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Abstract:

Measuring the volume of heart ventricles is an important issue in heart disease diagnosis. The-

refore many radiologists investigate computer tomographic images, searching for representative

projections of the left ventricle. They use parametric models by measuring ellipse parameters

in certain images under the assumption that the left ventricle has an ellipsoid shape. This pa-

per describes the application of the LiveWire approach, an interactive segmentation technique

which can be used as an alternative volume estimation method.

The implementation of LiveWire approach and volume estimation was applied on 31 data sets

showing the left ventricle in long-axis configuration from EBCT movie-mode images. We found

an excellent correlation of 97% between volumes from an expert’s manually drawn ventricle

contours and the contours produced with the LiveWire tool. The comparison of the LiveWire

volumes with the parametric model shows a correlation of 84% lying in the same range as the

manually drawn contours vs. the parametric model (86%). We conclude that LiveWire is an

excellent tool for left ventricle segmentation in the hands of a radiologist.

1 Introduction

Measuring the volume of left and right ventricle is an important issue in heart disease diagnosis.

The ventricles are the two larger chambers of the heart, which are responsible for pumping

blood through the body during a heart beat (see Fig. 1a). It is vital to detect diseases

affecting both ventricles’ abilities to contract and relax efficiently. Physicians are able to

diagnose people with such kinds of diseases by determining the left-ventricular volume at two

certain points of time (end-diastolic and end-systolic volumes). For this reason it is necessary

to visualize the heart and its geometry. With the introduction of non-invasive techniques
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Figure 1: The four cardiac chambers in a long axis view. The arrows in a) and b) indicate the
direction of blood flow. Fig a) shows the location of the left ventricle (LV). Fig. b) indicates
the ellipse contour of the parametric model with its long and short axis. (From [3].)

like computer-tomographic [1, 2] and magnetic-resonance imaging [1] into the field of cardiac

visualization far more depictive results can be achieved compared to former techniques.

In case of cardiac volume estimation one way to benefit from computer-tomographic imaging

is the Two-Axes Method by Greene [4]. Physicians investigate computer-tomographic images,

looking for representative projections of the left ventricle. After selecting the image showing

the left ventricle with maximum projected area, a parametric model is established by measur-

ing width and height of the left ventricle shape from the chosen projection. These parameters

are used to approximate the contour of the ventricle with an ellipse (see Fig. 1b). The ellipse

is used as the base for a rotational ellipsoid model whose volume can easily be calculated.

This paper summarizes the evaluation of an alternative technique for left ventricle volume

estimation based on interactive segmentation of the medical images. The method is compared

with the parametric model and a segmentation from manually drawn contours [5]. In our

case the modality-dependent image acquisition problems (low signal to noise ratio and partial

volume effect) are accompanied by problems with muscle tissue reaching into the left ventricle.

Furthermore there are many cases where left and right ventricle chambers have grown together.

With these problems in mind we have implemented the LiveWire approach, an interactive

segmentation method based on a graph representation and dynamic programming.

After discussing related work in the following paragraph we present the medical image data

and the imaging modality in Section 2. The LiveWire algorithm is explained in Section 3.

Section 4 shows our experiments and results and Section 5 gives a conclusion.

Related Work There are many applications of image segmentation techniques in medical

image analysis. Most of the researchers in the field use deformable models like e.g. active



contour models [6] or one of its many specializations for segmentation. A collection of papers

on deformable models can be found in [7]. Another excellent resource for finding work on

medical image segmentation is [8]. More recent approaches incorporate high-level knowledge

from training images by e.g. Active Appearance Models [9].

Graph-theoretic approaches for border detection were mainly investigated by two groups in

the 1990’s. Falcao et al. [10] proposed the LiveWire segmentation paradigm and at the same

time Mortensen et al. [11] presented a similar principle called Intelligent Scissors.

2 Medical Image Data

We used medical image data sets acquired with an Electron-Beam CT (EBCT) located at

the Department of Radiology, University Hospital Graz. It is an Imatron Inc. C150 scanner

consisting of mechanically fixed x-ray source and detector units. An electron beam is deflected

and focused to hit a tungsten target ring. The emitting x-ray energy gets absorbed by detector

arrays after passing through the patient. A special mode of the EBCT allows nearly concurrent

acquisition of 8 slices of the heart at 10 distinct points of time in the cardiac cycle. Thus,

triggered by an ECG, it is possible to acquire image stacks showing the beating heart due to

the short exposition time of only 50 ms per slice.

To separate different tissues with similar absorption coefficients, i.e. heart muscle and blood,

iodinated contrast medium is used. Iodine is capable of absorbing approximately 6 times more

x-ray energy than blood or muscle tissue. With a certain concentration of iodine contained in

blood an easy distinction of iodinated blood and muscle tissue is possible.

Our images are taken in the long axis configuration (see Fig. 2a). This configuration is capable

of showing all 4 heart chambers in the images. The images consist of 360x360 pixels with each

pixel representing a physical distance of 0.83 mm in x- and y-direction. In z-direction the

voxel size is 8 mm. We have a radiometric resolution of 4096 distinct grey values. Fig. 2b

shows a data set of adjacent slices at a certain point of time.

The most important restriction coming from the tomographic image reconstruction technique

is the partial volume effect. Due to the fact that all tissues contained in a finite volume (voxel)

are mapped to a single discrete value during scanning it is impossible to determine details in

the volume which are smaller than the voxel size.

3 LiveWire Segmentation

In medical image segmentation there are often situations when automatic segmentation tech-

niques fail or lead to a suboptimal solution. As a consequence an expert has to correct results

in a manual fashion. Providing the expert with a tool that supports manual segmentation



Figure 2: a) illustrates the long axis slicing configuration. b) shows 5 adjacent slices of the heart
region at a certain point of time. Manually drawn contours locate the left ventricle.

but at the same time speeds up this tedious process, gives immediate feedback, and makes

the results repeatable, is a far better choice in such a case. For interactive segmentation an

effective strategy is to exploit the synergy between a human operator who is superior in object

recognition and an algorithm which is better in exact object delineation.

The interactive LiveWire [10] algorithm utilizes methods from graph theory for achieving these

abilities. An image constitutes a directed graph where the pixel vertices are graph nodes and

oriented pixel edges represent edges of the graph. Graph edges are weighted with costs which

are derived from image gradient magnitude and direction information. The basic problem of

finding a boundary segment is therefore converted to finding a minimum-cost path between

start and end vertex of the segment. To find this optimal path dynamic programming is used.

Implementation - Intelligent Scissors Algorithm

Our implementation is based on the paper by Mortensen et al. [11]. They define graph edges

as the connection of two 8-adjacent image pixels. A local cost function is assigned to the

graph edges to weight their probability of being included in an optimal path. We use three

static feature components to form this cost function. The Laplacian of Gaussian (LoG) fZ at

three different scales (5x5, 9x9 and 15x15 LoG kernel) is calculated to detect zero crossings.

The gradient magnitude fG at each pixel is calculated by filtering with horizontal and vertical

Sobel kernels. This feature performs a distinction between stronger and weaker edges. Finally,

the gradient direction fD is calculated to add a smoothness term to the boundary definition

by assigning high costs to sharp changes. These three static features are properly normalized

and combined by weighted summation (ωZ , ωG and ωD) to form a single static local cost



function lS:

lS = ωZ ∗ fZ + ωG ∗ fG + ωD ∗ fD

Shortest path searching After representing each image pixel as a graph vertex and as-

signing the local cost function to the graph edges between pixel, we can perform segment

detection by finding shortest paths in the graph representation. The solution to this problem

is given by Dijkstra’s algorithm [12] which solves the single-source shortest-path problem on

a weighted, directed graph for the special case where edge weights are non-negative.

The result of Dijkstra’s algorithm is a pre-calculated map of shortest paths with respect to

a specified start vertex. This start point has to be placed by the user on the boundary.

Now while moving the mouse cursor around, the globally optimal path connecting initial and

current point gets looked up in the shortest path map and displayed. As a consequence by

moving the mouse cursor close to a boundary the LiveWire snaps onto it.

Fig. 3 shows some steps of this procedure. An important feature of our implementation is

path cooling. It means that the contour is saved after a certain length has been reached and

a new shortest path map is calculated with the previous contours’ end point as initial vertex.

This feature is useful to outline connected segments spanning over a larger area.

Figure 3: Example for drawing a LiveWire contour. The leftmost image shows the seed point,
afterwards we drag the mouse cursor along the ventricle border. On the left side of the border
it becomes necessary to set some additional start points (path cooling).

4 Experiments & Results

For the evaluation of the LiveWire algorithm 31 medical image data sets were provided by the

Department of Radiology, University Hospital Graz. Prof. Rienmüller segmented the contours

manually to provide a reference segmentation. Furthermore the parametric model which is

used at the Department of Radiology for volume calculation was applied to the data sets. We

found a correlation between volumes from manually drawn contours and volumes calculated

with the parametric model of 86% in the end-diastolic and 82% in the end-systolic case. To



perform the actual LiveWire segmentation we tried to reproduce the manually drawn expert

contours. In this way our lack of radiological experience didn’t lead to a selection of obviously

wrong regions. Figure 4 shows a comparison of the volumes from the LiveWire contours and

the volumes from the manually drawn contours. All 31 data sets were used for this evaluation.

Figure 4: Evaluation of volumes by means of LiveWire segmentation compared to the results
from the manually drawn contours.

We can see that there is an excellent correlation of 97% with a nearly linear regression between

the two methods. Obviously the consequence of this result is that it is possible to imitate the

contour definition of an experienced radiologist by simply looking at his contours and drawing

the LiveWire contour. So it can be assumed that LiveWire would be a very powerful tool

to speed up accurate processing if used by an experienced radiologist. The tedious manual

segmentation of our images takes a radiologist about 15 seconds per slice on average provided

that he doesn’t have to delete segments due to a segmentation error. With the LiveWire

tool it is possible to segment an image by defining 3-5 points which takes about 5 seconds

on average. Despite this speed-up compared to manual processing segmentation of a data-set

still takes long because every image of the data set has to be processed. Another disadvantage

is that automation of LiveWire is not easily possible.

The comparison of the LiveWire volumes with the parametric model leads to a correlation of

84% and 78%. This result (see Fig. 5) lies in the same range as the comparison of parametric

model and manually drawn contours.

Finally Fig. 6 shows an example for the segmentation capabilities of the algorithm, which

demonstrates the high accuracy and flexibility of the method.

5 Conclusion

In this work we presented a highly interactive graph-theoretic segmentation algorithm and its

application to medical image data sets showing the left heart ventricle. To speed up volume



Figure 5: Evaluation of volumes by means of LiveWire segmentation compared to the results
from the volume estimation using the parametric model.

Figure 6: Example for a successful LiveWire segmentation.

calculation of the heart chamber from Electron Beam CT data it is necessary to quickly draw

ventricle contours in a reproducible manner.

We found that the LiveWire segmentation paradigm is well suited for the purpose of left



ventricle segmentation by comparing it with manually drawn contours of 31 data sets. An

excellent correlation of 97% compared to manual segmentation and an average speed-up of

factor 3 demonstrates this issue. Future work can lead to further speed-up by utilizing 3D

LiveWire methods, which learn information from adjacent image slices. We conclude that the

LiveWire tool is very powerful in the hands of an experienced radiologist, while producing the

same accuracy and reproducibility as a manual segmentation.
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