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Abstract. Centerline extraction of tubular structures such as blood ves-
sels and airways in 3D volume data is of vital interest for applications
involving registration, segmentation and surgical planing. In this paper,
we propose a robust method for 3D centerline extraction of tubular struc-
tures. The method is based on a novel multiscale medialness function
and additionally provides an accurate estimate of tubular radius. In con-
trast to other approaches, the method does not need any user selected
thresholds and provides a high degree of robustness. For comparison and
performance evaluation, we are using both synthetic images from a pub-
lic database and a liver CT data set. Results show the advantages of
the proposed method compared with the methods of Frangi et al. and
Krissian et al.

1 Introduction

As a result of the development of modern volumetric imaging techniques like
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), an in-
creasing amount of anatomical and functional details of the human body can be
acquired. However, with the benefit of higher spatial and radiometric resolution
also the amount of generated data increases. For several applications like diag-
nosis or surgical planning, tubular structures like blood vessels are of interest.
For example, the liver portal vein tree can be used for liver segment approx-
imation, required for tumor resection planning [1]. For 3D applications, such
as visualization, segmentation or registration, the detection of vessel centerlines
together with radius estimation is an useful preprocessing step. Manual center-
line extraction is very time consuming, hence automatic and robust methods
for tubular structures would greatly ease this process. In combination with 3D
visualization methods, the analysis of the vessels can be substantially improved
and simplified, as demonstrated by an Augmented Reality based liver surgery
planning system, that has recently been developed [2].
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1.1 State of the Art

Medialness functions are used to extract the medial axis of a structure by mea-
suring the degree of belonging to its medial axis. A medialness function can be
defined by the convolution product of a kernel K(x, σ) with a given image I(x),
where x = (x1, x2, x3)

T is a point in 3D space and σ denotes the scale of the
measurement. Medialness functions can be classified according to two criteria:

(a) by the geometric location, where the measurements are made.

– Central medialness
– Offset medialness

(a) by the type of the filter kernel:

– Linear medialness
– Adaptive medialness

Frangi et al. [4] developed a vessel enhancement filter based on eigenvalue
analysis of the scale space of the Hessian matrix. In terms of classification of
medialness functions the vesselness enhancement filter can be classified as linear
central medialness, because the eigenvalues are evaluated using a data indepen-
dent filter kernel exclusively based on the central information. The scale space
of the Hessian matrix is given by:

∇2I(σ)(x) = H(σ)(x) = σ2γ

[

∂2I(σ)

∂xi
∂xj

]

. (1)

Let λ1, λ2, λ3 and v1, v2, v3 be the eigenvalues and corresponding eigenvec-
tors of H(σ)(x) such that |λ1| ≥ |λ2| ≥ |λ3| and |vi| = 1. The eigenvalues and
eigenvectors correspond to the principal curvatures of the intensity function I (σ),
which is the initial image convolved with a three-dimensional Gaussian kernel
G(x, σ) = 1/(2πσ2)
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. The term σ2γ in Eq. (1) is used for
normalization of the second order derivatives, which ensures invariance under
image rescaling [9].

The dissimilarity measurement of Frangi et al. takes two geometric ratios into
account. The first ratio addresses the deviation from a blob-like structure: RB =
|λ1|/

√

|λ2λ3| . The second ratio is for distinguishing between plate-like and line-
like structures and takes into account the two largest second order derivatives:
RA = |λ2|/|λ3| . In order to diminish the response of the background pixels, the
Frobenius norm of the Hessian matix is used to define the measure of second

order structureness: S =
√

λ2
1 + λ2

2 + λ2
3. Using these three measures a vessel

likelihood function is defined:
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where α, β and c are thresholds to control the sensitivity of the filter to the mea-
sures RA, RB and S. The filter is applied at multiple scales and the maximum
response across scales is selected.

V = max
σmin≤σ≤σmax

{V0(σ)} . (3)

Krissian et al. [8] developed an adaptive offset medialness function for 3D
brain vessel segmentation. The function is said to be adaptive, because the ori-
entation of the filter kernel is locally adapted by the eigenvectors v1 and v2,
which correspond to the two major principial curvatures of the Hessian matrix.
Furthermore, the function is classified as an offset medialness function, because
the function measures contour information at points equidistant to the center.
The medialness function is given by:

R(x, σ, θ) =
1

2π

∫ 2π

α=0

−σγ∇I(σ) (x + θσ vα) · vαdα , (4)

where vα = cos(α)v1 + sin(α)v2 and α is the angle of the rotating phasor vα.
Thus, the function measures the gradient of the smoothed image along a circle
with radius θσ in the plane defined by v1 and v2. In analogy to Eq. (1), the
term σγ is used to normalize the first order derivatives.

The authors use a cylindrical model with Gaussian cross section to analyt-
ically compute the value of the proportionality constant θ, at which the me-
dialness function gives a maximal response. Having set γ to the value 1, the
proportionality constant equals θ =

√
3. Furthermore, for radius estimation, the

authors derive a relation between the radius of the vessel σ0 and the scale σmax

at which it is detected:

θ
√

σ2
max =

√

σ2
0 + σ2

max ⇒ σ0 =
√

2σmax . (5)

Similarly to Frangi’s method, the function is applied at different scales and the
maximum response is selected.

Rmulti(x, θ) = max
σmin≤σ≤σmax

{R(x, σ, θ)} . (6)

In [5], two weighting factors were introduced to increase the robustness of the
method, when applied to 3D Ultrasound images of the Aorta.

Once the mutiscale medialness response is generated, the centerlines can
be extracted using the method of Pizer et al. [11]. Considering the multiscale
medialness response, it is obvious that the local maxima correspond to the medial
axes of the tubes. Therefore, if all the local maxima are located at central points
of the tubes, local maxima extraction is equivalent to centerline detection. The
characterization of local extrema is based on the properties of the Hessian matrix.
A three dimensional image point x is considered to be locally maximal in the
multiscale medialness response Rmulti, if the following condition is satisfied:

Rmulti(x) ≥ Rmulti(x ± v1) and Rmulti(x) ≥ Rmulti(x ± v2) . (7)



The eigenvectors v1, v2 correspond to the two major components of the prin-
cipal curvatures of the Hessian matrix, obtained from the scale that provides
the maximum response. In order to obtain a skeleton like representation of the
centerlines, the result of the local maxima extraction is thinned by deleting the
simple points [10].

1.2 Contribution

In this paper, a novel robust tube detection filter for 3D centerline extraction
is presented. The filter is based on an adaptive multiscale medialness function,
which combines offset and central information. The function measures boundari-
ness along a circle in the plane defined by the two largest principial curvatures
of the Hessian matrix. We further propose a weighting function that takes the
symmetry of the tube into account. Thus, responses resulting from isolated struc-
tures or high intensity variations are rejected and no background subtraction is
needed. To avoid the need for user-selected thresholds, the function includes an
adaptive threshold, which is based on a central medianless function and allows
better discrimination between tube and non-tube structures. In contrast to the
method of Krissian et al., we do not use the same scale for computing both the
image gradient and the Hessian matrix. Therefore, our method is less dependent
on the vessel model and provides accurate radius estimates. In order to compare
our method to the methods of Frangi et al. and Krissian et al., we are using both
synthetic images taken from a public database [6–8] and a liver CT data set. The
results show that our method provides a higher accuracy of the centerline and
the radius estimate.

2 Method

In [8] the proportional parameter θ is used, to define a linear relation between the
radius of the tube and the scale space parameter σ (Eq.(4)). With this relation,
their method is very inflexible especially in providing radius estimates for non–
Gaussian tube models. In order to achieve model independence we are using two
different scale spaces for computing the Hessian matrix and the boundariness
and define a more flexible relation given by

σB = ση
H , (8)

where η depends on the amount of noise in the image and ranges between [0, 1].
Thus, the Hessian and boundariness scale spaces are defined by:

H(x) = σ2γ
H

[

∂2IσH)

∂xi
∂xj

]

and B(x) = σγ
B
∇I(σB)(x) . (9)

The boundariness can be represented by b(x) = |B(x)| and g(x) = B(x)/|B(x)|,
which are the magnitude and the direction of the gradient.



Based on these scale spaces, the method consists of the following steps: First,
the initial medialness is computed, using contour information of the boundariness
scale space and the filter kernel is locally adapted by means of the Hessian
scale space. Second, the initial medialness is weighted by a function that takes
the symmetry of the structure into account. Third, a gradient based central
medialness function is used to obtain an adaptive threshold. Finally, the function
is evaluated at different scales and local maxima are extracted.

2.1 Initial Medialness

The initial medialness is given by averaging the contribution of boundariness
around a circle of radius r in the plane defined by the eigenvectors v1 and v2,
to the point x in the medialness space:

R+
0 (x, r) =

1

N

N−1
∑

i=0

b(x + rvαi
) cn

i , (10)

where N is the number of samples and is calculated by N = b2πσ + 1c and
αi = (2πi) /N , respectively. The circularity, ci, measures the contribution of the
boundariness in radial direction vαi

= cos(αi)v1 + sin(αi)v2 and is addition-
ally constrainted by the circularity parameter n. The choice of the circularity
parameter is not very critical, n = 2 being applicable for most images.

ci =

{

−g(x + rvαi
) · vαi

if − g(x + rvαi
) · vαi

> 0
0 otherwise

. (11)

2.2 Symmetry Confidence

Eq. (10) also produces responses for isolated edges and non-tube-like structures
of high intensity variation. In order to increase the selectivity of the detection,
a criterion that takes the symmetry property of the object into account, is in-
troduced. Defining the ith boundariness sample by bi = b(x+ rvαi

) cn
i , Eq. (10)

can be rewritten as

R+
0 (x, r) =

1

N

N−1
∑

i=0

bi . (12)

Considering the distribution of the values bi, it is obvious that symmetric struc-
tures have a low variance compared to non-symmetric structures. We introduce
the variance of the boundariness samples:

s2(x, r) =
1

N

N−1
∑

i=0

(

bi − b)
)2

, (13)

where b = R+
0 (x, r) is the mean boundariness. To quantify the homogeneity

of the boundariness along the circle, the initial medialness is weighted by the
symmetry confidence

S(x, r) = 1 − s2(x, r)

b
2 . (14)



For circular symmetric structures, s2 is very low compared to b
2

and hence, S(x,
r) is approximately one. The larger s2, the smaller the value S(x, r), which results
in a reduction in the response to non circular symmetric structures. Thus, the
symmetry constrainted medialness is defined as:

R+(x, r) = R+
0 (x, r) S(x, r) . (15)

2.3 Adaptive Threshold

One problem associated with medialness functions is to find an appropriate
threshold to define a minimum response, needed to reject noise and outliers.
Considering an arbitrary symmetric cross section profile of a tubular structure,
one can notice that the magnitude of the image gradient vanishes at the tube’s
centerline. Therefore, an adaptive threshold is obtained by the simple fact that,
for the tube’s center, the medialness must be larger than the magnitude of the
center gradient. For this purpose, we introduce the norm of the center gradient

R−(x, r) = σγ
H|∇I(σH)(x)| , (16)

which can be classified as a central medialness function. Here, we use the same
scale σH, to compute the Hessian matrix and the center gradient. Since both
features are central ones, the information of the whole structure should be in-
cluded to provide accurate estimates. Considering a tube of radius r′, equation
(10) is maximized, if the scale parameter r is equal to r′. At the same time, the
Hessian matrix and the center gradient are computed most stably, if the charac-
teristic width of the Gaussian convolution kernel appproximately corresponds to
the radius of the tube. Hence, we set σH = r. The final medialness is obtained
by combining the offset medialness R+(x, r) and the center medialness R−(x, r):

R(x, r) =

{

R+(x, r) − R−(x, r) if R+(x, r) > R−(x, r)
0 otherwise

. (17)

2.4 Multiscale Analysis

To take into account the varying size of the vessels, the medialness function
R(x, r) is evaluated at different radii r. The multiscale medialness response is
obtained by selecting the maximum response over a range of different radii de-
fined by rmin and rmax:

Rmulti(x) = max
rmin≤r≤rmax

{R(x, r)} . (18)

The scale r at which the tube is detected is used to determine the radius of
the vessels. In [8], the authors showed how to use the maximum response of
their multiscale medialness function to estimate the radius of Gaussian tube
models. They also showed, that in the case of bar-like cross sections, the radius
estimation fails. However, the use of two separate scale spaces enables tube
model independence. In our approach, the accuracy of the radius estimate is
only influenced by the amount of image noise.



3 Experimental Results

3.1 Synthetic Images

We are using four characteristic 3D synthetic images (see Fig. 1) from the public
data base of Krissian et al. [6–8]. Fig. 1 shows the computed centerlines of the
proposed method, the other methods tested. It can be seen that by our method,
the centerlines are extracted very accurately. The main reason is, that in regions
of high image gradients, the medialness response is eliminated by the adaptive
threshold. In addition, the approaches by Frangi and Krissian require thresholds
in order to achieve better results.

For quantification, we define three measures, Rpos, µpos and Rneg, which
are the rate of falsely positive centerline voxels, the mean distance in voxel
of the falsely centerline voxels to the real centerline, and the rate of falsely
negative centerline voxels detected. Table 1 details the quantitative anlysis of
the extracted centerlines. The centerlines of the models Tore, Varying Cylinder

and Tangent Vessels were accurately extracted. The centerline of the model Y-

Junction containes some corrupted voxels, but the mean deviation of the false
positive voxels is very small (1 voxel). The following parameters were used:
η = 0.00 and n = 2. The parameters of the other approaches were set to standard
values as descibed in [4] and [8].

Table 1. Quantitative analysis of centerline accuracy

Tore Varying Radius Tangent Vessels Y-Junction

Rpos µpos Rneg Rpos µpos Rneg Rpos µpos Rneg Rpos µpos Rneg

Proposed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00 0.04

Frangi et al. 5.98 5.21 0.00 7.81 11.78 0.00 0.55 1.36 0.49 0.50 3.08 0.06

Krissian et al. 5.62 4.58 0.33 11.12 9.54 0.00 1.03 2.96 0.54 5.40 4.66 0.04

3.2 Performance of Radius Estimation

In real images the intensity variation inside a contrast enhanced vessel is not very
high, but the vessel borders are affected by the partial volume effect. Therefore,
small vessels are approximated well by a Gaussian model, but big ones are better
modeled by a bar-like cross section convolved with a Gaussian Kernel with a
small standard deviation. For evaluation of the radius estimation we use bar-

like tube models of radius 1 − 15 voxels, convolved with a Gaussian smoothing
kernel of standard deviation 1 voxel. Furthermore, we use different values of
the noise parameter η, to demonstrate how this influences the accuracy of the
radius estimation. Fig. 2 shows the error of the radius estimation of the proposed
method and the methods of Frangi et al. and Krissian et al. The small tubes
approximately match the Gaussian model and thus, the methods of Frangi and
Krissian do not result in large errors. The more, the tubes approximate the bar-

like model, the greater is the error associated with these methods. However, the
radius estimation of our method does not depend on the specific type of the tube
model.



(a) (b) (c) (d)

(e) (f) (g) (h)
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(m) (n) (o) (p)

Fig. 1. Maximum Intensity Projection (MIP) of the testimages used in evaluation.
(a) Tore, (b) Varying Cylinder, (c) Tangent Vessels and (d) Y-Junction. Extracted
centerlines: (e)-(h) proposed method, (i)-(l) method of Frangi and (m)-(p) method of
Krissian.
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Fig. 2. Results of radius estimation for bar-like tubes of radius 1 − 15.

3.3 Real Data Sets

We used a liver CT data set which was acquired from routine clinical scan with
a voxel size of 0.55 × 0.55 × 2.00 mm3 and a volume size of 512 × 512 × 97



voxels. The anisotropic voxels were converted into isotropic voxels using sinc
interpolation [3]. For computational speedup, two thresholds tmin and tmax were
chosen to define the intensity value range of interest and the computation was
limited to regions inside the liver. The following parameters were used: η =
0.5, n = 2, rmin = 1 and rmax = 15. In order to improve the results of the
methods of Frangi et al. and Krissian et al., the background voxels defined by
I(x) < tmin were eliminated by setting them to the value tmin. Furthermore, the
medialness responses of Frangi and Krissian were thresholded, using the values:
tF = 0.05 and tK = 7.00. For both these methods standard parameter settings
were used, as described in [4] and [8]. Fig. 3 shows a comparison of the extracted
centerlines of a liver portal vein tree for all the different methods. It can be
seen, that the complexity and the quality of the centerline extracted by the
proposed method is considerably better, than those from the other approaches.
In particular, they were less effective at detecting the centerlines of large vessels.
Due to intensiy variations inside large vessels, incorrect local maxima in the
multiscale medialness response may emerge and result in erroneous centerline
pieces. Another disadvantage of the methods of Frangi et al. and Krissian et al.
is the need to threshold the medialness response. On one hand, a certain degree
of user interaction is necessary to select the threshold, while on the other hand,
small vessels providing only a low medialness response are rejected.

(a)

(b) (c) (d)

Fig. 3. Extracted centerlines of a liver portal vein tree. (a) MIP of initial image. Ex-
tracted centerlines of (b) the proposed method, (c) method of Frangi and (d) method
of Krissian.



4 Conclusion and Future Work

In this paper, a novel tube detection filter for 3D centerline extraction was
presented. In order to compare our method with the methods of Frangi et al. and
Krissian et al., we used synthetic images and a liver CT data set. The results show
the robustness of the method as well as its ability to provide model-independent
accurate radius estimates.

Future work will concentrate mainly on special cases of data sets acquired
during routine clinical scans with a lot of noise and low contrast between tubes
and background.
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