Some parts of the pipeline make use of the popular ITK‡ (Insight
Segmentation and Registration Toolkit) software library. A coarse overview of this pipeline is given in Fig. 3.

Figure 3. Shape Registration Pipeline. From left to right, volume segmentation, surface extraction, surface point
sampling, shape matching to get point correspondences and non-linear registration and volume warping based on the
point correspondences are depicted.

The first step in the registration pipeline is an automatic segmentation of the lung surface. A simple algorithm
that incorporates a region grower for background removal, a grey value thresholding step and a connected com-
ponent labeling gives a rough segmentation of the airway tree and the lung tissue. An airway tree segmentation
algorithm that was developed in our group19 is used to get an accurate airway tree with the rough segmentation
as a constraint. The lung segmentation is separated into left and right lobe by a labeling step based on the main
branching point of the airway tree, using the same method presented in Beichel et al.20 for liver partitioning.
This results in a binary volume for left and right lung lobe. From these binary volumes a diaphragm point set
is extracted by regularily sampling points from the bottom part of the lung surface. It should be noted that
this simple diaphragm segmentation scheme is working well for sheep CT data but can not so easily be used for
human diaphragm segmentation, since the human heart sits on top of the diaphragm, while in sheep data the
heart is surrounded by lung tissue.

The next step is the extraction of a point set from the segmented lung surfaces. In contrast to the original
shape context paper, discretization is an important issue in this work since 3D discretizations easily produce
very large numbers of points. Further, some methods might produce more points in areas of high curvature
which is a disadvantage for calculating the shape context descriptor. In this case the descriptor would lose its
ability to describe the small lung deformations due to breathing. To avoid these difficulties the binary volumes
are triangulated using the Marching Cubes algorithm. This gives a dense and regular triangle mesh, which is
sampled in a regular way. In all experiments the number of sampling points per lung surface was varied between
200 and 3400 points.

The calculation of the shape context descriptor was extended to incorporate local grey value information.
At each extracted surface point a second term of the cost function based on the normalized cross correlation is
calculated. The extended cost function C ′ij has the following form

C ′ij = C ′(pi, qj) = αC(pi, qj) + βNCC(pi, qj)

with C(pi, qj) being the original shape context descriptor cost function and NCC(pi, qj) being the normalized
cross correlation evaluated at 5x5x5 neighborhoods of the original grey value CT image centered around pi and
qj respectively. This additional term adds robustness against segmentation errors and makes use of the otherwise
neglected intensity information in the data sets.

Since the 3D extension of the shape context approach requires a larger number of sample points than the
simpler 2D case, it is crucial to utilize an efficient algorithm for the bipartite graph matching problem. In this
work the minimum weight assignment algorithm from the LEDA software library§ was used, which solves the

‡http://www.itk.org
§http://www.algorithmic-solutions.com



graph matching in O(N(M +NlogN)) time, with N being the number of nodes and M the number of edges in the
bipartite graph. This algorithm proved itself as reasonably fast, since all practical experiments showed that the
calculation of the cost functions at the N2 points took more time than the graph matching step. After finding
the one-to-one correspondences a certain percentage of matched points were removed. More specifically matched
edges get sorted by their weights and the ones with largest weights get excluded. This adds some robustness
against errors introduced in the preceding segmentation and point sampling steps. The subsequent registration
step does not need the full number of correspondences since it interpolates the displacements between missing
correspondences according to the chosen interpolation model. However, the percentage of correspondences to
remove has to be chosen small enough to prevent entire loss of information in certain image regions.

The final step in the registration pipeline is the non-linear registration of the matched points in a thin-plate
spline framework. A thin-plate spline interpolation function f(x, y, z) has the form

f(x, y, z) = a1 + axx + ayy + azz +

n∑
i=1

wiU(‖ (xi, yi, zi)− (x, y, z) ‖)

with kernel U(r) = r. Davis et al.12 have reported that the elastic body spline (EBS), which solely differs from
the thin-plate spline in the kernel function U(r), is a more accurate model for medical imaging applications. They
state that this kernel is actually better suited for modeling tissue deformations, since it is derived from Navier’s
partial differential equations that model the equilibrium of an elastic body subjected to forces. It incorporates
a parameter that models the tissue elasticity derived from Poisson’s ratio. In this implementation both types of
spline kernels were used since the non-linear registration framework is the same in both cases. Another aspect in
the registration framework is the large number of sample points that have to be extracted for a reasonable shape
approximation. The thin-plate spline framework resembles an interpolation of the displacement field between
corresponding points, therefore a large number of correspondences tend to introduce overfitting to still fulfill
the interpolation requirements. The group around Belongie published a paper21 dealing with this problem. In
this work the findings of Rohr et al.22 to approximate thin-plate spline mappings were considered. Rohr et
al. proposed to add a regularization term to the formulation, which is steered by a parameter λ weighting the
tradeoff between interpolation and smoothness of the solution. λ ranges between 0 for exact interpolation to 0.1
for an approximated purely affine transformation with hardly any local deformations.

4. EXPERIMENTS AND RESULTS

To assess the validity of the shape context matching and registration approach qualitative and quantitative
evaluations were performed on synthetically transformed and real thorax data sets. In this work three different
kinds of shapes were produced in the segmentation steps and taken as input for the validations, i.e. diaphragm,
lung lobe and airway tree surfaces. Fig. 4 shows examples for each kind of shape.

4.1. Matching Experiments on Synthetically Transformed Data

The basic procedure for the synthetic matching experiments is to provide a data set A(x, y, z) and a transformed
version of the data set B(x, y, z) as input to the shape matching algorithm. The synthetic transformation
T : {B(x, y, z) = T (A(x, y, z)), 1 ≤ x ≤ nx, 1 ≤ y ≤ ny, 1 ≤ z ≤ nz} is defined by the evaluator and unknown to
the matching algorithm, therefore B serves as a ”gold standard” data set for the shape matching algorithm. The
algorithm computes from its inputs A(x, y, z) and B(x, y, z) a list of point correspondences < pi, q

′
i >, mapping

a point set pi : {pi(x, y, z) ∈ A(x, y, z), 1 ≤ i ≤ n} to a point set q′i : {q′i(x, y, z) ∈ B(x, y, z), 1 ≤ i ≤ n} with
n being the number of surface sample points. By applying the transformation T on the point set pi a set of
synthetically transformed points qi : {qi(x, y, z) = T (pi(x, y, z)), 1 ≤ i ≤ n} is calculated. If the shape matching
algorithm would be perfect qi and q′i would be identical for all values of i. Since in practice this is not the case,
for each tuple of point sets q′i and qi minimum, mean and maximum distances are calculated and interpreted as
an accuracy measure for the shape matching algorithm.

Some of the parameters involved in the matching and registration algorithm remain fixed during the exper-
iments. The weighting parameters of shape context and normalized cross correlation cost function are set to
α = 0.7 and β = 0.3 to give more importance to the shape context cost function term. The percentage of point



Figure 4. The different kinds of data used in the experiments. Segmented surfaces to the left and sampled points to the
right, respectively. Right column shows airway tree data, while left column shows diaphragm at the top and lung lobes
at the bottom.

correspondences removed from the shape matching results is set to 20% and it was ensured that there are no
regions lacking sample points after removal by visual inspection. The elastic body spline kernel is not used for the
final validations. Compared to the thin-plate spline kernel its need to tune the parameter resembling Poisson’s
ratio and its higher computation time were not worth the only slightly better results. The regularization factor
for the thin-plate spline interpolation is set to 0.01.

The shape context approach is used to find shape correspondences of thorax structures over breathing. There-
fore a synthetic transformation has to simulate breathing behaviour. A non-linear transformation
T : {B(x, y, z) = T (A(x, y, z))} was designed to approximate a breathing-like deformation by simulating di-
aphragm and rib cage movement. According to the literature23 diaphragm movement for deep breathing ranges
between 25 to 40 mm in the vertical direction during a breathing cycle. This movement is simulated by applying
a translational force to the diaphragm surface in the data sets negative z direction. A non-linear force is calcu-
lated by weighting the constant translation tvertical with a two-dimensional Gaussian distribution that depends
on the x− and y− coordinates of the data set, i.e. the further away from the center of the diaphragm surface a
point is, the smaller is the negative z translation. Mathematically a displacement vector ~d1 = (0, 0, z′) is applied
to each point (x, y, z)T that maps it to (x, y, z′)T with

z′ = z − tverticale
− (x−µx)2+(y−µy)2

2σ2

where (µx, µy) corresponds to the x− and y− coordinates of the center of gravity of the diaphragm points and
σ is chosen such that points lying at the exterior of the diaphragm surface (where the diaphragm is attached to
the rib cage) nearly remain fixed.

In a similar fashion, simulation of rib cage behaviour during breathing leads to the development of another
displacement force component. A radial, center-directed translation tinward is used to form a second displacement
~d2 = (x′, y′, 0) that maps points (x, y, z)T to (x′, y′, z)T with

(
x′

y′

)
=

(
µx

µy

)
+ t′ ∗ ~c

|~c|
where

~c =

(
x− µx

y − µy

)
and t′ = |~c| − tinward ∗ (1− e

− (x−µx)2+(y−µy)2

2σ2 )



Figure 5. Sagittal and coronal views of a data set demonstrating the synthetic transformation that is used to simulate
breathing behaviour. Left column shows original, right column transformed data, respectively.

Combining displacements ~d1 and ~d2 gives a total displacement ~d that is equivalent to a non-linear transformation
T : {B(x, y, z) = A(x, y, z)+ d(x, y, z)}. An example for this transformation using tvertical of 25 mm and tinward

of 10 mm on a thorax data set is shown in Fig. 5.

The first synthetic experiment operates on a segmented diaphragm. Diaphragm surface points are extracted
from a segmented lung surface data set at TLC. The vertical translation tvertical and the inward translation
tinward remain fixed to 25 and 10 mm, respectively. The number of sample points used to represent the diaphragm
surface are varied between 400 and 3600 sample points in steps of 400. To assess the validity of the shape
matching method based on the shape context descriptor (without dependencies on segmentation and shape
sampling errors) sampled point sets are transformed according to the simulated breathing transformation. In
this case an exact correspondence of points is given initially and an ideal shape matching method would identify
100% correct correspondences. The percentage of correctly identified correspondences over different numbers of
sampling points is given in Table 1. The expected 100% correspondence was achieved in most cases. The higher
number of sampling points show a performance decrease, since a very high number of shape context histogram
bins would be necessary to prevent discretization artifacts.

[%] / Samples 400 800 1200 1600 2000 2400 2800 3200 3600

Correspondences 100 100 100 100 99.6 99.1 97.3 94.5 89.2

Table 1. Percentage of correctly identified correspondences from synthetically transformed diaphragm point sets.

To assess the dependencies on sampling inaccuracies the segmented volumes are then transformed instead of
the sampled point sets. Each transformed volume is sampled independently. First of all the number of sampled
points is varied while keeping the translation parameters at the same value as in the previous experiment. This
demonstrates the matching algorithms behaviour with increasing sampling rate, which clearly an increase using
more sample points with a saturation at very high numbers. Table 2 shows these results.

[mm] / Samples 400 800 1200 1600 2000 2400 2800 3200 3600

Min Distance 0.3091 0.2709 0.2161 0.1288 0.1007 0.1351 0.0639 0.1033 0.0580

Mean Distance 8.9919 5.8678 6.0271 5.5008 5.2024 4.9839 4.7611 4.8170 4.4415

Max Distance 25.9215 24.3896 22.4572 22.6455 23.3288 21.2271 18.1501 21.2802 18.4788

Table 2. Distance error measures for synthetically transformed diaphragm volumes over different sampling sizes.

From now on the number of diaphragm sample points is fixed to 2000 sample points. Following the previous
results this is a good compromise between running time and matching quality, especially since the quality does
not increase drastically for higher number of sample points. tinward is set to 10 mm and tvertical is varied between
0 and 45 mm. Table 3 depicts these results, the same experiment with tvertical set to 25 mm and tinward being
varied show a similar result. Performance decreases when deformations get too large.

Another set of experiments is performed on airway tree and lung lobe surfaces. Airway tree and lung lobe



[mm] / t 0 5 10 15 20 25 30 35 40 45

Min Dist 0.1212 0.05007 0.1358 0.0342 0.1539 0.1845 0.1463 0.1040 0.0974 0.2626

Mean Dist 3.4065 3.4537 3.5498 3.8951 4.5062 4.9031 5.3673 6.0291 6.5062 7.4041

Max Dist 12.1399 11.6625 12.2154 14.3470 17.2173 17.5739 19.1093 21.5376 26.4628 27.8111

Table 3. Distance error measures for synthetically transformed diaphragm volumes over different transformations.

segmentations from a data set at TLC are used as input to the shape matching algorithm. Again, the vertical
translation tvertical and the inward translation tinward remain fixed to 25 and 10 mm, respectively. The number
of sample points is varied between 200 and 3400 sample points in steps of 400. Table 4 summarizes the achieved
results which are similar to the results from the diaphragm experiments.

[mm]/Samples 200 600 1000 1400 1800 2200 2600 3000 3400

Min Dist 1.7055 0.3713 0.3554 0.1322 0.1694 0.1642 0.1923 0.1314 0.0696
Mean Dist 11.7425 8.3019 7.3544 5.9857 5.8020 5.7074 5.5174 5.0402 4.5784

A
ir

w
ay

Max Dist 32.7307 28.5479 31.1092 24.9632 25.3906 26.3004 27.5073 27.1693 25.6884

Min Dist 1.9441 0.5800 0.2449 0.3710 0.2271 0.1464 0.3372 0.2448 0.0835
Mean Dist 15.8415 9.4848 7.9323 7.1462 6.7032 6.4448 5.7276 5.9852 5.9906

L
o
b
e

Max Dist 38.9555 26.5770 28.3671 24.0893 19.1600 21.7416 22.1864 27.2684 26.1502

Table 4. Distance error measures for synthetically transformed airway & lung volumes over different sampling sizes.

Fig. 6a,b,c shows matching results for synthetically transformed diaphragm, lung lobe and airway tree surfaces
transformed with tvertical of 25 mm, tinward of 10 mm and sampled with 2000 sample points, respectively.

4.2. Registration Experiments on Synthetically Transformed Data
The synthetic registration experiments use a data set A and its transformed version B as input to the non-linear
registration algorithm which is composed of the shape matching and the displacement field interpolation com-
ponent. Experiments are solely performed on lung lobe surface segmentations. Again a transformation
T : {B(x, y, z) = T (A(x, y, z))} is defined by the evaluator and unknown to the algorithm. The point corre-
spondences < pi, q

′
i > that are created by shape matching of an original and a transformed data set are used

to calculate a displacement field by regularized spline-based interpolation of the point correspondences within
the thin-plate spline framework. This displacement field is utilized to warp the original data set A to a data
set B′. By comparing B′ with the synthetically transformed data set B the two quantitative error measure-
ments relative volume overlapping error (RVOE) and target registration error (TRE) are calculated. RVOE is
defined as 1 − B∩B′

B∪B′ , perfect registration would result in a value of 0 while 1 resembles total misregistration.
The target registration error is calculated by manually identifying a number of corresponding points in the lung
lobes. Therefore the original grey value data set is transformed according to the synthetic transformation T
and afterwards the airway tree is segmented in both the original and the transformed image. Both airway tree
segmentations are skeletonized and 20 branch points are extracted, respectively. Fig. 6f,g shows the graph-based
airway tree representations and the manually labeled airway tree branch points. By warping identified airway
tree branch points of data set A according to the displacement field from the registration step and calculating
their distance from the corresponding branch points in synthetically transformed data set B, the minimum, mean
and maximum target registration error is computed.
Five thorax data sets are used in this experiment. The first data set is examined at varying numbers of sam-
ple points between 600 and 2000, while the other four data sets are solely examined with 1000 sample points.
RVOE (in %) and TRE results (in mm) for data set T32 are given in Table 5. The mean RVOE of all 5 data
sets is 10.166% while mean target registration errors over all 5 data sets are 1.576mm, 6.734mm and 16.502 for
minimum, mean and maximum TRE, respectively. tvertical is 25 mm and tinward is 10 mm. Fig. 6 shows one
lung lobe of data set T32 before (d) and after (e) registration.

4.3. Registration Experiments on Real Thorax Data
The first validation experiment on the real thorax data makes use of a sheep thorax data set at five different
breathing states between TLC and FRC, these data sets are called T32, T24, T16, T8 and F. Each of them



Measure/Samples 200 600 1000 2000

T32
RVOE [%] 12.47 10.89 9.54 8.26

Min/Mean/Max TRE 1.81/7.39/14.03 1.70/6.06/11.09 1.79/5.37/10.08 1.613/5.1672/9.891

Table 5. RVOE and TRE for synthetically transformed lung volume T32 over different sampling sizes.

contains a lung lobe segmentation from which 1000 points are sampled. Four data subsets are built, with the
first subset consisting of states {T32, T24, T16}, the second subset consisting of {T24, T16, T8}, third subset
{T16, T8, F} and fourth subset {T32, T16, F}. For each of these subsets the transformation T ′ relating first
and second state of the subset and T ′′ relating second and third state of the subset is calculated by using the
shape context matching approach. Further the transformation T ′′′ is calculated relating first and third state of
the subset. By comparing the results of applying T ′′′ and T ′′(T ′) on the points of the first state of each subset
minimum, mean and maximum distances are calculated and shown in Table 6.

[mm] / Data Subset {T32,T24,T16} {T24,T16,T8} {T16,T8,F} {T32,T16,F}
Min Distance 0.1538 0.2732 0.2458 0.1997

Mean Distance 7.76223 7.9934 8.2067 8.2582

Max Distance 24.6284 24.2931 23.9196 30.1443

Table 6. Real data experiment showing accuracy of the interpolation of intermediate breathing states for five data sets.

For the interpolation of the displacement fields these validations inherently assume a linear relationship between
the different states in the breathing cycle, which is not necessarily the case for real thorax breathing motion.
Therefore, a second validation experiment is performed on the real thorax data by using the airway tree branching
points as corresponding landmarks again to calculate target landmark registration errors. The same procedure
as described in the previous section is used. Registering two real data sets results in a displacement field which is
applied to the manually identified airway tree branching points of the first data set and compared to the manually
identified airway tree branching points of the second data set. In this way minimum, mean and maximum target
registration errors are computed (see Table 7). Fig. 6 shows the result of overlaying data sets T8 and T32 before
(f) and after (g) registration.

[mm] / Data Set T32/T24 T32/T16 T32/T8 T32/F T24/T16 T24/T8 T24/F

Min Distance 0.9465 0.3671 0.5833 2.4355 1.4852 1.3285 1.8347

Mean Distance 5.6503 4.9746 4.8215 6.2446 7.1077 7.4101 7.9520

Max Distance 22.2019 18.8932 14.1134 17.2176 22.1003 22.5588 20.8391

Table 7. Real data experiment showing target registration errors of pairs of data sets.

5. DISCUSSION AND CONCLUSION

Experiments show that the non-linear registration method based on the shape context matching approach is a
well-suited method for a variety of soft tissue organ surfaces. Shape matching and subsequent volume registra-
tion and warping was successfully performed using airway tree, lung, lung lobe and diaphragm segmentations.
Experiments on synthetic and real data sets show mean registration errors in the range of 5 to 8 mm. Since
there is a sophisticated image processing pipeline necessary for the whole registration process, the final error
is composed of several components. First of all segmentation and surface point sampling introduce errors that
have an effect on the registration result. The matching validation experiments using synthetically transformed
point sets assess the effect of segmentation errors. They show that the shape context descriptor based matching
approach is a suitable method if there are no segmentation errors present, since the percentage of correctly
identified correspondences stays stable at almost 100% over a wide range of different numbers of sample points.
However, a very large number of sample points introduces inaccuracies due to the discrete nature of the shape
context histogram. For a stable matching quality histogram size would have to be increased at larger numbers of
sample points which leads to high computation times. The matching validation experiments using synthetically



transformed input volumes and independently sampled point sets clearly show the dependency of matching qual-
ity on the number of sample points. In accordance to common insights from sampling theory an increase in the
number of sample points increases matching quality until it stays stable between 4 and 5 mm starting around
2000 sample points. This is consistent with the former experiment, since at higher sampling rates histogram
discretization issues come into play. The error of 4 to 5 mm can be explained by point sampling issues. The
matching method uses independently sampled points of two shapes, the established correspondences implicitly
carry an error in the sampling positions which becomes relevant in the graph-based optimization to find the
one-to-one correspondences.

The validation experiments with varying synthetic deformation forces show that larger deformations induce
a degrading matching accuracy, this indicates that the matching method is not suitable to model extremely
large movements. Synthetic and real-data registration experiments also show acceptable behaviour. Mean target
registration errors are in the range of 5 to 9 mm. Here the effects of the preceding image processing pipeline
steps have to be taken into account. Segmentation inaccuracies, surface sampling issues and discretization ef-
fects in the shape context matching all sum up to form an error which gets slightly smoothed by the thin-plate
spline interpolation process at those points that are interpolated, but not at the correspondences. In addition,
calculation of target registration errors is an error-prone process by itself, especially since for these validation
studies the branchpoint labeling was not performed by a medical expert but by the first author of this paper.

The outcome of this work is a method that allows to calculate deformation fields capturing organ motion.
In this paper the focus lay on breathing motion but the basic concepts can be used for other kinds of motion
as well. Displacement fields may be derived from organs like diaphragms or lung surfaces which enables one to
build statistical models of organ motion, e.g. by using Active Shape Models24 in subsequent stages. A statistical
model of breathing motion resembles a very useful tool for segmentation and registration applications in medical
imaging areas that suffer from motion artifacts.

In this paper a 3D extension of the shape context approach for matching and registering 3D surfaces was
presented and experiments on lung, lung lobe, airway tree and diaphragm surfaces were shown. Shape context
based non-linear registration is a promising technique which has to be studied further to be able to lower the
TRE. Future work will include algorithm fine-tuning on the one hand and more validation experiments on the
other hand. Fine-tuning might be performed by using the Normalized Mutual Information measure instead of
Normalized Correlation Coefficients for the intensity-based cost function and by finding a better way to get rid
of segmentation and discretization errors and outliers. The thin-plate spline displacement field interpolation
might be fine-tuned by using the weights from the matched points for regularization instead of simply having
a single regularization parameter. A more appropriate validation study should include a large number of data
sets and use manual correspondences identified by experts for the target registration error calculation. Further,
the method should be compared to other state-of-the-art techniques. Based on a large number of validated data
sets, a statistical model of the displacement fields that describes breathing motion could be established.
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Figure 6. Some shape matching results are depicted in a), b) & c). d) & e) show registration results of synthetically
transformed data set T32. f) & g) give an example of corresponding airway branch points that were used to determine
target registration error. h) & i) show results from registering data sets T32 & T8. In d), e), h) and i) the white volumes
are the original and dark volumes are the overlaid warped volumes.


