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Abstract

Measuring the volume of heart ventricles is an important issue in heart disease diagnosis.
Therefore radiologists investigate computer tomographic images, searching for representative
projections of the left ventricle. In the selected image showing the left ventricle with maxi-
mum circumference, a parametric model is established by measuring width and height of the left
ventricle shape. These parameters are used to approximate the contour of the ventricle with an
ellipse and afterwards to calculate the volume of the ventricle assuming an ellipsoid model.

In this work we develop a tool for comparing estimated volumes calculated by the parametric
model with volumes based on techniques from digital image processing. Herein we treat com-
puter tomographic image slices as volumetric data sets and define a volume by a set of segmented
images and a given voxel size.

We implement three different segmentation techniques and apply them on 31 medical image data
sets. These segmentation techniques are Thresholding, Active Contours (Snakes) and Live Wire,
a graph-theoretic approach. The algorithms are explained and the results from the volume esti-
mations are compared to each other as well as with the parametric model.

Furthermore we investigate an automation technique, a Hough transform for ellipse detection to
find the ellipse contour in the image showing the maximum ventricle projection.

The diversity of the images makes it necessary to utilize interactive segmentation techniques in-
stead of fully automatic ones. The Live Wire algorithm shows the best segmentation performance
of the tested algorithms.



Zusammenfassung

Die Bestimmung des Volumens von Herzkammern (Ventrikeln) ist ein wichtiger Teil im Diagno-
seprozess. Zu diesem Zweck untersuchen Radiologen computer-tomografische Abbildungen um
reprasentative Projektionen des linken Ventrikels zu erhalten. Das gefundene Bild, welches den
linken Ventrikel mit maximalem Umfang zeigt, wird verwendet um ein parametrisches Modell
zur Volumsbestimmung anwenden zu kdnnen. Dazu werden Langs- und Querachse der ellipsen-
formigen Kontur des projizierten Ventrikels gemessen. Diese Parameter werden benutzt um das
Volumen des Ventrikels durch Berechnung des Volumens eines zugehdrigen Ellipsoids anzuna-
hern.

In der vorliegenden Arbeit wird ein Werkzeug zum Vergleich von Volumsabschéatzungen nach
dem parametrischen Modell und Abschatzungen mit Hilfe von Techniken aus der digitalen Bild-
verarbeitung entwickelt. Dabei werden computer-tomografische Schichtbilder als Volumsdaten-
satze aufgefal3t, ein Volumen wird tber einen Satz von segmentierten Schichtbildern und der
bekannten Grol3e der Volumselemente definiert.

Drei verschiedene Segmentierungsmethoden werden implementiert und auf die 31 medizini-
schen Datenséatze angewandt. Diese Segmentierungsmethoden sind Schwellwertbildung, Active
Contours (Snakes) und Live Wire, ein graphen-theoretischer Ansatz. Die Algorithmen werden
vorgestellt und die Resultate aus der Volumsbestimmung werden miteinander und mit den Er-
gebnissen des parametrischen Modells verglichen.

Weiters wird eine Automatisierungstechnik untersucht, eine Hough Transformation zur Detekti-
on der Ellipsenkontur in jenem Schichtbild mit maximal projizierten Ventrikelumfang.

Die Unterschiedlichkeit der Bilder in den Datensatzen macht es notwendig interaktive anstatt au-
tomatischer Segmentierungstechniken anzuwenden. Dabei schneidet der Live Wire Algorithmus
am besten von den untersuchten Segmentierungsalgorithmen ab.
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Chapter 1

Introduction

1.1 Motivation

Measuring the volume of left and right ventricle is an important issue in heart disease diagnosis. The
ventriclesare the two larger chambers of the heart (left and raghum are the other two). They

are responsible for pumping blood through the body during a heart beat. Both ventricles are very
important because their muscles have to generate the pressure necessary for pumping. Therefore
it is vital to detect diseases affecting both ventricles’ abilities to contract and relax efficiently and
especially the left ones’. (See Section 2.3.1 for details on anatomical aspects and Figure 1.1a for
a schematic.) Radiologists as well as cardiologists are able to diagnose people with such kinds of
diseases by determining the left-ventricular volume at two certain points of time. The ratio of these
two volumes is an indicator for diseased hearts.

For this reason it is necessary to somehow visualize the heart and its geometry. Opening up the
chest of a patient to measure the volume is of course not realistic. Therefore so-called non-invasive
techniques have to be used for visualization, like e.g. digital subtraction angiography[1], ultra-sound
imaging[1], computer-tomographic (CT) imaging[1][57] or magnetic-resonance (MR) imaging[1].
With the introduction of computer-tomographic and magnetic-resonance imaging into the field of
cardiac visualization and volume estimation suddenly far more depictive results could be achieved
compared to former techniques. This is one of the reasons why these imaging techniques are wide-
spread nowadays.

In case of cardiac volume estimation one among many possible ways to benefit from computer-
tomographic imaging is the so-call@evo-Axes Method by Gred3&]. Physicians investigate com-
puter-tomographic images, looking for representative projections of the left ventricle. After selecting
the image showing the left ventricle with maximum projected argarametric modeis established
by measuring width and height of the left ventricle shape. These parameters are used to approximate
the contour of the ventricle with an ellipse (see Section 3 and Figure 1.1b). Furthermore this ellipse
is used as the base of a rotational ellipsoid. The volume of the ellipsoid can easily be calculated by
measuring width A and height B.

There is an ongoing discussion among radiologists regarding which cardiac volume estimation
technique is best suited for clinical application, therefore it would be interesting to compare some
of these techniques with respect to accuracy or time-consumption and to emphasize their specific
advantages and drawbacks.
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Figure 1.1: The four cardiac chambers. The arrows in a) and b) indicate the direction of blood flow.
Blood enters the heart through right atrium (RA) and right ventricle (RV), the pulmonary artery (PA)
is the connection to the lungs where the blood is enriched with oxygendcblood enters the left
atrium (LA) and after flowing through the left ventricle (LV) it leaves the heart through the aorta. In
b) an assumed ellipse contour with width A and height B is additionally shown. (Taken from [52].)

1.2 Project Goals

The primary goal of this work is the implementation of segmentation-based models for left ventricle
volume estimation and the comparison with a parametric model by means of a statistical evaluation.
Both models operate on a data set of 80 images provided by a computer-tomographic scanner.

The project is carried out in cooperation with Univ. Prof. Dr. Rainer Rienmuiller and his team
at theUniversity Hospital Graz, Department of Radiologit the department among other devices
anUltrafast CT scanneis used for routine medical inspections of hearts as well as for investigating
cardiac dysfunction and the risk of cardiac infarction or for optimal surgery timing. These inspections
are the basis for calculating left-ventricular function parameters like volume, mass or muscle thick-
ness. From a medical point of view their analysis is required to make a diagnosis. For estimating
left-ventricular volume the parametric model (bwvo-Axes Method by Gred3®], see Section 3) is
utilized at the department.

The comparison exclusively concentrates on the volume parameters which are used to derive
a stroke volumeand anejection fraction(the fractional volume of blood ejected). Therefore 31
anonymized patient data sets were provided by Prof. Rienmdiller each of them consisting of 80 im-
ages, a volume estimation result of the parametric model and manually drawn ventricle contours on
the images of interest.

It is necessary to write a tool for conveniently applying the methods and algorithms on the im-
age data sets to compare the parametric model and the segmentation-based nRidgigon-Rule
Method35], see Section 4) . The second goal of this work is to develop a tool including all algorithms
necessary to perform the evaluations that integrates into a DICOM environment under Windows NT.
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Methods based on theimpson-Rul@eed images from the complete heart volume to work. In our
case the heart volume is projected onto eight images, with each image representing a slice of the
body with a certain thickness. This thickness is defined by the CT’s resolution in z-direction which,
together with the resolution of the imaging plane (x,y), defines/thes| sizeof the CT {/oxelis the
abbreviation for volume element, see Figure 1.2 for an illustration). The left-ventricular border has to
be extracted by means of segmentation methods from these images. As soon as we know which pixels
are part of the left ventricle the volume can be estimated by counting these pixels on all segmented
images and multiplying their number with the correspondiogel size

In addition limitations due to image acquisition restrictions of the chosen CT scanning mode have
to be investigated. The most important restriction comes from the data-set’s coarse resolution in z-
direction. The CT scan of the heart only consists of eight images, therefore only smaller hearts can be
included in the statistical evaluation, because too large hearts would not fit into the scanning volume.
Here a segmentation-based model has obvious drawbacks compared to parametric models due to the
fact that it needs images from all over the heart while the parametric model only needs a certain
number of representative images.

Another restriction caused by limited x-, y- and in our case especially z-resolution is the so-called
partial-volume effecfsee Section 2.1.5 and Figures 1.3,1.2). Itis an aliasing problem occurring during
the CT image reconstruction stage and directly proportional to the finite size of the discrete volume
elements\oxels see Figure 1.2c).

The last limitation which should be mentioned is the influence optgllary musclgsee Figure
1.3), a muscle surrounding parts of the left ventricle. The problem is that the muscle doesn't fit into
the approximated ellipsoidal ventricle shape and, although it should be incorporated into the ventricle
volume, it can't easily be separated from the ventricle musolo€ardium because both consist of
the same tissue type and therefore both have a similar grey-value on a reconstructed image. In addition
radiologists do not agree whether the papillary muscle should be included in the ventricle or not. In
this work the papillary muscle will be assumed to be a part of the left ventricle and the impact of this
assumption on the different volume estimation techniques will be investigated.

1.3 Concepts and Definitions

This section describes most of the terms, notations and abbreviations used throughout the document,
which the reader possibly might not be familiar with:

CT Computer Tomography. A 2D imaging technique based on x-ray absorption.

MR Magnetic Resonance. A 2D and 3D imaging technique based on deflection of atom nuclei due
to absorbing electric-magnetic energy.

HU Hounsfield Units. The x-ray attenuation coefficients of different tissues relative to the coefficient

of distilled water:
Htissue — Hwater £ 1000

Mrel =
Hwater

DICOM Standard for Digital Imaging and Communications in Medicine. It is a protocol for storing
and transmitting many different kinds of medical data.

ROI Region of interest. A part of an image an algorithm has to concentrate on.

Cardiac A synonym for the heart.
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Slice 2
Slice 1

S"Ce i

b)

Figure 1.2: CT axis description and voxel illustration. a) shows the commonly used coordinate system
of CT scans. b) shows a scanned slice of a patient. c) illustrates an enlarged voxel and its slice
thickness. (Partly taken from [20].)

Ascending aorta

Posterior cusp of aortic valve

Pulmonary trunk Orifice of left
coronary artery
Left cusp of
Right aortic sinus aortic valve
Right cusp of aortic valve
Fibrous ring
Interventricular septum,
membranous part Aortic vestibule
Chordae tendineae
Interventricular
septum, Anterior cusp of mitral valve
muscular part
Anterior papillary muscie
Postenor

papillary muscle

Trabeculae cameae

Figure 1.3: Interior of left ventricle. The chamber consists of space for blood, papillary muscles and
fine tissue structures which are too small for reconstruction and visualization due to partial-volume

effects. (Taken from [33].)
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Left/right ventricle The two larger heart chambers. Titight ventricleis a blood pool where deoxy-
genated blood from organs and extremities is gatheredleFheentriclereceives @-enriched
blood from the lungs and has to pump it back to the organs and extremities.

Left/right atrium The two smaller heart chambetseft andright atrium are entry points to left and
right ventricle respectively.

Diastole Over time the left ventricle muscle is constantly relaxing and contracting. The duration of
relaxation is callediastole

End-Diastolic This is the point of time when the left ventricle muscle is maximally relaxed. There-
fore the ventricle chamber is filled with blood.

Systole Over time the left ventricle muscle is constantly relaxing and contracting. The duration of
contraction is calle®ystole

End-Systolic This is the point of time when the left ventricle muscle is maximally contracted. There-
fore the ventricle chamber is nearly empty.

Stroke volume The difference between end-diastolic volume (EDV) and end-systolic volume (ESV):

SV =EDV —ESV

Ejection fraction The stroke volume divided by the end-diastolic volume:

SV 100 = BBV ZESV 100[%]

EF=Thv EDV

Myocardium Is the muscular wall of the heart. It contracts to pump blood out of the heart and then
relaxes as the heart refills with returning blood. Its outer surface is called the epicardium and
its inner lining is the endocardium.

Papillary muscle Is a muscle which supports the contraction (pumping) of the left ventricle.

RAO projection Right-anterior-oblique projection. Is a view of the heart’s front from the right side
and slightly oblique.

1.4 Related Work

Many different kinds of work have been performed by researchers concerning the left ventricle since
the upcoming of CT and MR. Quantitative evaluations of different volume estimation models have
been done by Dulce et al.[15]. They compared magnetic resonance data sets by using a modified
Simpson-Rule on a biplane ellipsoid model and the three-dimensional data set of MR images. Rehr et
al.[46] did a comparison of Simpson-Rule estimated MR data sets and in vitro (excised) left ventricles.
Belohlavek[3] evaluated left-ventricular volumes in 3D-Echocardiography and compared his results
with other single- or bi-plane models.

Semelka et al.[50] evaluated the reproducibility of measurements of ventricular dimensions (mass,
volume, ejection fraction, and systolic wall stress) obtained with cine magnetic resonance (MR) imag-

ing.
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Ranganath [45] performed an automatic contour extraction of left ventricular contours from car-
diac Magnetic Resonance Imaging studies. The algorithms were based on active contour models
incorporating contour propagation. Another automatization approach for ventricle segmentation in
SPECT (Single Photo Emission CT) images was investigated by Newman et al.[42]. Their method
involved extraction and fitting of quadric surfaces to approximate ventricle shape.

Goshtasby et al.[21] applied a two-stage algorithm for extraction of the ventricular chambers in
flow-enhanced MR images. They approximate location and size of endocardialy surfaces by intensity
thresholding and reposition points on the approximated surfaces to nearest local gradient maxima.
Afterwards they fit a cylinder into the point set.

A constrained detection of left ventricular boundaries from cine CT images was performed by
Taratorin et al.[58] by the use of set-theoretic techniques, a priori knowledge of the heart geometry and
temporal dynamics. Weng et al.[62] proposed a learning-based ventricle detection from MR and CT
images based on a likelihood measure for region-of-interest detection. Furthermore Philip et al.[43]
applied a combination of different techniques on CT images to automatically detect the myocardial
contours. These techniques are a boundary matching descriptor, a fuzzy Hough transform and a
method from graph searching. Most of these ventricle detection algorithms are applied and tested on
short axis projections of the heart chmabers, there were no reports about ventricle segmentation on
CT long-axis projections.

1.5 Structure of the Thesis

This section gives an outline of the following chapters by using an image processing block diagram
at a rather high abstraction level (Figure 1.4). Chapter 2 will presertitrdical Image Dataused

as input for all further considerations and algorithms as well as the acquisition process of the images.
Chapter 3 explains thBarametric Modelin detail. Chapter 4 deals with the algorithms necessary

to set up the segmentation-based model. Thggtal Image Processingtage roughly consists of an

Image Preprocessingnd animage Segmentatiastep. The topic of Chapter 5 is the implementation

of theParametric ModelSegmentation-based Modelsd thevolume Estimatiotechnique which are
embedded in the herein presented segmentation tool. The estimated volumes are compared in Chapter
6. Chapter 7 states a conclusion and gives an outlook on further work.
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Digital Image Processing

Image Image
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Figure 1.4: Block diagram to illustrate the structure of the following chapters.
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Chapter 2

Medical Image Data

This chapter outlines the kind of image data which is the input for all of the later stages as well as
the acquisition of the images. It starts with a description of the computer-tomographic reconstruction
principle and its application in conventional and Ultrafast CT scanners. Afterwards the DICOM stan-

dard and the DICOM file format definition are presented. The last part introduces the specific image
data sets provided from th2epartment of RadiologyJniversity Hospital Graz.

2.1 Computer Tomography

Non-invasively acquiring two-dimensional images of the interior of a (human) body by using x-rays
goes back to the beginning of this century. But the drawback of losing the third dimension is unac-
ceptable for many applications. Research for improvements lasted until the period between 1968 and
1973. At this time the later inventors of x-ray computer tomography worked on their revolutionary
approach to rotate and translate a x-ray source around a body, collect the attenuated x-ray beams with
detectors on the other side of the body and reconstruct a three-dimensional volume. For their work on
mathematical theory as well as practical application towards the construction of the first operational
CT scannerAllan M. Cormackand Godfrey N. Hounsfielavere awarded with the Nobel Prize in
Physiology and Medicine in 1979.

2.1.1 The Tomographic Image Reconstruction Principle

The basic tomographic reconstruction principle is independent of the underlying projection technique.
We distinguish three techniques how images can be reconstructed by one-dimensional projections[64]:

Absorption Tomography Intensity differences in a reconstructed image of a body are based on dif-
fering absorption capabilities of e.g. tissue, bone or blood. If we have x-rays being attenuated
on their way through the body we speakxafay computer tomography

Nuclear magnetic resonance imagiisganother example, here an external magnetic field inter-
acts with nuclei of atoms possessing a spin which absorbs electric magnetic waves at a radio
frequency. This absorption promotes the nuclei to a higher energy level which cannot be main-
tained for very long. When returning to the former energy state (ground-statepends on
external magnetic field) the electric magnetic energy is released again, this emission can be mea-
sured as a signal which is interpreted as a grey-level image after tomographic reconstruction[1].

9
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Emission Tomography Here the radiation of radio-active substances is measured after being ab-
sorbed by the organs and tissues which are to be investigated. Intensity differences are based
on the capability to absorb the radioisotopes, specially designed detectors collect the emitted
radiation from the organs. Examples for this type of tomography are PET (positron emission
tomography) and SPECT (single-photon emission computer tomography).

Runtime Tomography Image reconstruction utilizes differing wave runtimes depending on the kind
of used wave and the elasticity properties of the investigated tissue. This principle is used for
example in ultrasound-imaging.

Now that we have detected either attenuated or emitted signals, it is possible to reconstruct the
scanned three-dimensional object[64]. The principle will be explained using absorption tomography.
The tomographic reconstruction process decomposes a three-dimensional object into two-dimensional
planes gliceg. The structure of these slices is determined by sequentially scanning along one-
dimensional projection lines (see Figure 2.1). Reconstruction of the attenuation coefficients along
each line leads to two-dimensional images, stacking these images results in a three-dimensional vol-
ume data set. The reconstruction stage is the trickiest part of the process, because a single detected
attenuation coefficient is only an averaged value over all tissue types along its path and therefore
we've lost the dimension of depth. But by rotating the signal source around the object while scanning
we achieve many attenuation results from different points of view for each point in the volume (see
Figure 2.2). The averaged attenuation value of a single path is modeled as a line ifitegray)d¢
with u(x,y) being the unknown distribution of the attenuation coefficients with respect to the (x,y)
coordinate system ar@drepresenting the path of the projection. (Tlhe¢) coordinate system is ro-
tated by an angle with respect to (x,y), it describes a certain rotated position of the projection line.)
Further we can measure attenuated intensttigsy) from the detectors and we know the intensity
Iy of the energy source. Initial intensity and measured intensity have the following connection:

I(n, @) = Iy % e~ #@w)de

With these ingredients a linear integral equation can be established:

o [
) = / (e, y)de

The solution of this equation can be received by applying an integral transformation consisting of
three steps:

In(

e Backprojection of the measured intensltf), ©). In this step the intensity is reprojected and
therefore the unknown attenuation coefficients are distributed uniformly along the projection
line&.

e Additive superposition of all projection lines (corresponding to line integrals). Here we get the
position of a point as a result of intersecting reprojected intensities. Nevertheless the resulting
attenuation coefficient distribution is not exact but convoluted wiqf@%-function.

e Reconstruction of attenuation coefficientge, y). To revert the convolution with thgxl—-
function, inverse fourier transformation is applied, often in combination with low-pass filtering
to reduce noise.

This process is also known fikered back-projectiofp] and it leads to an image of the scanned slice.
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Figure 2.1: From 3D-object to 1D projections. The tomographic process decomposes the object into
2D slices which are reconstructed from 1D projections like e.g. P,P”. (Taken from [64]).

O X

Figure 2.2: Energy attenuation along one projection line. Engygyrives at the object, an attenu-
ated energy (1, ¢) reaches the detector. Attenuation along the gathmodeled as a line integral
J u(z,y)ds. The(n, &) coordinate system is rotated by an anglevith respect to (x,y). By varying
© andn we get all necessary projection lines and attenuation values. (Taken from [64].)
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2.1.2 Conventional CT Scanner

Conventional CT scanners consist of mechanically movable x-ray sources and detectors. The x-ray
source is fan-shaped and has a certain slice thickness. The detector consists of a linear array of detector
elements. The basic scanning principle is to rotate the source-detector apparatus around the patient
and measure the amount of energy received by the detector. From the discrepancy between emitted
and received energy an absorption coefficient is calculated (according to the principle described in
the previous section) for each rotational position of the apparatus. Different tissues have varying
absorption coefficients. This fact is used to create a range of absorption coefficients relative to the
coefficient of distilled water calleHounsfield Unit{HU). Mapping Hounsfield Units to grey-values
generates the image of the scanned slice.

However this method has limitations. Mechanical movement of the heavy source-detector appa-
ratus restricts minimum scan time to approximately one second per slice. This scan time is sufficient
for many applications but not fast enough for cardiac imaging. The beating heart would lead to un-
acceptable motion artifacts in the reconstructed image. For this reason an alternative CT scanner
configuration calledJltrafast CTwas developed[57].

2.1.3 Ultrafast CT Scanner

The Ultrafast CT (or Electron Beam CT) at the Department of Radiology is an Imatron Inc. C150
scanner (see Figure 2.3). It consists of fixed x-ray source and detector units. An electron beam is
deflected and focused to hit a target ring (a metallic target ring made of tungsten, formerly known as
wolfram). At this target ring the energy of the electron beam is converted to x-ray energy which passes
through the patient and finally gets absorbed by the detector arrays (see Figure 2.4 and Figure 2.5).
There are 2 linear detector arrays in the detector unit. As a consequence it is possible to get 2 adjacent
slice images for a single electron beam adjustment. The Ultrafast CT scanner consists of 4 target rings
which can be scanned sequentially. Therefore scanning 8 slice levels of a patient can be achieved
without moving the patient’s table. A scanning sequence to get a pair of slices takes an interval of 50
msec. After completing a scanning sequence a setup-time of 8 msec is needed to readjust the beam
for the next sequence. Thus, it is possible to scan 8 slices in a period of 4*50+3*8=224 msec. These
scan-intervals are short enough to freeze cardiac motion.

The flexible design with 4 x-ray targets and 2 detector units leads to different operating modes. One of
them is calledMovieor Cinemode. Triggered by an external ECG signal all 4 target rings are scanned
sequentially. Scanning the first target ring leads to 10 images per detector unit (total 20 images). The
acquisition is triggered by the R-wave of the ECG (see Figure 2.6) so that all 20 images are taken
within a cardiac cycle. This procedure is repeated with the 3 remaining target rings, triggered by
the R-waves of the following 3 heart beats and generating a total of 80 images for 8 different slice
positions. They contain a complete cardiac cycle for every slice position consisting of 10 images
respectively (see Figure 2.6) [57].

2.1.4 Contrast Medium

To separate different tissues with similar absorption coefficients, i.e. heart muscle and blood, iodinated
contrast medium is used. lodine (300 HU) is capable of absorbing approximately 6 times more x-ray
energy than blood or muscle tissue (50 HU). With a certain concentration of iodine contained in blood

an easy distinction of iodinated blood and muscle tissue is possible.

Certainly the concentration of iodine decreases over time, but for this application it is assumed that



2.1. COMPUTER TOMOGRAPHY 13

Figure 2.3: The Ultrafast (or Electron Beam) CT scanner located at the Department for Radiology,
University Hospital Graz. It is an Imatron Inc. C150 scanner.

Data
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)/ System (DAS)
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Vacuum Pumps
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Figure 2.4: Longitudinal view of Ultrafast CT. The electron beam originates at the gun and is accel-
erated towards the target end. After deflection and focusing it hits one of the four target rings where
x-ray radiation is emitted. The attenuated x-ray energy is absorbed by the detector arrays which passes
a corresponding signal to the Data Acquisition System. (Taken from [29].)
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Figure 2.5: Cross-section view of Ultrafast CT. The x-ray fan beam is approximately 30 degree wide.
The lower part shows a target ring, the arrows indicate the direction of the moving electron beam. The
upper part illustrates the detector array made of crystal photodiodes. (Taken from [57].)
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Figure 2.6: ECG trigger signal. A patient’s electro-cardiogram showing movie-mode acquisition
initiated at the R-wave (the high peak at position 1). Each vertical line represents a pass of the electron
beam along a target ring. (Taken from [57].)
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Figure 2.7: Partial volume illustration. The image shows a CT slice of the left ventricle near end-
diastolic state. Bright white indicates blood while light-grey represents the heart muscle. Although
the partial volume effects occur everywhere in a reconstructed image, they can especially be seen on
the enlarged part. The transition between ventricle chamber and muscle is blurred.

the concentration remains at a constant level during the acquisition time. Due to the short total scan
time (4 heart beats) the error is negligible.

2.1.5 The Partial Volume Effect

The most important restriction coming from the tomographic image reconstruction technique is the
partial volume effectDue to the fact that we have a discretization to finite volumes during the volume
scanning stage it is not possible to determine details in the volume which are smaller than this discrete
volume. Therefore we have atiasing effect inhibited in the scanning procedure. Shannon’s sam-
pling theorem says that it is necessary to use a sampling frequency (as defined by the voxel size) twice
as large as the spatial frequency of the smallest image detail we want to reconstruct. In other words
all details with a spatial frequency smaller than half of the sampling frequency won't be reconstructed
correctly. All of these details located inside the smallest possible volume will be averaged to form a
grey-value. As an example many of the small veins situated in the left ventricle are not reconstructed
exactly.

In our images we have a scan volume of 0.8mm x 0.8mm in (x,y)- and 8mm in z-direction. There-
fore the averaging along the z-direction is much stronger than in the other directions (see Figure 2.7).
As we will see later the partial volume effect has quite an impact on segmentation-based models, but
not on the parametric model.
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Group Nr (hex) | Element Nr (hex) Name Entry
0002 0010 TransferSyntax LittleEndian (defines the byte-order for the
rest of the file)

Table 2.1: Example DICOM file entry.

2.2 DICOM

With the upcoming of all kinds of imaging devices, computers and databases used for medical diag-
nostics it has become necessary to standardize communication processes between these devices. So
in 1983 ACR (American College of Radiology) andEMA (National Electrical Manufacturers As-
sociation) formed a joint committee to develop a standard for transmission and storage of medical
information. ACR and NEMA published the first version of their standard in 1985. In 1993 DICOM
3.0 (Standard for Digital Imaging and Communications in Medicine) was presented, which is still the
current version. It describes how to utilize a TCP/IP network layer as base for all transmission tasks
and includes specifications of various possible information objects, like images from different kinds
of imaging devices or therapeutic and diagnostic information. The goals of DICOM are to achieve
compatibility and to improve workflow efficiency between imaging systems and other information
systems in healthcare environments worldwide. Furthermore the standard supports convenient devel-
opment and expansion of picture archiving and communication systems (PACS) and interfacing with
medical information systems. For more information on DICOM please refer to the homepage[41].

2.2.1 DICOM Image File-Format

For this work especially the image file-format specified in the DICOM standard was of interest, be-
cause the input images received from Bepartment of Radiologwere stored in this format. As a
consequence it is necessary to explain the concept and some of the property fields.

A DICOM image file includes many properties of a medical image beside raw pixel data. In
fact a DICOM file consists of three sections which can be distinguished. First of all there is a short
meta-information headerontaining meta-information about the rest of the file. Afterwards a section
containing image, acquisition and medical information, EHEOM data set is included. Finally
there is a section with the raw image data, either compressed or uncompressed. The first two sections
are stored in an ASCIlI manner, the raw image data is stored binary. ASCIl data has a common
structure, each entry of the sections basically consists of a unique tag, namely the combination of
a group number and an element number, and an entry. As an example the most important entry of
the meta-information header tieansfer Syntaxwhich describes the byte-order of the rest of the file
looks like in Table 2.1.

An important subset of properties from the second section of the file is needed to understand the
characteristics of the volumetric data set, therefore they are listed in Table 2.2.

There are some additional properties which are not explicitly contained in the data set, but nevertheless
they are important:

Slice Gap: There is no slice gap between two adjacent slices generated by the same target ring
adjustment. But between two adjacent slice pairs a gap of 4 mm exists.

Patient Orientation: The patient is lying on the table so that the heart is sliced in long-axis config-
uration (see Figure 2.8c).
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] Tag \ Name | Entry | Description \
(0028,0011)| image columns| 512 Image is stored with 512 columns but only the
central 360 columns contain image informa-
tion (x-direction).
(0028,0010) image rows | 512 Image is stored with 512 rows but only the
central 360 rows contain image information
(y-direction).
(0018,0050)| slice thickness | 8 mm A reconstructed image is a projection of an 8
mm thick body region (z-direction).
(0008,1030)| study description Movie study, || Indicates that the Ultrafast CT is operating|in
ECG movie modegenerating a total of 80 ECG-
triggered images.
(0028,0030)| pixel spacing | 0.833mm x|| The scanner’'s geometric resolution in x- and

0.833mm y-direction is 0.833mm respectively.
(0028,0101) bits stored 12 The radiometric resolution of the grey-value
images is 12 bit.
(0028,0100)| bits allocated | 16 Each 12 bit grey-value of the image is stored
in 2 bytes (16 bit).
(0028,0102) high bit 11 Indicates that bits 0 to 11 are the bits stor-

ing the grey-value information. (Bits 12 to 15
could contain additional data.)
(0028,1052)| rescale intercept -1024 The offset which has to be added to get the
associatedHounsfield Unitfor a given grey-
value.

Table 2.2: Subset of DICOM properties.

Voxel Size: By considering one certain moment of the heartbeat we get 8 images to define a volumet-
ric data set of dimension 360x360x8 voxels. Taking into consideration the 4 mm gap between
the 4 pairs of slices we get a total scanned volume of approximately 300 x 300 x 80 mm

Radiometric Resolution: The images have a grey-scale resolution of 12 bit, they are stored using
values between 0 and 4095. These values are derived from the CT’s Hounsfield Units by adding
the negative rescale intercept 1024.

2.3 Used Data Sets (Long-Axis Movie-Mode Images)

As ground truth for the evaluatioRrof. Rienmdllerfrom the Department of Radiologprovided
anonymized data sets of many patients and the associated results of the model parameters. These data
sets show hearts which were sliced in long-axis configuration. It is also quite common in left ventricle
volumetry to use images taken in short-axis configuration. The two configurations are illustrated and
compared in Figure 2.8. With short-axis images it is easier to find the border of the left ventricle
and the myocardium, because the edges are quite sharp especially in the middle of the left ventricle.
Furthermore they usually don’t show merged chambers. The problem is that short-axis images are
quite inaccurate near the base and the top of the left ventricle due to partial volume effects.
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Long Axis Configuration Long Axis Example

Figure 2.8: CT long-axis (LA) and short-axis (SA) configuration. a) shows long-axis images slicing
the heart from the anterior to the inferior surface. b) illustrates a typical LA slice showing all four
heart chambers in one image. c) shows short-axis images which are taken from the heart apex to the
base. d) illustrates the typical SA slice with rather sharp ventricle walls. In b) and d) circles indicate
the position of left and right ventricle. (Taken from [57].)
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On the other side long-axis images have more blurred ventricle chamber edges and it is quite
often the case that they include merged heart chambers. Nevertheless there is no region which is
extremely prone to partial-volume effects like e.g. the ventricle base on short-axis images. Deciding
which configuration is more accurate is quite difficult (and not part of this work) because both have
advantages and severe drawbacks.

The data set is taken in Ultrafast CT's so-calladvie-moddexplained in Section 2.1.3), as a
consequence each consists of 80 images. Every position in the scan volume (there are a total of eight
slice positions) is temporally sampled ten times, therefore we achieve a movie of the beating heatrt.
For the subsequent processing steps it is not necessary to closely investigate all of these 80 images.
The parametric model only needs two special images being found, one at the end of diastole and one
at the end of systole, to apply fitting ellipse parameters to them. The segmentation-based model works
with 16 images, eight images for the volume at the end of diastole and another eight for the volume at
the end of systole. The two images from the parametric model have to be a subset of these 16 images.

Figure 2.9 shows an example data-set consisting of 80 images. The first column shows the volume
data set at the end of diastole with the left ventricle projected with maximum area. The sixth column
shows the volume data set at the end of systole. An enlarged version of these two specific volume
data sets is shown in Figure 2.10. The green contours indicate the ventricle borders as specified by
a radiologist, these contours were drawn into the image with exactly the same grey-level scaling as
shown in Figure 2.10. Further it can be seen that not all of the images hold information about the left
ventricle. (The row denotation of both images is identical!) The images at the top and at the bottom
of the volume do not contain projected ventricle areas, so they can be neglected.

2.3.1 Anatomical Aspects

For a better understanding of the inputimages some aspects of cardiac anatomy will be explained next.
The heart consists of four chambers, left and right atrium as well as left and right ventricle. Figure 2.11
shows them and also indicates the direction of blood flowing through the body with arrows. The atria
are located upstream to their respective ventricles and serve as conduits to supply the main pumping
chambers of the heart (the ventricles) with blood. Left and right ventricle have to deliver blood to the
body (systemic circulation) and to the lungs (pulmonary circulation). Normally blood from organs,
head and extremities is collected in the right atrium and then pumped into the right ventricle. The
right ventricle pumps the blood through the pulmonary artery to the lungs where it is enriched with
0s. The G-rich blood from the lung travels through a vein to the left atrium and further to the left
ventricle. In the left ventricle the necessary pressure to pump the oxygenated blood back to organs,
head and extremities is generated by a contraction of the myocardium (ventricle muscle)[52].

Figure 2.8b shows a long-axis transverse section of the heart as seen on CT images. There RV
denotes the right ventricle, LV the left ventricle, RA the right atrium and LA the left atrium. D is the
descending aorta, a part of the largest body artery, which connects the heart with the lower body parts.
S is the superior vena cava, a major vessel (vein) in the chest that drains blood from the upper part of
the body into the heart.
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Figure 2.9: One of the data sets containing 80 images. Each row represents a spatial position, the first
row shows the topmost slice while the last row shows the bottom slice with respect to the body. A row
consists of 10 columns, representing different points of time. So in a row from left to right we have

a single heart beat. Column 1 (EDV) shows the volume data set at end-diastole and column 6 (ESV)
shows the volume data set at end-systole.
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EDV

Figure 2.10: Data set 10 with drawn-in contours. The left image series shows a part of the volume at
the end of diastole. The right one shows a part of the volume at the end of systole. From both sets
only those images are presented, which have an influence on the ventricle volume. The green contours
indicate the left ventricle contours as specified by a radiologist.
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Figure 2.11: Schema of the direction of blood flow through the cardiac chambers, the lungs and the
body. Abbreviations: LA: left atrium; LV: left ventricle; PA: pulmonary artery; RA: right atrium; RV:
right ventricle. (Taken from [52].)



Chapter 3

Estimating Volumes by means of
Parametric Models

3.1 Introduction

The volume of a healthy heart is approximately 90-120 ml at the end of diastole and 20-40 ml at the
end of systole. To estimate these volumes it is necessary to apply invasive or non-invasive medical
investigation techniques. A common example for an invasive method is a cardiac catheterisation
investigation while non-invasive methods (CT, MR, ...) were already mentioned in former chapters.
The cardiac catheter @ngiogramis a special x-ray investigation technique in which angiograms are
taken of the coronary arteries and the left ventricle. Therefore catheter tubes are placed in the artery
of the right arm for example and then manoeuvred to the heart where radiographic condrgesisor
injected. This radiographic contrast is used to get an x-ray image of the left ventricle in the so-called
30 degree right-anterior-oblique (RAO) projection (see Figure 3.1).

If images are regarded at a certain projection and parameters are measured from these images we
speak of gparametric model

3.2 Two-Axes Method by Greene used in Cardiac Catheter Ventricu-
lography

This method is based on tAdéree-Axes Method by Arvids$88] which needs two projection planes

(two different images) and three axes to estimate a left-ventricular volume. Greene et al. modified itin
1967 to use it on single-plane projections (RAO projections) taken from cardiac catheterisation[35].
Prerequisite for all axes-methods is the assumption that the left ventricle can be approximated by a
rotational ellipsoid or a spheroid. In the three-axes method from the general formula for a spheroid

V:%*Ml*MQ*L

with L being a measured long axis and M, being two measured short axes from the two projection
planes respectively, a specialized formula is derived by taking into account the two used projection
planes and their geometries.

Due to the observation that the two projected short axes are quite similar, Greene et al. investigated
how Arvidsson’s method could be modified to use only a single projection plane. They showed that it
is acceptable to calculate the left-ventricular chamber volume with the formula:

23
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30° RAO projection

Figure 3.1: Left ventricle right-anterior-oblique (RAQ) projection. This projection of the left ventricle
is received in cardiac catheterisation investigations. M is the short axis, L the long axis and V the
calculated volume.

V:%*MQ*L (3.1)

with M being the short axis and L being the long axis (see Figure 3.1). Correlation with other volume
estimation techniques and post-mortal measuring techniques appeared to be acceptably good.

3.3 Two-Axes Method by Greene used in Computer Tomography

Figure 3.2 shows a schematic of a CT image slicing the heart near the plane of the heart valve. This
configuration can be achieved using Ultrafast CT’s long-axis projection mode. Comparing Figures
3.1 and 3.2 it can be seen that the left ventricular contour in both projections is similar. So it can
be expected that the two-axes method by Greene can also be applied to CT images provided that the
right images for measuring ellipse parameters can be extracted from a CT image data set. In order
to evaluate if there really is such a strong linear correlation between the two methods Rienmdller
at al.[47] compared them. They report a strong correlation (correlation coefficient r=0,96 with 47
data sets) provided that the assumption of estimating the left ventricle with a rotational ellipsoid or a
spheroid is valid.

As a result this method is applied today in routine diagnosis by Prof. Rienmdiller and his team at
the Department of Radiology, University Hospital Graterefore the procedure will be explained in
more detail. First of all it is necessary to find the two representative images on which the two-axes
method is to be applied, given a data set of in our case 80 images. These two images are at end-
diastole, i.e. when the left-ventricular muscle (myocardium) is maximally relaxed and the ventricle
chamber is filled with blood, and at end-systole when the myocardium is maximally contracted. To
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find the right end-diastolic image we have to look for a projection of the left ventricle with maxi-
mized area and circumference. By determining this image we have already defined the slice posi-
tion in the volume where we have to look for the end-systolic image, because it has to occur in the
same slicing plane. From the 10 possible images the specific image where the left ventricle has an
area/circumference minimum is the end-systolic image. It normally occurs with a temporal distance
of four to six images from the end-diastolic image. These steps and the following ones are currently
performed by a trained radiologist.

Now ellipse parameters have to be extracted from the two identified images (see Figure 3.2).
Therefore a horizontal line (H) parallel to the patient’s back and a vertical line (V) perpendicular to H
are drawn into every image being investigated. Furthermore a line (L) can be established which forms
an angle of 60 degree with the horizontal line H and passes through the ventricle apex (point A). This
line represents the long axis of the left ventricle. In some cases when it is visually obvious that L does
not match the left ventricle long axis, a slight correction of the line's angle is made. To get an ellipse
width we need two points on L defining a range. Point A is one of them, the second one, point B, is
established by intersecting the connection line of the atrio-ventricular pits (G) with L. Perpendicular
to L lies the short axis (M). The left-ventricular borders intersected with M yield the points C and D.
Finally A,B,C and D define an ellipse, by measuring the two lengtBs(between A and B) and'D
(between C and D) respectively the two-axes method can be applied by calculating

vV = %*@*TD?

Note that depending on the application (measuring whole ventricle volume, ventricle chamber
volume or myocardium volume) A,B,C and D are positioned slightly differently.

Figure 3.3 shows an example for measured ellipse parameters at end-diastole and end-systole
respectively.

3.4 Restrictions

As important as having a technique for volume estimation is the knowledge about restrictions of the
specific technique. The parametric model explained in this section has a disadvantage concerning
inclusion of the papillary muscle, because it includes the papillary muscle volume into its estimation
in any case. Radiologists do not agree on the fact if it should be included or not. Therefore it would
be much better if an estimation model supports choosing between inclusion and non-inclusion instead
of preventing one aspect. Another drawback of the model is operating expense. It takes quite long
to select two images from a data set of 80 images and to manually measure the necessary ellipse
parameters. This has to be done by trained radiologists who in addition tend to get tired after some
time of accurate working. This is another possible error source, but it isn’t specific to this model or
radiologists, because every work that has to be accurate leads to mental fatigue.



26 CHAPTER 3. ESTIMATING VOLUMES BY MEANS OF PARAMETRIC MODELS

vertical lineV

long axis L

60° —=

atrio-ventricular
pits LV muscle

LV chamber

shortaxis M

horizontal line H

Figure 3.2: CT transverse section of the heart. The points A,B,C and D define an estimated ellipse.
Explanation: RA - right atrium; RV - right ventricle; LA - left atrium; LV - left ventricle; L - ellipse
long axis; M - ellipse short axis; A,B,C,D - ellipse points. (Taken from [57].)

Figure 3.3: Left ventricle volume estimation using the parametric model. The left image shows the
selected image at end-diastole while the right one shows end-systole. In both images measured ellipse
width and height are drawn in.



Chapter 4

Estimating Volumes by means of Digital
Image Processing

This chapter presents all digital image processing techniques which are necessary to estimate the left-
ventricular volume as far as they have been used in the implemented segmentation tool. The digital
image processing block diagram in Figure 4.1 shows an enlarged part of Figure 1.4.

Initially we have an image data set with 80 images of size 512x512 pixels. The first step necessary
is to crop the center part (360x360 pixels) of these images because the outer part contains no useful
information, it is reserved for overlaying e.g. patient data in the images. Afterwards the data set has to
be scaled to an appropriate grey-level range and filtered to suppress noise. Now it is possible to apply
segmentation algorithms on the images.

A data set of 80 images is quite large. Considering the fact that only 16 images (eight images
at end-diastole and eight at end-systole) are needed for all evaluations, it would obviously be very
helpful to automatically find these 16 images. The first step to reach this goal is to locate a region of
interest around the left ventricle. Afterwards the image at end-diastole can be found by looking for
the largest ellipse in the regions of interest of all images. This ellipse can also be used to provide an
initial ellipse contour to a full-automatic segmentation algorithm. The image with the largest ellipse
defines the volume at end-diastole, the volume at end-systole can be found by looking for the image
with the smallest ventricle area.

4.1 Image Preprocessing Techniques

4.1.1 The Window/Level Concept for Scaling

Basically we have different families of operations which can be applied to images. One of them are
grey-scale transformations[55], they do not depend on pixel positions and only operate on a pixel's
brightness. A transformation T of a pixel brightness p from scajgfpinto brightness ¢ [qo,0x]
is given by:

q="T(p)

Some common grey-scale transformations like inversion or thresholding are shown in Figure 4.2a.
Figure 4.2b demonstrates a window/level transformation as a special case of a piecewise linear scaling
operation.

The medical images have a grey-level resolution of 12 bit, i.e. there are grey-values between
0 and 4095. These values correspond to certain x-ray absorption coefficients of different tissues,

27
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Figure 4.1: Digital image processing overview. This block diagram shows the necessary steps to
extract an estimated volume from medical images using digital image processing techniques.

bones, or liquids. The Hounsfield Unit range between -200 HU and 300 HU (this maps to a grey-
scale range between 824 and 1324) approximately contains all interesting organic matters for the later
image processing stages. So it is possible to filter unwanted organic substances by simply dropping
corresponding grey-values. To get a better contrast in the images it is now possible to scale the
remaining grey-values to the full range between 0 and 4095. This whole process isviatied/level
transformation

Supposing pixel brightness to be a function p(x,y), the following equation describes a piecewise
linear scaling operation:

q1 vp(m,y) : p(337 y) <m
a(z,y) = ¢ E=L(p(,y) —p1) + @0 Vpay) 101 < p(@,y) < po
a2 vp(aﬁ,y) : p(ma y) > p2

In the special case of a window/level transformationg)] is the range that should be enhanced
and [q,q] is equal to the full range [gq.]. The obvious purpose of these operations is a better con-
trast of the grey-values representing the heart tissues as well as the iodinated blood while suppressing
tissues like lungs or bones.

4.1.2 Image Filtering for Noise Suppression

Due to the image acquisition principle the data sets do contain a certain level of noise. To smooth
the noise filter masks have to be convoluted with the image. Possible linear filter masks are averaging
filters or Gaussian filters. Another approach to remove noise is a non-linear median filter, which
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Figure 4.2: Grey-scale transformations. a) shows some common transformations like inversion (i) or
thresholding (ii) with threshold o b) shows a piecewise linear scaling operation (i) where the grey-
scale range [pp:] is mapped to a new range@p]. Values outside [p,p2] are suppressed while
values in this range are contrast-enhanced. Special case (ii) is a window/level transformation where

[91,02] equals [@,qx].

investigates a locdixk-neighbourhood of a given pixel and replaces it with the median value of the
k? sorted values in this neighbourhood[55].

4.1.3 Automatic Identification of a Region of Interest

The most important observation on the way to find a region of interest (ROI), i.e. the region around
the left ventricle, is the fact that the left ventricle is responsible for pumping blood through the body.
So we can derive a ROI by utilizing the temporal information that we get with the image data set.
Temporally adjacent images show distinct movements of the heart while regions like the bones are
nearly motionless during the short scanning period.

We have 8 slice locations with a temporal resolution of 10 images respectively. First of all it is
necessary to apply some preprocessing steps. All images are filtered to reduce the noise level and
scaled to a grey-value range where the iodinated blood is accentuated. This range is equal for all
images, it corresponds to a certain range of Hounsfield Units. Afterwards by taking the difference
between pixels in temporally adjacent images, we are able to establish result images with pixel values
distinct from zero where pixel differences exceed a certain noise threshold. These result images are
added to form a final image representing all pixel regions where motion occurs in the whole data
set. It contains a pixel-based ROI, fitting a coordinate-axis parallel rectangle into the morphologically
enhanced pixel-set leads to a rectangular ROI. Figure 4.3 shows a block diagram of Algorithm 1.
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Finding a Region of Interest

Images at slice 1

Filtering Subtract Add Morpho-
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Figure 4.3: Block diagram Region of Interest. lllustration of the necessary steps to find a region of
interest given a data set of 80 images.

Algorithm 1 Find a region of interest given an image data set with 80 images.
findRegionOfInterest
1: filter all 80 images with a 5x5 Gaussian filter mask to suppress noise

2: scale all 80 images so that the iodinated blood is easily distinguishable from the ventricle muscle
3: initialize a resultimage R with 0

4: for all 8 slice locationglo

5. forall 10 temporally adjacentimagéag do

6: subtracimg (i-1) from img (i) forming image T

7 set pixel values in T which are below a noise threshold to zero

8: add image T to result image R

9: end for
10: end for
11: set pixel values in R which are below a noise threshold to zero

[EnY
N

: apply morphological operation 'Open’ on R to suppress outliers
: find a coordinate-axis-parallel rectangle enclosing those pixels of R which are larger than zero

Ay
w
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4.1.4 Hough Transform for Ellipse Detection

There are two motivations concerning this work to find ellipses in a preprocessing step. First of all
finding the largest ellipse in the region of interest around the left ventricle over all images of the
medical image data set is likely to define the image at end-diastole and therefore also the volume at
end-diastole. This observation which follows from the fact that the left ventricle on the end-diastolic
image always has a more or less elliptic shape helps in reducing the complexity of the volume estima-
tion problem from 80 to 16 images.

Furthermore an automatically extracted ellipse would be an important starting condition for a
contour-driven full-automatic segmentation algorithm like Active Contours (see Section 4.3).

Related Work

Finding ellipses in digital images is an intensively studied area due to the fact that this problem occurs
quite often in different sub-disciplines of digital image processing. Many common objects have exact
or approximated elliptic forms when projected onto an image. The by far most commonly used tech-
nique for detecting ellipses is titéough Transform (HT)The basic concept of the HT is to define a
mapping between an image space and a discrete parameter space. Transformation rules define accu-
mulation points in the parameter space. By finding local maxima in the parameter space the analytic
description of the geometric primitives can be derived[55]. The basic HT concept was introduced by
Hough in 1962[27].

A problem of the basic HT principle for detecting ellipses is the memory- and computation-inten-
sive five-dimensional parameter space (usually consisting of 2 parameters for an ellipse center, a
rotation angle as well as ellipse width and height) that has to be used. As a consequence more recent
papers describe specialized algorithms for ellipse detection by HT. Yip et al.[66] propose a multi-
step approach using a two-dimensional accumulator array for more efficient calculation time. In
[67] Yoo et al. show an ellipse detection method from the polar definition of conics while Wu et
al.[65] introduce an elliptical object detection method by using geometric properties. These HT-
based approaches have in common, that they use geometric information to reduce the originally five-
dimensional parameter space.

A fast method for ellipse detection using a hierarchical approach besides parameter space decom-
position is proposed in [22], it is especially suitable if there are multiple ellipses of different sizes in an
image. A different approach for ellipse detection was presented in [39] where choosing random points
for HT was taken into account for better efficiency. A promising approach on the way to real-time
applications is the k-RANSAC algorithm for ellipse detection[8].

A Fast Ellipse Detector Using Geometric Symmetry

For this work another HT-based approach for detecting ellipses was chosen[26]. The reason to work
with this paper was that it stated to be a fast approach which is easy to implement and quite robust if
few ellipses appear in the image. Due to the fact that most of the ventricle images show no ellipses of
significant size with exception of the images at end-diastole (which are tried to be detected), this last
condition seems to be fulfilled appropriately. A further advantage is that no edge direction has to be
calculated for the algorithm, this fact leads to a better accuracy.

The basic concept of the proposed algorithm, a reduction of HT’s five-dimensional parameter
space, is similar to other algorithms. Nevertheless the way to achieve this goal is different. First of
all a global geometric symmetry is used for finding potential ellipse center points. Then all feature
points in the image are classified into several subimages with respect to these center points. These
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subimages, of which the ellipse center is known, are transformed into a three-dimensional parameter
space (consisting of ellipse rotation angle as well as ellipse width and height) and a three-dimensional
HT is applied.

Summing up the algorithm consists of two stages,yy@ametric center location phasad the
parameter estimation phase

Phase 1: Symmetric Center Location Starting with an image f an edge detection mechanism is
used[55] (e.g. sobel filter, Laplacian of Gaussian or Canny edge detector) to find boundary points of
potential ellipses. The resulting image F is taken as input for the symmetric center location step. First
of all a blank binary image G is initialized. Afterwards a horizontal scanning procedure is applied on
the image F, this means that image rows are scanned from left to right. For each boundary point (i,j)
of F all other points (k,j) in the same row are looked at and the pixel (u,j) uvi@-th% is setto onein
the binary image G (see Figure 4.4a). Repeating this step for all rows in the image leads to a resulting
binary image G which holds information about potential symmetric vertical axes points of an ellipse.
(Symmetric to horizontal image rows.) On the points of image G an ordinary Hough transform[55]
is applied to extract lines. Now for each extracted linall symmetric points in F relative tq lare
grouped into a subimage,F

This procedure is repeated for eachgfoduced by the last step. After initializing a blank image
G again, vertical scanlines (see Figure 4.4b) are scanned from top to bottom. For each boundary point
(i,j) of Fy, all other points (i,k) in the same column are looked at and the pixel (i,u)uvi:th% is
set to one in the binary image G. This step is repeated for all columns in the image leading to a binary
image G which holds information about potential symmetric horizontal axes points. (Symmetric to
vertical image columns.) Again applying a Hough transform on the points of image G extractg.lines |
Grouping all symmetric points infFelative to }, into a subimage £, leads to a number of subimages
which contain possible ellipse points symmetric to a specific ellipse center. The cross pgiahdf |
I, is a valid ellipse center point, this is shown in the paper[26] by proving three theorems.

Phase 2: Parameter Estimation Now that we have reduced our initially 5-parameter problem to a
3-parameter problem by finding candidate ellipse center points, it is necessary to extract the remaining
three parameters (a: half-length of the ellipse major axis, b: half-length of the ellipse minor axis and
O: the ellipse rotation angle) for each subimagg.FThe equation for an ellipse translated to the
center of the local coordinate system (x=0,y=0) is expressed like this:

de’ +exy + fy? =1 (4.1)

with d,e and f being unknown parameters. It would be possible to utilize these three parameters
for the 3D accumulator array but in order to be able to work with more depictive parameters it is
necessary to transform them into a,b &dTherefore we need to know at least three points lying on
the ellipse and after substituting them into Equation 4.1 we can directly solve the resulting three by
three equation system with respect to the unknowns d,e and f. Directly solving this equation system
has a big disadvantage, because there are many possible point configurations where the three by three
matrix is either singular or leads to a numerically instable result. This is the case if points lie sym-
metrically on the local coordinate axes or if the ellipse is not rotated or degrades to a circle. For this
reason the implementation of the proposed algorithm is slightly changed in this point. Singular value
decomposition is used for solving the equation system. As a consequence of the former algorithm
steps we have a total of six points from which we know that they lie on the ellipse. These six points
define an overdetermined six by three equation system, which can be solved by utilizing singular value
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Figure 4.4: Ellipse Hough transform scanlines. a) shows horizontal scanlines. For each point (i,j) on
the scanline all other points of the row (k,j) are investigated and center péy?!it,sjﬁ are calculated.
Applying the Hough transform on these center points extracts potential symmetric vertical axes. b)
shows the same procedure for vertical scanlines leading to potential symmetric horizontal axes. (Taken
from[26].)
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Figure 4.5: Ellipse point quadruple forming a parallelogram. Boundary point A and its symmetric
point C relative to the center of ellipse E and their symmetric points relative to the symmetric vertical
and horizontal axes of E form two parallelograms: (a) AB1CD1, (b) AB2CD2. (Taken from[26].)
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decomposition[44]. The result is a parameter triple resembling the best approximated ellipse given
these six points in a least-squares manner.
Afterwards the parameters a,b adcan be obtained by the following equations:
tan~!(5%7)
0= fdf (4.2)

1
a =
\/d*cos2@+e*sin®*cos@+f*sin2@

1
b:
\/f*0052®—e*sin@*cos®+d*sin2@

The triple (a,b9) is considered a possible ellipse configuration and the corresponding entry of
the accumulator array A(a®) is increased. Finding local maxima in the accumulator array after it
has been filled leads to the ellipse parameters for subimggelRe ellipse with the largest entry in
all accumulation arrays of the subimages is considered to be the most important ellipse of the image.
This entry can be found by common techniques for locating local maxima in accumulation arrays,
which have to be used in all kinds of Hough transform algorithms.

The only remaining problem is how to find six points that are located on an ellipse curve to
substitute them into Equation 4.1. For this reason another theorem is proven in the paper, the result
of the theorem is shown in Figure 4.5. Let E be an ellipse with center (0,0) and A be a pointon E. C
is the symmetric point of A relative to (0,0). B1 and D1 are the symmetric points of A and C relative
to I, and B2 and D2 are the symmetric points of A and C relative, todspectively. Then AB1CD1
and AB2CD2 are parallelograms. So all we have to do is find point tuples (A,C) and corresponding
points B1,B2,D1 and D2 in our subimageg,Fwhich fulfill the above condition. If such a point
set is successfully located we can solve Equations 4.1 and 4.2 and use the result for increasing the
corresponding accumulator array cell.

Algorithm Details

In addition to the presented concepts the ellipse detection method introduces some implementation
details which have to be considered carefully. Due to the complex information in the images which,
despite selecting a region of interest as a preprocessing step, is still quite difficult to work with,
the Hough transform algorithm has to be implemented in a way that specifying boundaries for the
searched ellipse is possible.

The Hough transform algorithm therefore gets passed some input parameters:

e minimum width of the ellipse (in pixel)
e maximum width of the ellipse (in pixel)

¢ width discretization, i.e. the number of possible discrete values between minimum and maxi-
mum width

e minimum height of the ellipse (in pixel)
o maximum height of the ellipse (in pixel)

e height discretization, i.e. the number of possible discrete values between minimum and maxi-
mum height
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e minimum rotation angle of the ellipse (in radians, with respect to x-axis)
e maximum rotation angle of the ellipse (in radians, with respect to x-axis)

e rotation angle discretization, i.e. the number of possible discrete values between minimum and
maximum rotation angle

¢ noise threshold for locating local maxima in the 3D accumulation array

The algorithm itself is embedded in the following schema (compare Algorithm 2) for automati-
cally locating the image with maximum ellipse area (end-diastolic image).

Algorithm 2 Find the end-diastolic image given an image data set with 80 images.
findEndDiastolicilmage(Images imgs)

1: calculate a region of interest
2: for all imagesimgsdo
3. filter with a 7x7 median filter to suppress noise
scale image so that the iodinated blood is easily distinguishable from the ventricle muscle
apply a global threshold to remove grey values which are not originating from iodinated blood
apply a 3x3 sobel filter to obtain a gradient image
perform the Hough transform to detect ellipses
8. calculate the area of the largest found ellipse
9: end for
10: report the image containing the largest ellipse as end-diastolic image

N o ahs

For calculating the gradient magnitude of an image (i.e. detecting edges) one of many possible
methods is to filter with a 3x3 Sobel kernel[55].

4.2 Segmentation by means of Thresholding

Image segmentation is a very important step in most image processing applications and it has to be
utilized for many different kinds of problems. Segmentation means that an image is either partially or
completely divided into disjoint image regions. Most of the time high-level information of the specific
problem domain is needed for an accurate segmentation.

If G is an image a complete segmentation of G is a finite set of regigmgtR i=1,...,N having
the following properties:

N
G:U&
=1

RiﬂRj:® i=1.N;j=1.N;i#j

Segmentation technigues are commonly divided into three groups[55]:

Thresholding is the simplest segmentation method. It is only used if every region is more or less
easily distinguishable from the image background.

Edge-basedCovers a wide range of segmentation techniques which have in common that they rely
on edges extracted from the image by some sort of edge-detection mechanism. Regions are
defined by their borders.
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Region-basedThese methods try to find image regions directly by applying a certain homogeneity
criterion on neighbouring pixels of an image.

The basic thresholding algorithm is sufficient if the underlying scene of an image fulfills certain
constraints. Image objects should be clearly distinguishable from the background and the lighting
conditions should be uniform. If these or similar conditions are met, a transformation of an input
image f to a segmented binary image g looks like:

[ 1for f(z,y) > T
9(@y) = { 0for f(z,y) <T

with T being the grey-level threshold valug, y) = 1 denoting an image object ag@z, y) = 0
denoting the background. Further it is possible to segment an image into different region classes by
applying more than one grey-level threshold. This is only successful if there are different homogenous
image regions. To verify this condition the image histogram provides useful information.

It is obvious that simple thresholding will not be very accurate on the CT images of the heart.
There is a certain level of noise incorporated which troubles the thresholding algorithm. Furthermore
the histograms of the images show that there is no trivial separation into different grey-level ranges.
Especially the separation of the left ventricle from the other heart chambers is impossible, because
all chambers are filled with contrast medium enhanced blood resulting in the same x-ray absorption
coefficient. Nevertheless a thresholding algorithm will be applied on the CT images for comparison
reasons. Figure 4.6 shows an example histogram calculated from one of the CT images.

# pixels

I
a 4035

Figure 4.6: An example for a histogram taken from one of the CT images. We can see a high peak
around zero representing black pixels and a continuous area at the higher grey-levels showing muscle
tissue and blood.

4.2.1 Optimal Thresholding

The actual thresholding algorithm implemented for the evaluation of the CT images makes use of
some ideas from optimal threshold estimation based on the histograms of images. Optimal threshold-
ing techniques are more powerful than the simple thresholding algorithm of the previous section, a
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simple iterative algorithm to select a threshold based on an image with a bi-modal histogram (i.e. more
or less clearly separable background and object grey-levels) is given in [55]. Bi-modal histograms rep-
resent grey-level probability distributions which are interpreted as consisting of two Gaussian normal
distributions. The mean values of these approximated Gauss-functions can be used for defining the
grey-value regions to be separated.

After applying a certain window/level transformation on the CT images, three distinct grey level
regions can be identified. We have black background, dark grey muscle tissue and light grey to white
pixels showing blood. With this visual information we can suppose that the histograms of these images
are tri-modal. So all we have to do for threshold segmentation is to locate the grey-value separating
muscle tissue from blood. This procedure is described in Algorithm 3.

Algorithm 3 Find an optimal threshold approximation in an image with tri-modal histogram.
findOptimalThresholdApproximation(imagmg)

1: calculate histograrh of img

set the first histogram bin representing black pixels to zero

remove empty histogram bins by linear interpolation of the two nearest non-zero histogram values
smooth histogram by convolution with Gaussian kernel of size 30x1 (sigma is 4 pixels)

locate the two largest local maximan{, m2) in histogramh

sort the two local maxima (nowml<m2)

select the average value between maxima 1 and maxima 2 as threghote {-152)

apply thresholdhr on the image

After calculating the histogram of an image the very high peak at the first histogram bin is set to
zero. There are many black pixels in the image, they correspond to grey-value zero and are therefore
located in the first histogram bin. To successfully smooth the histogram function with a Gaussian filter
it is necessary to remove empty bins from the histogram. Empty bins are grey-levels which do not
occur in the image resulting in histogram values of zero. They occur due to a preceding window-level
transformation or another contrast stretching method, where a small range of grey levels is stretched
to the full possible range. We use linear interpolation of the two nearest non-zero histogram values
to remove empty bins. Finally we have to look for two more local maxima in the histogram function
and the averaged value out of these two maxima is used as an approximation for an optimal image
threshold. The reason why this threshold is only an approximation of an optimal threshold is that only
mean values but no standard deviations of the assumed Gaussian normal distributions are taken into
account for its determination.

It should be noted again that this kind of algorithm is quite useful for locating the blood regions
of the images but fails if a more accurate segmentation is to be achieved. Therefore the actual imple-
mentation of the algorithm only works on the region of interest defined in Section 4.1.3. Nevertheless
the inaccuracies of the ROI and the threshold algorithm lead to a strongly inaccurate result as can be
verified in the evaluation section.

The Gaussian kernel of the algorithm'’s convolution stage is a 30x1 kernel representing a sampled
Gaussian function between -14 and 15 with a standard deviation of 4 pixel. It is convoluted with the
histogram function consisting of 4096 values.
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4.3 Segmentation by means of Active Contours (Snakes)

Active Contourgind more generallpeformable Modeltave a long and successful tradition in med-

ical image processing. A lot of research went into this field in the last decade leading to many dif-
ferent models with applications in segmentation, shape representation, matching or motion tracking.
Segmenting structures from medical images is difficult due to the sheer size of data sets and the com-
plexity of the investigated anatomic shapes. Low-level image processing techniques are not able to
consider non-local information so a considerable amount of expert knowledge usually is required for
an accurate processing. Here the concept of deformable models shows its advantages by combining
low-level bottom-up constraints defined by the images and high-level top-down knowledge provided
by an expert.

4.3.1 Literature Survey

The most important and also most often referenced deformable modelbetbemable Contouor

Active Contour Modelhich is popularly known aSnakeslt was initially presented by Kass et al.[32]

in 1988 and was one of the foundations of the whole field. The following section will give a survey
of the basic ideas behinBinakesand its formulation. Although they were originally developed for
computer graphics and computer vision applications, the potential of deformable models in medical
imaging has been quickly realized after their first formulation. According to [54] deformable models
are distinguished intparametric-andgeometric deformable modelBarametric deformable models
([32], [10] and [38]) contain explicit contour or surface representations, making it possible to interact
directly with the models but lacking flexibility if splitting or merging of deformed parts is required.
Opposed to this fact geometric deformable models ([6], [7] and [37]) handle topological changes
naturally by implicitly representing curves and surfaces as a level set of a higher-dimensional scalar
function. Some books devoted to the two kinds of deformable models are [4], [53] and [51].

During research of deformable models many extensions were proposed with the goal of increas-
ing robustness and performance. One possible improvement is the incorporation of addipanal
ori knowledge about the problem domain by means of a training step while another improvement,
which is often used in conjunction with the first one, also mod&bal shape propertieEExamples
are Deformable Fourier Mode[56], which represent contours as a fourier seriesAdive Shape
Modelg12] and their extensioActive Appearance Modéglll], which basically leave the domain of
contours or surfaces by incorporating sets of labeled points to represent structures. Many of these
references were taken from [54] where even more literature references can be found for deeper in-
vestigation. Other related keywords &feited Snakd84], Adaptive Snak¢g], Tamed Snak§28] or
Region Competitide8].

In medical imaging there are few areas where deformable models have not been applied. Uti-
lizing Active Contours ranges from segmenting leg ulcers (skin wounds)[31], segmenting vessels in
angiography[60], automatically detecting the fovea in angiography[25] over bone segmentation[49][36]
to segmentation of brain[16] and skull[48]. And this list is far from being complete.

Finally some applications of deformable models for segmenting heart ventricles can be found in
[19], [24] and [23] as well as in the papers mentioned in the reference area of Chapter 1.4.

4.3.2 Basic Formulation of Active Contours

Active Contour®r Snakef32] are based on a continuous spline representing the contour. The corre-
sponding energy minimization algorithm iteratively alters the spatial location of the spline with respect



4.3. SEGMENTATION BY MEANS OF ACTIVE CONTOURS (SNAKES) 39

to the coordinate system of the underlying image under the influence of internal and external forces.
Mathematically, a parametric representation of a Snake’s spatial positdR)is= (z(s), y(s)),s €
[0, 1]. With this we can write an energy functional as

E(V) = Eint(v) + Eimage(v) + Econ(v)- (43)

Here E;,,.(v) denotes the internal energy functional which is defined to be

2 212
OV s (4.4)
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and consists of a first-order derivative representing the contour’s potential tendency for stretching and
a second-order derivative managing its ability to bends) and 3(s) are weighting parameters to
control the relative importance of tension and rigidity, they are often supposed to be constants.

The second ternt;,,,4.(v) now establishs a connection between the contour and the image by
defining some image feature (or features) as an energy term

1
Eimage(v) :/0 Efeature(v(s))ds' (45)

This term is often called potential energy, examples for interesting features are the image intensity
function Efcqture_intensity(®,y) = —w;I(x,y) or the gradient of the image

Efeature_edge(xa y) = —We |v [Ga(x7 y) * I(xu y)] |2 (46)

wherew; andw, are positive weighting factors7, (z,y) is a two-dimensional Gaussian function
with standard deviation, * is the two-dimensional convolution operator &vidhe gradient operator.

The last termE.,,, (v) denotes external constraint energies that can be used for user interaction
like defining fixed contour points or including so-called "springs” and "volcanoes”. These two terms
stem from Kass et al. who built an user interface for Snakes and defined springs as means for pulling
the Snake to a desired image location and in opposition included volcanoes from which contours are
pushed away. Local minima can be avoided using these tools.

Potential energy and constraint energy often are referred to as external energy

Eemt(v) = Eimage(v) + Econ(v)- (47)

The energy minimization process, which can be understood as a balancing of the three weighted
energy terms until a location of minimum energy is found, is independent from the detailed repre-
sentation of the energy functionals. It involves the problem of finding a cufvgthat minimizes
Equation 4.3 leading to a problem of variational calculus. Thereégrsg must satisfy the Euler-
Lagrange equation: ) ,

0, Ov 0 0°v

Os (o 0s ) - 0s? (B 0s? )
in the case where the weight functiomés) and3(s) are both constant. When they are not constant
a discrete formulation of the energy functional is chosen by approximating derivatives with finite
differences. The bending and rigidity terms of the internal energy are approximated like this

— VE.(v) =0 (4.8)

8vi
0s

~|vi—vioi P = (@ — zio1)? + (v — vi1)? (4.9)
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82vi
0s?

~ Vi1 = 2vi + Vi1 P = (i1 — 22+ 2i01)% + (i1 — 205 + yig1)? (4.10)

See the appendix of [32] for a more detailed explanation of the necessary numerical steps for solving
the equation.

4.3.3 Greedy Snake - A Fast Algorithm for Active Contours

There are some problems with the implementation of Snakes following the paper by Kass et al[32].
The involved numerical minimization procedure from variational calculus is unstable and contour
points have the tendency to bunch up on strong feature portions. Therefore Amini et al.[2] proposed a
dynamic programming algorithm for minimizing the energy functional resulting in a more stable but
slower method. As a consequence Williams et al.[63] presented a fast "greedy” algorithm and showed
that its stability and flexibility is equal to the dynamic programming schema while its speed is more
than an order of magnitude faster. This greedy algorithm was chosen to be implemented in this work
because of its straight-forward implementation without losing stability and robustness.

The first remark stated in the paper is an enhancement of the discretization of the bending term.
It is shown that Equation 4.9 is not properly defined. Using— v;_1|* as bending term causes
the curve to shrink, because this is actually minimizing the distance between two points. Further it
encourages the effect of points bunching up over strong feature regions. For this reason the bending
term looks as follows in the greedy approach:

~ davg — Vi = Vie1| = davg — V(@ — 2i1)2 + (yi — yi_1)? (4.11)

8VZ'
0s

whered,,,, is the average distance between adjacent points of the contour.

Additionally it is stated that the curvature (or rigidity) term of Equation 4.10 is only meaningful
if the points of the contour are relatively evenly spaced. This is hot hecessarily the case when using
|vi — vi_l\Q as bending term discretization. But the modification described in Equation 4.11 ensures
evenly spaced contour points.

The implementation of the greedy approach doesn’t guarantee to find global energy minima due to
the fact that it only takes into account a local neighbourhood of the currently processed contour point.
The local neighbourhood naturally implies that contour points can only move on the discrete grid of
the underlying image during evaluation of the algorithm as opposed to the numerical minimization
by variational calculus. It is an iterative algorithm, during each iteration a local neighbourhood is
investigated for every contour point. The energy minimization step is performed at each neighbour
point and the processed contour point is moved to the location yielding minimum energy. So-called
fixed points are supported, it is possible to specify points with weights of zero to inidcate that they are
not allowed to change location. Algorithm 4 demonstrates the pseudo code of the greedy approach
and Figure 4.7 shows how the algorithm works.

The outmost loop of the algorithm iteratively checks if a convergence criterion is already fulfilled.
The implementation supports two convergence criteria, a minimum number of points being moved
during an iteration step and a maximum number of iteration steps. It is not sufficient to work only
with the first criterion, because the algorithm sometimes produces a few points which are constantly
moving between two adjacent pixel locations even if the rest of the contour has already converged.
Calculation ofd,., simply happens in a loop over all pointssumming up their x- and y-coordinates



4.3. SEGMENTATION BY MEANS OF ACTIVE CONTOURS (SNAKES) 41

Algorithm 4 Perform the greedy Snake algorithm on an image given an initial contour.
greedySnake(source imaigeg, initial point listv[0...N-1])
1: while not yet convergedo

2:  calculated,, , the average distance between adjacent pofijtsv[i-1]
3. forall contour points/[i], i=0...N-1 do
4: if V[i] is a fixed contour pointhen
5: skip actions orv[i] , coninue with next contour point
6: end if
7 for all locations in the locatnxm-neighbourhood o¥[i] calledv[i] do
8: calculateEye,q = |davg — |v[t] — v[i — 1]||
9 end for
10: normalizeE..,q to lie between [0,1] by multiplyingZy.,q with Efzdzl:f}:dnz”
11: for all locationsv][i]’ do -
12: calculateE,. ., = |v[i — 1] — 2 * v[i] + v[i + 1]|?
13: end for
4. normalizeEe, . to lie between [0,1] by MuUltiplyingZe, ., With 7o —2ct bamin.
15.  forall locationsv[i] do "
16: calculateE;,,, = positive gradient magnitude of imagag at locationv[i]
17: end for
18: normalizeE;,,, to lie between [-1,0] by multiplying;,,,, with EZ:::TZﬁ_i;M
19: for all locationsv[i] do -
20: calculate E as weighted sumii(v]) = & * Epend(v)) 4+ 0 % Eguro (V) + 7 % Eimg(v})
21 end for
22: move investigated poindfi] to that neighbourhood location with minimum E
23 perform an optional high-level feedback step making sharp contour corners possible
24: check for convergence (maximum number of iterations, minimum number of moved points)
25 end for

26: end while
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Figure 4.7: Greedy Snake algorithm example. The energy function is computedrad each of its

eight neighbours. The point before and after it on the contour are used in computing the continuity
and smoothness constraints. The image energy comes from the gradient magnitudes of the underlying
pixel image. The location having the smallest energy value is chosen as the new positiphexke

itis v7.

followed by a division by the total number of points. After calculatifig,.q and E.,,, a normal-
ization step is indicated. Multiplying each energy term with the fagtéri»zZ—, where E,;, and

Enax denote minimum and maximum values in the local nelghbourhood makes sure that they lie be-
tween 0 and 1. Here a little difference to the description in the paper occurs, because we don’t use the
suggested multiplication fact% It is an absolute measure and it would lead to a scaling of the
value domain producing an unwanted influence on the weights. Normalization between 0 and 1 is a
prerequisite for building a weighted sum of the energy terms later on, because meaningful weighting
needs terms lying in the same domain. The image energy, which is derived from the gradient magni-
tude of the source image by utilizing a floating point Sobel filter[55], is normalized by multiplying the
positive energy terms with the fact%af;(% Again B, and B, denote the minimum and the
maximum in the local neighbourhood. The slight difference in the numerator compared to the other
two normalization factors cause a normalization between -1 and 0, where high gradient magnitudes
correspond to small values. Note that the different ranges of the factors have no influence on the min-
imization procedure, it is only a translation by -1 in the energy value domaifiy, i — Fnin < 5
then E,i, is assigned the valug,,.x — 5 to prevent large differences where gradient magnitude is
nearly uniform. As a consequence of all these considerations the Snake is attracted to regions with
strong edges. After calculating the weighted sum of the energy terms, finding the minimum in the
local neighbourhood and moving the currently processed point to its location, an optional high-level
feedback step is included in the schema. In this step the curvature at each point on the new contour is
determined by the following formula

2
Vi~ Vi1 Vigl TV

CcC =
Vi —vic1| - [Vigr — vy
and if the curvature is a maximum, larger than a noise threshold and the gradient at this location is

larger than a certain threshold, tHeweight of the investigated point is set to zero. This allows the
contour to form sharp corners at curvature maxima with strong underlying edges.

The Snakes paradigm is a powerful tool to combine high-level knowledge of a problem domain
and low-level image information for segmentation purposes. Therefore many kinds of problems can be
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handled with the same model by laying emphasis on high-level or low-level information respectively.
Furthermore it is possible to include automatization steps into a segmentation algorithm based on
Snakes. A disadvantage of the algorithm is the high number of parameters that have to be tuned.

4.4 Segmentation by means of Graph-Theoretic Border Detection (LiveWire)

In image analysis and especially in medical image segmentation there are situations when automatic
and certain semi-automatic segmentation techniques fail or lead to non-optimal solutions. As a con-
sequence a user has to correct results in a manual fashion. Providing the user with a tool that supports
manual segmentation by speeding up the process, giving immediate feedback and making the results
more repeatable would be a far better choice in such a case.

Therefore graph-theoretic approaches for border detection were researched beside others by two
groups inthe 1990’s. Falcao et al.[18] proposed thizie WireandLive Lanesegmentation paradigms
and at the same time Mortensen et al.[40] presented a similar principle, kad#dient Scissorsalso
based on the Live Wire concept. Both groups cooperated in the research of the basict ivehivice
but they presented their outcomes independently. Falcao et al. later proposed a faster version of their
Live Wirealgorithm[17].

An example for another related paper is by Thedens et al.[59], who applied graph searching meth-
ods on image sequences, taking temporal and spatial information into account. They tested their
approach on magnetic resonance images showing short-axis projections of the heart and extracted
myocardial borders with their method.

4.4.1 The Live Wire Segmentation Paradigm

Image segmentation techniques are currently classified into two groiptamaticsegmentation
techniques avoid user interaction whitgeractivetechniques support the user in manually segment-

ing images. Due to the fact that the first group simply doesn’t work yet for certain kinds of problems,
optimizing user-steered techniques seems to be an important goal. A tight and active control of the
user during the interactive segmentation process would significantly reduce the total time spent on the
process.

Basically the segmentation process can be considered to consist of two tasks.ré€gjgiition
and objectdelineation Recognition is the task to roughly decide where an object is located, this is
a comparatively easy task for an human operator but very difficult for a machine (an algorithm). On
the other side an exact delineation of the roughly recognized object is an easy task for a machine as
opposed to an human. As a consequence it appears to be an effective strategy to exploit the synergy
between human operator and computer algorithm for interactive segmentation. This strategy is the
basis for theLive Wireapproach.

TheLive Wirealgorithm utilizes methods from graph theory. An image or generally a pixel array
constitutes a directed graph where the pixel vertices are graph nodes and oriented pixel edges represent
edges of the graph. Graph edges are weighted with costs which are derived from image gradient
information. The basic problem of finding a boundary segment is therefore converted to finding a
minimum-cost path between start and end vertex of the segment. To find this optimdiypathic
programmings used.

Initially the user has to specify a start point on a boundary of the image. Now while moving
the mouse cursor around, a globally optimal path connecting initial and current point is computed
and displayed. By moving the mouse cursor close to a boundary,itheWire snaps onto it, due
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to weighting the graphs’s edges with image gradient information. It is possible to include intelligent
features like automatic selection of new start points along a hon-changing curve segment or on-the-fly
training of gradient values.

4.4.2 The Intelligent Scissors Algorithm based on the Live Wire Paradigm

An image is represented as a 2D scé€hebeing a pair(C, g) whereC is a finite rectangular array

of pixels andg(p) : C — [L, H] is a function mapping each pixgl€ C' to an intensity value. A

pixel p represents a node of the underlying graph. The edges of this graph are defined differently in
the two papers mentioned above. Falcao et al.[17] propose edges to lie exactly on the crack between
two pixels, having a certain direction. Therefore they defihelgshort for boundary element) as a

pair of 4-adjacent pixels (or graph nodes). Evety= (p,q) € C has a location (depending on the
locations of pixelg andq) and an orientation, which is defined so thds always inside an image
boundary and to the left of the bel.

In opposition Mortensen et al.[40] simply define graph edges as the connection of two 8-adjacent
pixels. The remaining part of this section will only deal with the definitions and considerations in
Mortensen’s paper, because the implemented algorithm was mainly inspired by this paper. In both
papers a local cost function is assigned to the edges to weight their probability of being included in an
optimal path. Mortensen et al. present six feature components derived from an underlying image:

fz(q) Multi-scale Laplacian of Gaussian (LoG) zero crossings at pixel
fa(q) Gradient magnitude at pixel

fp(p,q) Gradient direction with respect to pixeglsandg

fr(q) Intensity value at edge pixel

f1(q) Intensity value at the "inside” of the boundary of which pixes part of

fo(q) Intensity value at the "outside” of the boundary of which pixé$ part of
A local cost functiori(p, q) is basically derived like this:

Up,q) =wz * fz(q) +wa * fa(q) +wp * fp(p,q) +wp * fr(q) +wr * f1(q) +wo * fo(q)

Eachw is the weight of the corresponding feature function. These weights can easily be adjusted but
it should be mentioned here that it is much easier to find weights which work well in a wide variety
of images than in the Snake algorithm. Further it is possible to adjust some weights automatically by
training steps.

Local cost feature functions

The Laplacian zero crossing and the two gradient features are static cost functions, they don’t change
during algorithm runs and can be pre-computed for an image. The other three cost functions are
dynamic, they are only incorporated if there is an on-the-fly training step. In this case they will be
adapted during this step.

Laplacian zero crossings an edge-detection operator leading to a binary image as result, with
detected gradients being represented by a logical 1. This binary result depends on a certain stan-
dard deviation chosen for the LoG operator[55]. The standard deviatismeflected by the kernel
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size of the LoG convolution kernel, e.g. caof % pixel leads to a 5x5 kernel. To get a multi-scale
Laplacian operator it is possible to combine the binary results of different standard deviations (i.e.
convolutions with kernels of different sizes) by a weighted summation, with the weights referring to

the "importance” of the scale. LoG is an operator for edge localization which seeks zero crossings in
the second derivation of the Gaussian-smoothed image. These zero crossings are represented by oppo-
sitely signed Laplace responses of neighbouring pixels. In the paper using a 5x5 and a 9x9 LoG kernel

is proposed, the summation of both results is performed with weights of 0.45 and 0.55 respectively.
The cost functioryz(q) calculates to

1 ifI(g)=0
fZ(Q)_{ 0; if Iﬁ(g);«éo

where(q) is the weighted sum of the Laplacian zero crossings at gixdlhis means thaf is
zero if and only if the Laplacian from each kernel gives a zero-crossing atgatel one if no kernel
gives a zero-crossing, otherwige< f7 < 1.

Themagnitude of the image gradieistnecessary for distinguishing between stronger and weaker
edges, in contrast to the Laplacian operator where we have a binary output for the occurrence of
an edge. It is computed by approximating the partial derivatives of an imageaivdy direction.

The paper proposes to utilize derivatives of Gaussian kernels with different scdlgantt/,, are the

resultimages representing the partial derivatives, then the gradient magHitsdgual to, / 12 + Ig.

Due to the fact that the cost functiga (q) needs to be low for large gradients (strong edges), the static
function is computed by subtracting each gradient value from the image’s gradient maximum followed
by a division by this maximum. As a consequence we get a function scaled between 0 and 1.

max(G') -G G
max(G') max(G’)

Here G is equal toG — min(G). Similar to the Laplacian function it is proposed to use different
scales. But in this case the results are not summed up, the most appropriate result is chosen for each
pixel independently. A possible criterion is to choose for each pixel the kernel leading to the largest
gradient magnitude.

Gradient directioris strongly related to the gradient magnitude feature but adds a certain degree of
smoothness to the boundary definition. Sharp changes in boundary direction are assigned high costs.
The gradient direction is defined by the angle between the partial derivdtivasd I,. Suppose
D(p) = [I,I,)7 denotes the unit vector of gradient direction at a ppinfThen D(p) is exactly
perpendicular to the boundary tangent ved®(p) = [-1,, I.]*. Please note thad(p) and D’ (p)
have to be unit vectors so we have to normalize the partial derivatjvaad I, before establishing
the vectors. Now the feature co&b(p, q) is formulated as

fa =

fo(p.q) = é%:{cos_lhhip,q)]+-COS_1kh(p,qﬂ}

where
dp(p,q) = D'(p) ® L(p, q)
dg(p,q) = L(p,q) ® D'(q)
are vector dot products and

1 { g—p ifD'(p)e(¢g—p)=0
pP—q

L(p,q) = =4l if D'(p)e(q—p) <0
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LAY

~

a) b) c)
D'(p)=[0.870, 0.492] D'(p)=[0.870, 0.492] D'(p)=[0.870, 0.492]
D'(q)=[0.473, 0.881] D'(q)=[0.473, 0.881] D'(q)=[-0.881, 0.473]
L(p.q)=[0.707, 0.707] L(p,q)=[0.707, -0.707] L(p,q)=[0.707, -0.707]
fo(p,q)=0.120 fo(p,q)=0.671 fo(p,q)=0.880

Figure 4.8: Three examples for Live Wire gradient direction computation. The formulffas:

fop,q) = & {cos™'[D'(p) ® L(p, q)] + cos™'[L(p, q) ® D'(q)]}. The arrows near pixels p and q
indicate gradient directions. In case a) the gradient directions of p and q are similar to each other and
to the link L(p,q) between them leading to a low cost function value. In b) the gradient directions are
similar to each other but not to L and in c) all three directions are different. As a consequence the
function cost values are larger. Taken from [40].

is the direction of the link betweemandq so that the difference betweerand the direction of the
link is minimized. In other wordd.(p, q) is defined so that it points in the same direction4¢p).
Some example computations are given in Figure 4.8. The purpose of these calculations is to associate
low costs to pixel pairgp, ¢) where the two gradient directions at the pixels and the direction of the
vector linking the two pixeld.(p, ¢) are similar.

If we do not utilize the on-the-fly training step, these three feature functions have to be combined
to form astaticlocal cost functioris(p, q).

ls(p,q) = |wz * M * fz(q) + 0.5] + |wn *wg * M * fg(q) +0.5] 4+ |wp * M  fp(p,q) + 0.5]

In this functionp andq is a pair of adjacent pixelsvz, wg andwp are the relative weights of
the feature components. Their sum is 1 if no on-the-fly training is incorporated, otherwise the sum is
lower than 1. The weighty is a compensation factor for the gradient magnitudes which introduces
the differing Euclidean distance of the diagonal and the direct neighbours.

1; if p andq are diagonal neighbours
wn (p,q) = { %; if p andgq are direct neighbours
M is an integer value representing the discretization of the cost function. Due to the fact that the
graph searching algorithm utilizes a discrete number of cost function values for performance reasons,
it is necessary to map the feature function values lying between 0 and 1 to a discrete range. This
is performed by multiplying the weights with/ and rounding each weighted function to its nearest
integer value. E.g. ifvz is 0.25,M is 256 andfz(q) lies between O and 1, the resulting discrete
feature cost functionwz * M x fz(q) + 0.5] has a range between 0 and 64.
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On-the-fly training of gradients

The pixel value featuregp, f; and fo only have meaning after trainingfp(p) simply represents

the underlying intensity value of the image at pixelThis value is scaled to lie between 0 and 1 by
dividing it by its maximally possible value, i.e. 255 for 8 bit grey-scale images. The inside and outside
pixel valuesf; and fo for a pixelp are samples at a distankdrom p in the gradient direction or the
opposite direction, respectively.

fr(p) = 281_ 1)
fr(p) = ﬁf(p + k* D(p))
fo(p) = 28%11(19 — k= D(p))

D(p) denotes the unit vector of the gradient direction &rid a constant value defining a sampling
distance. The factoggl—f1 has to be replaced by an appropriate term if images with a grey-scale
resolution different from 8 bit are used. Bilinear interpolation of four surrounding poipts kbt D (p)

is used for exact determination of the intendity + k£ « D(p)).

Due to the fact that the Live Wire algorithm alreay performed very well on the images without
incorporating a dynamic cost map in addition to the static one, no implementation of the on-the-fly
gradient training was carried out. So we do not give any more descriptions on this topic but instead
refer to the paper [40] for this topic.

Optimal path searching

Finding optimal paths (i.e. paths which minimize the total cost) in graphs can be solved by Dijkstra’s
algorithm[13]. This algorithm solves the single-source shortest-path problem on a weighted, directed
graph for the special case where edge weights are non-negative. The graph-search algorithm is initial-
ized with a start or seed poigf with a cumulative cost of 0, being placed on an initially emptylist

called active list. As an operator may choose an arbitrary point as goal pixel (and does it subsequently
during mouse movement), the optimal paths from the seed point to all pixels of the image have to be
computed and stored for later usage. Poingse placed on the active list in a sorted order based on

the cumulative cost, i.e. the sum of all local costs of the corresponding patipftorine seed point

s. Therefore all other points are initialized with an infinite cost and an iterative creation of a minimum
cost spanning tree based on the local cost function is carried out. In each iteration the \witint
minimum cumulative cost is removed fromand the total cost of its not yet removed neighbours is
computed. Then these neighbours are inserted into the active node list. Algorithm 5 demonstrates the
procedure to create a minimum-cost map with respect to a given seed point.

Now a detailed description of this algorithm shall be given. First of all there are various data
structures involved. The result of the algorithm is a map of minimum cost pointers. This means that
we have a 2D array of the same size as the underlying image. Each array element holds information
about a direction. This direction can be one of { North, NorthEast, East, SouthEast, South, SouthWest,
West, NorthWest }. As a consequence by indexing the minimum cost pointer map with a certain pixel
we get the direction of the minimum-cost neighbour pixel. This leads us instantaneously to the trivial
part of the Live Wire algorithm, reporting a minimum path between two given points, as shown in
Algorithm 6.

Then we have a status map and a cumulative cost map. Both maps are also 2D arrays with the
same size as the underlying image. The cumulative cost map stores for each pixel of the image the
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Algorithm 5 Create Live Wire minimum-cost map with respect to a given start point.

liveWirelnit(Imageimg, Pointstart, MinimumCostMapmin_cost_map

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

pre-calculate static local cost functidé(p, q)
calculateNR_BUCKETSthe number of distinguished discrete costs
NR_BUCKETS= M x \/img_width? + img_height?
initialize L, the sorted list of active nodes, a vector wiR_BUCKET ®lements
each element is a stack of points
initialize a cumulative cost magum_cost_map
of size(img_width x img_height)
each entry in theum_cost_map
is an integer value denoting the point’s current cost
initialize astatus_mayf size (img_width * img_height)
each entry in this status map is one of {NotProcessed, Expanded, Visited}
the status map is initialized with NotProcessed for all points
cum_cost_map[startf O
status_map[startF Expanded
insert pointstartinto L[0]
while L is not emptydo
remove poinp with minimum cost from active nodds
status_map[pF Expanded;
for all 8-adjacent neighbour pointgsof p with status_map|[q]= Expandeddo
cost = cum_cost_map[p} ls(p, q¢) # compute neighbours cumulative cost
if status_map[qf= Visited AND cost< cum_cost_map|[gihen
removeq from active node&
status_map[qf NotProcessed
end if
if status_map[gF= NotProcessethen
cum_cost_map[gF cost
min_cost_map[qf direction pointing tq
insert/re-insert poing into L[cost]
end if
end for
end while

Algorithm 6 Report shortest path between start and end point.

reportShortestPath(Poindtart, Point end MinimumCostMap min_cost_map PointList short-

est_path

1:

clearshortest_path

current_point= end

insertcurrent_pointinto shortest_path

while current_point!= startdo
direction=min_cost_map|[current_point]
movecurrent_pointaccording tadirection
insertcurrent_pointinto shortest_path

end while
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Active Nodes List:

4 Cost M-3 | M-2| M-1
|

I T 1
-/

stacks of points

Figure 4.9: Live Wire list of active nodes. This figure illustrates the sorted list of active nodes data
structure. It consists of an array of M "buckets”, each of which is pointing to a stack of points with the
same cumulative cost value. This value is also the index of the array. In this example only 3 buckets
have non-empty stacks.

currently evaluated cost. So the entry at the start point’s position is set to 0 at the beginning and
after the algorithm has finished, the cumulative cost map storewitiimumlocal cost of each pixel

with respect to the neighbours of the pixel. The cost map is supported by the status map, where one
of the following status values is stored for each pixel: { NotProcessed, Expanded, Visited }. At the
beginning of the algorithm all pixels are assigned status 'NotProcessed’ (this means that the pixel
has an infinite cumulative cost), except the start pixel which is 'Expanded’. During iteration status
'Expanded’ means that the pixel was already removed from the active nodes list while 'Visited’ means
that the pixel has already been member of a set of neighbours. Further there is the set of neighbours
holding up to eight neighbours of an 'Expanded’ pixel.

The most important data structure is the sorted list of active nadeghich is shown in Figure
4.9. Itis an array with NR_BUCKETS entries, where NR_BUCKETS denotes the number of possible
discrete local cost values multiplied with the maximum distance in the image, the image diagonal
Vimg_width? 4 img_height®. For each possible cost valaec [0...M — 1], L[] stores a list of
points with equal cumulative path costs. As such the order of the points is arbitrary, therefore they are
organized as a stack.

After inserting the start point into the active nodes lisat index O (start point has a cumulative
cost of 0), the main while-loop of the algorithm performs its iterations untd empty. This happens
after all pixels of the image have been processed. During each iteration first of all the point with the
smallest cost value is removed fromL and its status is set to 'Expanded’, i.e. there is no need to
further process this point.

The special structure of the active nodes list makes it possible to do the removal in nearly constant
time. We only have to verify if the element with the current index (starting with zero) still holds a
stack of points. If so we can pop one point from the stack and report it. If not we have to move on
seeking the next-higher index of the active nodes list which holds a stack of points and remove the
top point from there. Obviously this seeking procedure can not be performed in constant time, but the
insertion of new points is done in a way that there is always a concentration of points near the currently
processed index. The reason for this is that newly inserted points do always have a slightly higher cost
than the currently processed point, because they are a little further away from the seed point.
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The next step in the while-loop is to determine a set of neighbours All 8-adjacent neighbour
pixels with status equal to 'NotProcessed’ or 'Visited' are investigated. For eachymkéhis set the
cumulative cost is calculated by adding the cost value of piXebm the cumulative cost map and
the result of the static local cost functids(p, ¢), assuming that on-the-fly training is disabled. Now
we determine ify is already contained in the active nodes list by checkingdfus_map|q] equals
'Visited'. If this is true and additionally the cost value calculated in the last step is lower than the
already stored cost of pixel then we have to removgefrom L and set its status to 'NotProcessed’ to
be able to re-insert it at the updated position.

The final step of the while-loop is the checlgifs status is 'NotProcessed’, in this case we have
to insert (re-insert if it was removed in the previous stgpito L at the proper position and to update
the cumulative cost map as well as the map of minimum cost pointers.

One remark should be made about removing points to be able to properly re-insert them at an
updated position. Due to the stack structure of the points in the active nodes list, it is not possible
to remove points in constant time, because they have to be searched in the stack implementation, a
doubly linked-list. Mortensen et al. propose a technique to guarantee point removal in constant time
by storing for each pixel a pointer to the current location in the array of stacks. Our implementation
doesn’t include such a feature, because if we choose a high valié,ftre stacks do not grow very
large and the removal time is nearly constant.

An example for the algorithm is shown in Figure 4.10. It is a demonstration of the graph search
algorithm creating a minimum cumulative cost map and a shortest path pointer map. Figure 4.10a
is the initial local cost map with the seed point circled. For demonstration use the local costs are
pixel based (¢)) not link based /(p, q)). The first algorithm step puts the seed point into the list
of active nodes and sets its cumulative cost to zero. Now the costs to the seed points neighbours are
calculated (the seed point is "expanded”), diagonal neighbours are additionally weighted with a factor
of v/2 to correct the influence of differing euclidean distances between diagonal and direct neighbours.
It should be mentioned that the actual Live Wire algorithm performs this correction by multiplying
direct neighbours Wit%. Now all neighbours are put into the active nodes list and the point with
the smallest cost is removed from this list, being the next expanded point. In our case this is the right
neighbour of the seed point.

The expanding procedure is continued by always removing the minimum cost point from the list
of active nodes. The active node lists L during a) and b) are also illustrated in the figure. The stacks
of points consist of elements with a x- and a y-component. There are 2 situations between step b)
and c) where points have to be removed from L. These points are (3,8) at cost 7 and (3,6) at cost 11.
The grey arrows show their change of location in L after removing and re-inserting. This re-insertion
corresponds to a newly found path in the cumulative cost map with a lower cost, it can be verified at
the points North-East and South-East from the seed point.

Figure 4.10d shows the situation with 5 points expanded and Figure 4.10e shows the final cumula-
tive cost map holding minimum total costs for each point to reach the seed point as well as the pointers
specifying the optimal path to the seed point.

Manual and Automatic Path Cooling

For the final closed contour definition it is of course not possible to apply only a single starting point,
because in this case start and end point are equal, so the shortest path would have a length of zero. So
path cooling has to be used to provide path segments which in combination lead to a closed contour.
In the Intelligent ScissorpaperAutomatic Path Coolings presented. Path segments which remain
stable during the mouse pointing procedure for a certain time are seen as candidates for new seed
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points. Some of them are selected and the minimum cost path map is recalculated for a new seed
point. The implementation in the segmentation tool does not include this feature, but simply selects
new seed points manually after a mouse click with the left button. This click starts the recalculation
of the minimum cost path and pushes the minimum cost path defined by the last seed point and the
current seed point (the previous end point of the path) onto a stack of minimum cost paths. This stack
is used for all other operations like e.g. drawing the current Live Wire contour.

As a consequence these algorithms and techniques provide minimum cost pointer maps making
it possible to interactively select minimum cost paths to the seed point from it. As mentioned above
Algorithm 6 is used for this selection process. The minimum cost paths now only have to be visualized
and used for a contour definition of a crop region. Applying this technique on the end-diastolic or end-
systolic images leads to a volume estimation.

4.5 Calculating the Volume

The final step of all segmentation-based volume estimation techniques is the calculation of the volume.
Therefore the segmented pixels of all images are counted and multiplied by their voxel size. The
segmentation comes from anyone of the algorithms presented in the previous sections. All of them
have in common that they define a binary mask on the input images which distinguishes between
ventricle and background pixels. In the field of radiology the technique of defining the counting result
of voxels to get a volume is callesimpson RuleThe DICOM file format stores the voxel size by
means of three entries:

e pixel spacing in x- and y-direction (0.83333 mm x 0.83333 mm)
e slice thickness in z-direction (8 mm)

e slice gap (4mm)

With this information voxel size is defined g&rel_spacing _xz*pixel_spacing y*slice_thickness

leading to a result of 5.555555 mimThe special configuration of the Ultrafast CT with its slice gap

of 4 mm between adjacent pairs of target rings (see Section 2.1) makes it necessary to interpolate
three more volume slices into the existing eight for the final result. For this reason the counted pixels
between second and third, between fourth and fifth and between sixth and seventh slice are averaged
respectively. The averaged resultis multiplied by the voxelgizel_spacing_x+pizel_spacing_y*

slice_gap (in our case: 2.777777 mithand added to the other slices for the final volume. The whole
algorithm is illustrated in Algorithm 7.
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Algorithm 7 Calculate the volume of eight segmented images by means of Simpson Rule.
calculateVolume

. initialize accumulation variable with zero
. for all eight segmented binary images
count the pixels representing object data (non-zero pixels)
multiply pixel count by voxel size
add multiplication result to accumulation variable
end for
. for every second binary imagko
interpolate a pixel count from the binary image and its neighbour image by averaging the ex-
isting pixel counts
multiply the interpolation result by the voxel size for the slice gaps
10:  add multiplication result to accumulation variable
11: end for
12: report the accumulated result as calculated volume

=
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4.6 Summary

In this chapter the implemented algorithms for this work were presented. The region-of-interest al-
gorithm based on temporal information and the ellipse detection mechanism using Hough transform
impose automatization to a certain extent. Three algorithms were implemented to perform the seg-
mentation which is necessary to calculate volumes bysthgson-RuleThese are an approximation

of an optimal thresholding algorithm, an implementation of the basic deformable model called Snakes,
and a graph-theoretic border tracing algorithm with the help of dynamic programming, the Live Wire
approach. Finally an implementation of t8Bampson-Rulé calculate volumes has been described .
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Figure 4.10: Live Wire costs and algorithm example. a) Initial local cost matrix, circle around seed

point. b) Seed point (shaded) expanded, note the diagonal costs being multiplied with an euclidean
correction factor. c¢) 2 points (shaded) expanded. d) 5 points (shaded) expanded. e) Finished cumula-
tive cost map and shortest path map with the two light-grey shaded points as path end points and the
dark-grey one as seed point. By pointing the mouse cursor on one of the end points the shown path

indicated by circled points is reported as minimum cost path. Taken from [40].
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Chapter 5

Implementation

To conveniently apply different sorts of image processing algorithms to images it is necessary to
somehow set up a framework where all implemented modules are put together. In our case this
application had to run on Windows NT to integrate into the existing network environment at the
Department of Radiology. Further the application had to be capable of importing the medical image
data sets which were specified in the DICOM file format. So Windows NT and Microsoft Visual C++
6.0 were chosen as development environment.

Of course it is not advisable to start writing image processing applications from scratch, so three
assisting libraries were used to support the implementation. These libraries weargethienage
Processing Libraryand theOpen Computer Vision Librarfpr image processing functionality as well
as the graphical user interface toolgit. Giplib, the image processing library under development at
our institute, was also taken into consideration for supporting the application, but computation time
issues seemed to be more important than a clean object-oriented design and platform independence.
Nevertheless the key algorithms implemented during this work will also be ported @ihb.

5.1 Environment & Libraries

5.1.1 IPL & OpenCV

Both, thelmage Processing Library (IPLand theOpen Computer Vision Library (OpenC\gre
written in C++ and originate from Intel ([30],[14]). But these are already the only similarities because
the OpenCV is an open-source high-level library for image processing and computer vision, while
the IPL is only distributed in binary form and consists of low-level image processing routines. The
most important feature of the IPL is its optimized library structure. The dynamic linked libraries of
the IPL include a concept to detect the processor type at runtime and load the corresponding 'dIl’,
which includes all of the libraries functionality in a processor architecture optimized version. The
only disadvantage of this concept (but the biggest advantage for Intel) is that the IPL only works fast
on Intel processors.

The concept of the OpenCYV is different because it defines an interface for an open-source library.
Nevertheless the only actual implementation for Windows is utilizing the IPL for low-level image
processing tasks. It is still in a beta stadium, but there is a large group of users who contribute to the
development with their bug reports and corrections. For our application IPL version 2.5 and OpenCV
beta 1 were chosen.
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The IPL consists of the following functionality blocks:

Image creation and access. 1 bit, 8 bit signed and unsigned, 16 bit signed and unsigned, 32 bit
signed and 32 bit float images are supported.

Arithmetic and Logical Operations.

Image Filtering. There are linear and non-linear filter techniques, pre-defined filter kernels and
methods to specify convolution masks.

Linear Image Transforms. Fast Fourier Transform and Discrete Sinus Transform.
Morphological Operations.

Color Space Conversions.

Histogram and Thresholding functions as well as image statistics.

Geometric Transforms.

The OpenCV among other things adds the following higher level functionality:

Contour Processing.

Geometric Fitting. Fitting ellipses, lines, rectangles, circles into images.
Feature Detection. Filtering, Canny edge detection, Hough transform.
Image Pyramids.

Camera Calibration.

View Morphing.

Active Contours.

Gesture Recognition.

Drawing Primitives like ellipses, lines, circles, polygons.

512 Qt

For a convenient way to apply algorithms to images it is very useful to construct a graphical user
interface combining both blockt, a product from Trolltech[61], is a suitable library to perform
this task. Basically Qt is an open-source (only for non-commercial use) object-oriented C++ toolkit
supporting many different platforms in the Unix and Windows worlds. A big advantage of Qt is the
large number of classes and tools which are already included, making it useful in many different kinds
of applications. The most prominent example for a Qt project is the K desktop environment KDE on
Linux which uses Qt as its basis.

The following list summarizes the most important features of Qt:

Object orientation and a modular concept in connection with a provided API consisting of many
classes.
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Figure 5.1: Block diagram of Segmentation Tool. The basic structure of the application is shown with
its functional blocks for image parsing, viewing and processing. The central biQtkMsin Window
which is responsible for constructing a GUI and bringing together all other modules.

e Easy customization of widgets to personal needs by inheritance.
e Portability.

¢ Intelligent and transparent component concept. Qt objects have the capability to easily pass
messages to each other by the signal/slot concept incorporated in the library. It is possible for
objects to define signals which can be emitted at any time. These signals can be connected to
so-called slots of the same or another object where appropriate reactions are executed. This
leads to a type- and object independent transparent communication method.

For our implementation version 2.3.0 of the Qt toolkit was used.

5.2 Segmentation Tool

Figure 5.1 shows the basic structure of the developed application called 'Segmentation Tool’. The
central block of the application is thgt Main Windowwhich is responsible for displaying the graph-

ical user interface and integrating image parsing, viewing and processing algorithms. A typical work
flow could be like follows. After starting the application the main window is created. A screenshot of
the main window is illustrated in Figure 5.2.



58 CHAPTER 5. IMPLEMENTATION

I SegmentationTool =] E3

File Image Processing Actions Help

I EEEE]

CIST Image

CIST Yolume

Filename | C10031.dem =l

— Selectimage Ellipsoid model:
& Diastole LA [mrn]: 0.0
SA [mm]: 0.0

© Systole
Ellipsoid volume

Cursar Fosition (326.578.11.1222) A

Figure 5.2: Segmentation Tool screenshot.

First of all aconfiguration fileis processedThis configuration file contains a large number of pa-
rameters to easily customize many different sections of the application. Some examples for externally
definable parameters are:

¢ MAIN_WINDOW_WIDTH & MAIN_WINDOW_HEIGHT

DISPLAY_GRAYLEVELS

HOUNSFIELD_LOW_LVL & HOUNSFIELD_HIGH_LEVEL (for definition of window-level
transformations)

SLICE_GAP_MM (the slice gap of CT image slices)
e SLICE_THICKNESS_MM (the slice thickness of CT image slices)

e PIXEL_WIDTH_MM & PIXEL_HEIGHT_MM (pixel width and height of CT image slices)

Some other parameters specify default values for the various algorithms or default directories for
image parsing.

The next logical work flow step is to load image data from files into memory. Therefore the
graphical user interface provides a file dialog to choose a directory name. This directory name is
passed to thBirectory Reading Modulahich extracts the corresponding filenames of the directories
DICOM files and initializes an empty vector of images. Each filename is transmitted Bi@@M
File Parsing Modulewhich parses the DICOM file and returns an image toDirectory Reading
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Module There the images of a data set are gathered in the image vector data structure. After all
images have been read, the image vector is returned tQtthdain Windowwhere the images wait
for further processing steps.

At this point a more detailed explanation of theCOM File Parsing Moduleshould be given. The
decision whether to implement a simple parser from scratch or to use an existing library was influenced
by the fact that libraries likimageMagick or tools likelrfanView do not support DICOM files with
a grey-level resolution of more than 8 bit. So it was necessary to implement a module supporting the
actual medical images with their grey-level resolution of 12 bit. This module is only able to read a
very small portion of the DICOM image file format, it is restricted to reading images with arbitrary
width and height but only one channel of unsigned 16 bit image data, where 12 bit are used for
storing pixel values and bit 11 is the highest bit. The two bytes forming a 16 bit pixel can be stored
in little or big endian format. The image is stored into a 16 bit unsigipddhage data-structure
(IPL_DEPTH_16U) as memory representation and is passed itbetory Reading Module

After we have loaded image data from files into main memory applying preprocessing algorithms
like detecting a region of interest or detecting a large ellipse for selecting an end-diastolic image
becomes possible. Additionally the images are displayed by means dbtheeViewernd Im-
ageViewerobjects. The volume viewer is basically a container object consisting of a main image
viewer and 8 image viewers displaying the current volume defined by the image of the main image
viewer. ThelmageVieweclass defines a Qt widget with the capability of displayindgm@image and
additionally supporting many image manipulation technigues like zooming, scrolling, setting regions
of interest of arbitrary form or measuring distances in image space.

Finally theAlgorithmmodule provides all image processing algorithms to be applied on the image
data. These algorithms range from basic preprocessing techniques like scaling, cropping, smoothing,
gradient calculation or morphological operations over automatization methods like the Hough trans-
form for ellipse detection and the region of interest detection to the different image segmentation
techniques. We reused some low-level algorithms fromititel Image Processing Librarywhile
most of the high-level algorithms do consist of implementations which were especially performed for
this work. Preprocessing algorithms operate in the main window section while all others are utilized
as part of the volume viewer module.
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Chapter 6

Experiments & Results

For the statistical evaluation of the different algorithms 31 medical image data sets were provided
by the Department of Radiology, University Hospital GraEach data set consists of 80 images.
FurthermoreProf. Rienmillerdrew end-diastolic and end-systolic contours in the images by means
of the implemented segmentation tool application. Results of the parametric estimation method are
also required for the evaluation, therefore the end-diastolic and end-systolic volume estimation from
the patient’s diagnosis (performed by an operator after the CT scanning procedure) were provided.
To show that different medical operators (and even the same operator at different points of time) tend
to produce slightly varying estimation results, the parametric model was applied a second time on
each data set by Prof. Rienmdiller. The differing results are of course unintended but nevertheless
nearly unavoidable. Different levels of concentration depending on the number of already processed
data sets or the tiredness of the operator during the work is one possible explanation. Another one
is the experience of the operator with radiological and (in our case) cardiological aspects but also
differing interpretations of certain medical aspects can lead to varying results. Figure 6.1 illustrates
the correlation of these two estimations. Especially noticeable is the really poor correlation of the
end-systolic volumes withh = 0.64. In addition to the reasons mentioned above, the difficulties in
defining the end-systolic left ventricle shape lead to further inaccuracies.

Table 6.1 shows all of the provided information of the image data sets. All of the examinations
were done in the years 2000 and 2001. Columns "ED slice” and "ES slice” show the numbers of the
image which were chosen as end-diastolic and end-systolic image respectively. Columns "EDV1” and
"ESV1” contain the results of the parametric volume estimation while columns "EDV2” and "ESV2”
contain the older results of the parametric model from the actual patient examination. The data sets
23 and 24 as well as 9 and 10 are of special interest. Both pairs of sets are taken from the same person
within a period of approximately one year.

For all subsequent evaluations "EDV1" and "ESV1" will be taken as reference values, because
"EDV2” and "ESV2” only contain 30 data sets (the examination of data set 24 is not available).

6.1 Automatic Selection of End-Diastolic and End-Systolic Images

6.1.1 Evaluation of the Region of Interest Algorithm

The algorithm for automatic ROI extraction of Section 4.1.3 is applied to all data sets. Verification
is performed visually, i.e. by inspecting the region of interest and deciding if it is large enough to
include the whole left ventricle on all images of the data set. Further assessment of the ROI size (it
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Nr | ED | ES | EDV1 | ESV1 | EDV2 | ESV2 | Nr | ED | ES | EDV1 | ESV1 | EDV2 | ESV2

slice | slice | [ml] [mI] [mi] [mi] slice | slice | [ml] [mi] [mi] [mi]
1 41 46 69.6 | 18.9 82 20 17| 21 26 63.2 7.9 74 14
2 22 28 69.2 | 30.7 74 32 18| 51 57 86.5 17 96 21
3 31 38 823 | 12.6 82 8 19| 41 45 54.4 28 65 42
4 | 42 47 52.7 | 10.2 84 20 20| 31 37 85.4 | 154 99 28
5 41 44 51.7 6.1 51 22 21| 42 46 85.7 | 21.1 78 20
6 41 46 56.7 | 16.4 62 23 22| 41 46 | 123.4| 27.4 135 39
7 51 55 58.9 4.8 76 14 23| 51 55 68.5 | 10.8 76 9
8 41 46 80.7 | 23.8 97 26 24| 51 57 | 104.1| 24.6 | N.A. N.A.
9 31 37 814 | 25.1 94 27 25| 41 45 547 | 28.6 48 21
10| 41 47 76.8 | 33.3 81 26 26| 51 55 68 5.7 66 16
11| 41 46 65.3 | 21.2 76 29 27 | 32 35 71.3 12 74 45
12 | 41 45 63.1 | 10.5 74 10 28 | 41 46 97.7 22 99 28
13| 31 36 | 1149 | 42.3 87 40 29 | 41 46 98 18.6 70 25
14 | 31 35 70.2 | 20.1 77 26 30| 31 36 87.7 18 78 18
15| 31 37 99.9 13 105 21 31| 31 36 52.1 | 19.1 60 18
16 | 51 55 40.8 5.4 41 7

Table 6.1: Patient data sets with volume estimation results from the parametric model. Column "ED
slice” shows the number of the image which was chosen as end-diastolic image by Prof. Rienmdiller
during the evaluation session. Column "ES slice” shows the number of the end-systolic image. Images
in the data set are numerated from 1 to 80. Columns "EDV1” and "ESV1” contain the results of the
parametric volume estimation performed by Prof. Rienmiller while columns "EDV2” and "ESV2"
contain the older results of the parametric model from the actual patient examination.
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Figure 6.1: Evaluation of two different manual parametric volume estimations. End-diastolic and end-
systolic volumes of 30 data sets. The correlation is not as high as expected, this shows the uncertainty
inherent in the parameter estimation process.
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could be too large, including many unwanted details which interfere with the following algorithms) is
not performed due to lack of a proper measurement method.

The algorithm applies a window-level transformation (window: 300 HU, level: 50 HU) to the
raw images. Afterwards each image is processed with a noise threshold of 0.015 affartitract
temporally adjacent imagesstage. This value was chosen empirically taking into account that the
images are converted to floating point images and scaled between 0.0 and 1.0 before subtraction. The
corresponding key for this threshold in the configuration file is GET_ROI_NOISE_THRESHOLD.
The second noise threshold, applied to result image R (the image after adding all thresholded subtrac-
tion results), is chosen by extracting the maximum grey-value of R and taking 12% of it. Finally the
coordinate-axis parallel bounding rectangle is corrected by an empiric translation with respect to the
positive x-axis. Testing the algorithm showed that the extracted ROI is always too large and too far
to the left in the images. The translation coefficients in pixel are derived from the region of interest
extents. Suppose the ROI rectangle lying betwegnmin = (z1,yl) androi_max = (x2,y2).

Then the translated rectangle lies at

roi_min’ = (z1',y1)

21’ = 21 4+ 0.15 * roi_width + 30
roi_max’ = (x2',y2)

22 = 22 + 0.15 * roi_width + 50

The presented parameters remained unchanged during evaluation of all 31 data sets.

Given these parameters 30 from 31 regions of interest were extracted in a visually correct way.
Only data set 21 was processed wrong. Three data sets (6, 7 and 18) produced very large ROI’s which
are not optimal for later processing steps. Figure 6.2 shows the ROI rectangles at the end-diastolic
points of time, i.e. when the left ventricle is largest, for all data sets. Summing up this algorithm
seems to be a very useful preprocessing step for many possible kinds of higher-level algorithms,
which require a reduction of information. Therefore it will be used in later evaluations, especially in
the automatization technique for finding the end-diastolic image by use of an Hough transform.

6.1.2 Evaluation of the Ellipse Detection Algorithm

For automatically locating an end-diastolic image (i.e. that image of a data set with the largest pro-
jected left ventricle) it is useful to look for ellipses as described in Section 4.1.4. Applying this
algorithm to all 31 data sets incorporates a tradeoff between time consumption and optimal results.
The more general the necessary parameters are chosen the worse are the results. But it is not possible
for a practical algorithm to tune parameters before working on a data set, this would simply be too
costly with respect to its time-consumption. For this reason we have decided to utilize a fixed set of
parameters for the algorithm while evaluating all data sets.

First of all a region of interest is extracted from the images to lower the complexity of the el-
lipse detection problem. Otherwise the algorithm would only randomly find the correct ellipse in the
images because there are many elliptic structures in them. The algorithm gets passed the following
parameters:

e minimum width of the ellipse: 20 pixel
e maximum width of the ellipse: 70 pixel

e width discretization: 70



64 CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.2: Regions of Interest result. All 31 data sets are represented by their end-diastolic image. It
can be seen that 30 ROI's are correct (only data set 21 is too small) and from these only three ROI's
are too large (6, 7 and 18).
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e minimum height of the ellipse: 10 pixel

e maximum height of the ellipse: 45 pixel

¢ height discretization: 50

e minimum rotation angle of the eIIipsé‘l‘%’de
e maximum rotation angle of the eIIipsél%”md

e rotation angle discretization: 30

Then a window-level transformation (window: 300 HU, level: 50 HU) and a 7x7 median filter
performs the necessary preprocessing. After scaling the threshold value 3500 separates iodinated
blood regions from the other tissues (the possible range of grey-values is 0 to 4095). This value was
defined by empirically testing many data sets. The thresholded image is filtered with a 3x3 sobel kernel
leading to a gradient magnitude image on which the Hough transform algorithm is applied. During
the Hough transform stage there are two sections where a common Hough transform to detect lines is
performed. On the one hand to detect horizontal axis candidates and on the other hand for vertical axis
candidates. Both stages need a certain set of parameters. For the horizontal axis candidates we look
for at most 12 lines consisting of at least 25 pixels (i.e. entries in the Hough accumulation array). The
possible angle of the lines lies betwe and$Zrad with respect to the x-axis. At most 10 vertical
axis candidate lines consisting of at least 12 pixels are looked for in the other stage, the possible range
of angles is?—g to Srad. Finally entries in the 3D accumulation array of the algorithm’s last step have
to be larger than a noise threshold of 3 preventing pixels, which are randomly grouped so that the
algorithm mistakes them for an ellipse, from being detected.

From the 31 possible data sets only 28 were taken for the evaluation. Data sets 6,7 and 18 yield to
large regions of interest according to Section 4.1.3, as a consequence the Hough transform algorithm
would fail or just randomly detect a correct ellipse. The results of the evaluation are illustrated in
Table 6.2. These results show the rather poor performance of the algorithm because from the 28 data
sets only 8 data sets were processed correctly (marked with a '+’), in 4 data sets too large ellipses
were detected ('~") while 16 data sets lead to incorrect outcomes (). The subjective rating indicated
with '+’, '~ or ’-’ is the author’s opinion about the correctness of the located ellipse. The rating
corresponds in most cases to either temporally or spatially adjacent images of the data sets. (E.g.
images 31 and 41 are spatially adjacent, while images 41 and 42 are temporally adjacent.)

Figure 6.3 illustrates different data sets with good, moderate and bad results.

There are many reasons for the poor performance of the ellipse detection algorithm on the data
sets. The most important one should be noted first, the selected Hough transform algorithm is not
robust enough for this kind of data! There are too many parameters to tune in the algorithm for
producing a proper result and a set of tuned parameters is very likely to be useless in another data set.
Furthermore the algorithm’s performance decreases if there is too much additional information in the
image beside the ellipse to be located. The two internal Hough transform stages, where symmetry
axis candidates are tried to be detected are very susceptible to smooth and continuous ellipse edges.
But the ellipse edges in our images are noisy and often have large gaps inbetween.

Another effect is the strong dependency on an accurate region of interest, not too small so that
no ellipse is cut off and not too large to minimize unnecessary information. As a consequence the
unavoidable inaccuracies of the region of interest algorithm have a strong impact on ellipse detection.
Another disadvantage is the lack of edge direction information incorporated in the algorithm which
leads to ellipses that span over non-blood regions (compare Figure 6.3). Quite important as well is
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Nr | ED slice | ED slice | perfor- || Nr | ED slice | ED slice | perfor-
manual | Hough | mance manual | Hough | mance

1 41 50 ~ 17 21 34 -

2 22 3 - 19 41 63 -

3 31 46 - 20 31 37 -

4 42 41 + 21 42 55 ~

5 41 46 - 22 41 31 +

8 41 31 + 23 51 60 ~

9 31 14 - 24 51 59 -

10 41 46 - 25 41 10 -

11 41 42 + 26 51 59 -

12 41 61 + 27 32 24 -

13 31 54 ~ 28 41 71 -

14 31 32 + 29 41 5 -

15 31 54 - 30 31 46 -

16 51 51 + 31 31 42 +

Table 6.2: Patient data sets with ellipse detection results. The column 'ED slice manual’ shows
the reference image while 'ED slice Hough'’ is the end-diastolic image detected during the Hough
transform algorithm. Further a subjective rating of the correctness is given for each data set with the

following possible marks: '+')~')-".

Figure 6.3: Some results of the ellipse detection algorithm. The left image shows data set 31 with an
optimally found left ventricle chamber. The image in the middle is from data set 23 and shows the

located ellipse (green) compared with the real ventricle contour (red). The right image (data set 29)
illustrates the failing of the algorithm.
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the fact that some end-diastolic projections of the left ventricle chamber do not have an elliptic shape
making it impossible to find a correct result. Finally the algorithm’s assumption that the ellipse with
the largest area over all images of a data set has to be the left ventricle is not always valid.

6.2 Statistical Evaluation of Left-Ventricle Volumes

For all of the following evaluations a certain schema will be used. Each comparison of two models
will be presented on a two-dimensional chart with the result vector of one model on the x-axis and the
result vector of the other model on the y-axis. So we get a scatter plot of corresponding evaluation
values. After fitting a straight line into this scatter plot in a least-squares manner we receive a so-
called regression line y=k*x+d. As can easily be seen it would be optimal that k=1 and d=0. But
this statistical measure is not sufficient, it is further necessary to calculate the cross-correlation of
the two result vectors to statistically interpret the relation of the two vectors. The definition of the
cross-correlation given two vectofs,, ..., x,),(y1, ..., y») and its mean values x’, y’ is:

>y (@i — 2) (yi — /)
VS @ e =y )

The regression line shows stochastic dependencies of the data vectors, making it possible to derive
conversion rules between different models. The correlation is a measure of how similar the two data
vectors are, the values for r lie between -1 and 1 representing optimal positive and negative correlation.
The higher the correlation the more valid is a possibly derived conversion rule.

6.2.1 Volume via Manually Drawn Contours

The first evaluation being presented is the most simple one. Prof. Rienmdller’'s contours which were

drawn into the images during the parametric model calculation sessions are used to define cropping
regions in the images. After cropping the volumes are calculated. The results show good correlation
with the parametric model (compare Figure 6.4). This result should not be overestimated due to the
fact that Prof. Rienmiiller drew the contours in the same sessions when the two-axis method for

volume estimation was performed. So he had exactly the same kind of ventricle shape in mind during

the session. This is theoretically optimal but it doesn't represent medical routine evaluations where

different operators are working with the data at different points of time.

6.2.2 Volume via Thresholding

The segmentation tool embeds the thresholding algorithm in an environment which is able to auto-
matically work on data sets. Therefore it loads data sets from a specified base directory and processes
them one by one writing volume estimation results into an output file. First of all a window-level
transformation (window: 300 HU, level: 50 HU) is applied to the images of each data set. Afterwards
the images are median filtered (5x5 kernel) and the region of interest is extracted according to Sec-
tions 4.1.3 and 6.1.1. From the manual inspection of the image data sets it is known which images
of the data sets contribute to the end-diastolic and end-systolic volume. This was specified during the
manual drawing of the ventricle contours. This information is utilized to improve the performance of
the thresholding segmentation by discarding those images which are not contributing to the volume.
There is a parameter file from which this data is read during the automatic evaluation step. On the
regions of interest of the remaining images the optimal-threshold-approximation algorithm is applied
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Figure 6.4: Evaluation of volume by means of manually drawn contours. End-diastolic and end-
systolic images are selected in each of the 31 data sets. The volume is defined by manually drawing
the contours of the left ventricle into the images and cropping the regions inside these contours.

(see Algorithm 3). The volume results are written to an output file and combined to form the evalua-
tion shown in Figure 6.5. From this chart it can easily be verified that the performance of the threshold
is very poor due to the reasons mentioned in Section 4.2.1. The main reason for the bad performance
is that most image histograms are not tri-modal as assumed due to noise and aliasing artifacts.

Examples for a successful segmentation result and a very poor one are given in Figure 6.6. The
upper row shows the algorithm’s performance when the assumed tri-modal histogram really occurs.
The lower row illustrates the failing of the algorithm due to a bi-modal histogram.

6.2.3 Volume via Active Contours

For the evaluation of the Snakes algorithm some parameters have to be set. Although the result of the
evaluation would be better by tuning these parameters they remained fixed during the processing of
each data set. On the one hand this is necessary for a meaningful evaluation and on the other hand
the time required for processing a data set is an important factor. Similar to other evaluations in this
work, the first step is applying a window-level transformation (window: 300 HU, level: 50 HU) to

the images of each data set. This is followed by a 5x5 median filter to remove noise. Now the actual
Active Contours algorithm is performed by placing an initial contour in each image and starting the
iterative energy optimization.

To segment the images first of all the information which images of a data set are contributing
to end-diastolic and end-systolic volumes is used. Only those images are presented to the operator.
The operator who performed the Active Contours segmentation is the author of this work. This is
problematic to a certain extent, due to the author’s lack of radiological experience. Therefore every
time the author was not sure about an initial contour location, the manually drawn contours from
Prof. Rienmdller were taken as a reference for the initial location. Due to the fact that the exact
segmentation is performed by the Active Contour algorithm and the operator only has to delineate the
approximate location of the left ventricle, this assumption is appropriate for most cases.

The graphical user interface (GUI) of the segmentation tool first of all requires the operator to draw
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Figure 6.5: Evaluation of volume by means of optimal threshold approximation. End-diastolic and

end-systolic results of the threshold algorithm applied to all 31 data sets compared with the results
from the parametric model. The performance is very poor due to the reasons mentioned in Section
4.2.1.
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Figure 6.6: Examples for threshold segmentation. The upper row shows a region of interest before
and after applying the optimal threshold approximation algorithm. The histogram of the original
image is tri-modal, therefore the algorithm is quite successful. The lower row shows a ROl where the
corresponding histogram is bi-modal, leading to the failure of the algorithm.
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an initial contour into the images. This is shown in Figure 6.7. Each drawn point consists of its two
integer-valued coordinates with respect to the local coordinate system of the underlying image and of
some Snhake parameters (ususally three to four parameters). Every time a contour point is placed in the
image, the currently valid Snake parameters, which can be modified by some editable text fields of the
GUI (compare Figure 6.7), are chosen. A further possibility is to fix a point by choosing zero for all
Snake parameters. These two features remained unused during the evaluation. No fixed points were
used, because no radiological expert was available to define the fixed locations, so the really difficult
distinction between merging ventricle chambers is performed by the Snakes algorithm. Nevertheless
this feature is important in an actual implementation for medical use. Furthermore the Snake param-
eters alpha, beta and gamma remained unchanged for all images of all data sets. This instance makes
the results of the evaluation more comparable, nevertheless by fine-tuning the parameters the result of
each evaluation could be enhanced. The Snake parameter values chosen for the evaluation are:

e alpha=0.8
e beta=1

e gamma=1.3

This resembles that the gradient energy (gamma) of the underlying image is the strongest factor
influencing the Snake iteration process. The bending term (alpha) of the internal Snake energy is the
weakest term, due to the fact that it is not very important to converge to a contour with equally-spaced
points. Nevertheless it is quite important to define an initial contour which is equally spaced and
consists of a large number of points. For this purpose the segmentation tool application calculates
additional contour points after the drawing of the initial contour is finished. If two initial points
have a distance larger than a certain threshold value (specified by the configuration file key SNAKE-
_DENSITY_THRESHOLD), the line between these points is subsequently halved until the distance is
smaller than the threshold. The value of the density threshold used during the evaluation was 5 pixels.
The effect of this feature is shown in Figure 6.8, which also illustrates a run of the Snakes algorithm
on the specified contour in the right image. Its contour is constructed from the contour of Figure 6.7
by adding some more points and closing it.

Another unused feature of the Active Contours implementation is the curvature maximum deter-
mination which allows sharp contour corners to form more easily. This feature is not important in our
case, because the left ventricle border is a smooth curve without sharp corners.

Now we will discuss the other parameters of the Active Contours algorithm. For calculating the
gradient image a 3x3 Sobel operator is used. The two filter masks for x- and y-derivatives are convo-
luted with the image resulting in two floating-point gradient imaggsind S,,. They are combined
to form the floating-point gradient magnitude image- , /52 + S;. Finally this image is converted
to a 16-bit unsigned integer image with values between 0 and 65535. This image is the basis for the
Active Contours algorithm.

The size of the local neighbourhood (configuration file key SNAKE_NEIGHBOURHOOD_SIZE)
used for searching local maxima was 7 pixels. The two termination criteria of the algorithm, minimum
number of moved points during an iteration step (configuration file key SNAKE_MIN_NR_POINTS-
_MOVED) and maximum number of iterations (configuration file key SNAKE_NR_ITERATIONS)
per algorithm run were set to 2 points and 20 iterations respectively.

Two types of evaluation have been performed. First of all the results of the volume estimations by
means of Snakes segmentation are compared with the volume estimations from the parametric model
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Figure 6.7: Example for drawing an initial contour. The main window shows the manually specified
contour during drawing, note the pressed button in the top left corner of the window, which indicates
the so-called Point-ROI mode. It is used too specify a region of interest by a contour. The bottom
right section of the window holds the parameter boxes and buttons used for the Snakes algorithm.
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Figure 6.8: The left figure shows an initial contour drawn by an operator to provide a contour for the
Snake algorithm. Please compare the contour of Figure 6.7 and note the automatically inserted contour
points to get a more flexible initial contour. The right figure shows the same contour after performing
the iterative Snake algorithm. The contour snapped onto the strong gradients of the image.
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(see Figure 6.9) and with the volumes from the manually drawn contours (see Figure 6.10). The
manually drawn contours and the Snake contours are excellently correlated. We found a correlation
coefficient of 93% in the end-diastolic and 92% in the end-systolic case. This coefficient is higher
than the actual results show (the evaluation of the measure for the accuracy of the contour overlap is
presented in Figure 6.11), so we can conclude that we don’t have enough data sets for a meaningful
comparison of the Active Contour results. The many problems of the model are not correctly reflected
in this high correlation. The parametric model shows a weaker correlation, there are more outliers and
the regression line is farther away from the optimal 45-degree line. Nevertheless the result is quite
similar to the result of the manually drawn contours compared with the parametric model (see Figure
6.4). This fact allows the conclusion that there is a connection between the two models which could
be described by a formula.

The second evaluation concerns the accuracy of the contours found by comparing them with the
manually drawn contours. This is achieved by comparing how much two corresponding contours (one
from the Active Contour algorithm and one from the manual contour drawing) overlap. Therefore the
interior pixels of both contours are regarded as pixel sets. The union of the two sets gives the area of
both contour regions, the intersection of the two sets gives the region where both contours overlap. If
we simply take the area of the overlapping region as a measure for the contour accuracy, we would
depend on the size of the contour regions. To remove this effect the area of the the two pixel sets’
intersection are related with the total area under both contours. In detail the performance measure
looks like this:

area(Sman U Ssnake) — area(Sman N Ssnake)

contour_per formance = 1 —
CL’I“@CL(Sman U Ssnalce)

with area() being a function to measure the area of a region by counting pifgls, and S, qe

being the sets of pixels forming the interior of the manual and the Snake contour respectively and
U as well asn being the logical operators union and intersection with sets of pixels as input. Fig-
ure 6.11 illustrates this performance measure. Hightour_per formance values indicate a better
performance, the range of the values lies between zero and one.

The segmentation tool provides a testbed for calculating this performance value. Again, results
are written to an output file for further investigation. Figure 6.12 shows some representative results.
On the charts the "Slice Number” axis represents the 80 slices of a data set. A '+’ indicates those
slices which contribute to the end-diastolic image set (e.g. slices 11, 21, 31, 41, 51, 61 and 71 for data
set 31) and a ™ indicates the slices of the end-systolic image set. On the "Contour Performance” axis
the performance values from the comparison of Snake- and manually drawn contours are presented.
Values near to one represent a better overlapping of the two contours.

The performance values have a tendency to be better on the inner slices than near the edge of the
image set. The reason is that the outer slices show the left ventricle near its outer edges, where partial
volume effects occur. The averaging of the pixel values in these regions due to partial volume effects,
results in blurred edges (see Figure 6.13a), so all segmentation models depending on edge information
are destined to produce inaccurate results. Further reasons for insufficient contour overlap are:

e Strong gradients in the vicinity of the initial Snake contour from the heart/lung border attract
the contour (see Figure 6.13b).

e Some data sets do only have a weak contrast between blood and heart tissue (see Figure 6.13c)
due to partial volume effects.
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Figure 6.9: Evaluation of volumes by means of Active Contour (Snake) segmentation and paramet-
ric model. End-diastolic and end-systolic results of the Snake algorithm applied to all 31 data sets
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Figure 6.10: Evaluation of volumes by means of Active Contour (Snake) segmentation. End-diastolic
and end-systolic results of the Snake algorithm applied to all 31 data sets compared with the results
from the manually drawn contours. The correlation is very high but this doesn’t really resemble the
results from the contour overlap evaluation.
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Figure 6.11: lllustration of contour comparison performance measure. Two overlapping contours
define an intersection and a union region. The intersection is the interior part with the crossed lines as
filling. If we take the area of union region minus intersection region and divide it by the union region,
we get an appropriate performance measure for the degree of overlapping of the two contours.

e The Snake sometimes collapses to a line due to the chosen parameterization, this problem could
be solved by fine-tuning the Snake parameters, but there is no general possibility to prevent this
effect (see Figure 6.13d).

e The distinction between merged ventricle chambers is a very hard problem for the Snake be-
cause there are no strong gradients in such a region. This problem would vanish by specifiying
fixed points on the border of the chambers (see Figure 6.13e).

e The papillary muscle is sometimes excluded from the segmented contour due to the fact that it
consists of the same tissue as the heart muscle, so there is no gradient information for the Snake
to adapt to this muscle. Again fixed Snake points would remove this drawback. Nevertheless
if the initial contour is chosen appropriately this problem does not occur very often (see Figure
6.13f).

Summing up, the Snake tool shows good performance, but is far from being optimal for left
ventricle segmentation. The partial volume effects and the weak contour information are problems
that every technigue based on the calculation of image gradients will show. But there are some further
problems for which the Snake algorithm provides a sub-optimal solution. The parameterization of
the Snake contour introduces a non-intuitive way to change the behaviour of the Snake. It is quite
difficult to find a good parameterization given a certain kind of problem, there is no direct mapping
from the problem to the parameterization. Further the introduction of fixed points to more accurately
extract the papillary muscle and the ventricle borders leads to a high effort of the operator. If we
directly compare the time-effort of parametric model and Snake-based segmentation model, it is more
costly to find the images contributing to the desired volume, place initial contours on these images



6.2. STATISTICAL EVALUATION OF LEFT-VENTRICLE VOLUMES 75

additionally selecting some fixed points specifying border, apply the Snake algorithm and correct
some points which were attracted to the wrong image feature. Additionally it could be necessary to
apply further iterations of the Snake algorithm for a better segmentation. The time-effort of the Snake
segmentation could be reduced by propagating contour results to adjacent slices of the data set. But
there are two reasons why this method is not very accurate. First of all the local behaviour of the
Snake implementation is very sensitive to misplaced initial contours and the slice thickness of our
data is quite large with its 8 mm. So the difference in ventricle position between adjacent images is
mostly too high.

A further disadvantage of the Active Contour model is that initial contours have to be placed near
the ventricle chambers, but while placing contour points the operator gets no feedback of the expected
algorithm performance. In order to be able to evaluate the results, all the contour points must have
been placed and the algorithm must have been performed.

Some examples for the performance of the Snake segmentation algorithm are shown in Figure 6.14
and Figure 6.15. Both data sets resulted in accurate volume estimations due to well-placed contours.
Problems with the papillary muscle didn’t occur, and the contours were strong enough. Nevertheless
it can be seen that a manual post-processing step would be useful to correct some misplaced contour
points (e.g. slice 21 from data set 10 or slice 27 from data set 20).
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Figure 6.12: Comparison of manually drawn contours and Snake results. These charts show some
representative results of the comparison of manually drawn and Snake contours. Data sets 10, 15 and
20 show some of the better results with high overlapping performance. Data set 31 shows an outlier
at slice 26, where the two contours do not overlap at all. Data sets 4 and 19 deliver quite bad results.

End-diastolic image slices are indicated by a '+’, end-systolic ones by a "'.

Note the tendency of

the performance values to be higher on the inner slices, where the gradient information is better. The
outer slices are more difficult due to partial volume effects and less contrast.
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Figure 6.13: These figures show the problems when working with Snakes for segmentation. a) illus-
trates the partial volume effect at the top right region of the contour. b) shows the influence of a too
strong gradient. ¢) demonstrates an image with very weak contrast. d) shows a collapsed Snake con-
tour and e) a failing distinction between left ventricle and left atrium. Finally f) as well as a) illustrate

the ignored papillary muscle.
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slice 21 slice 31 slice 41

slice 37 slice 47 slice 57

Figure 6.14: Snake result Data Set 10.
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slice 11

slice 41 slice 51

slice 27 slice 37 slice 47 slice 57

Figure 6.15: Snake result Data Set 20.
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6.2.4 \Volume via Intelligent Scissors (Live Wire) Segmentation

The evaluation of the Live Wire algorithm will be performed in a similar way as the Snakes evaluation.
The most important reason for this is to be able to compare both techniques.

A very useful advantage of the implemented Live Wire segmentation technique is that there are
few parameters to be set, most of them having straightforward definable values, which are suitable for
a wide range of images. Nevertheless there are some steps that need to be performed. First of all the
well-known window-level transformation (window: 300 HU, level: 50 HU) is applied, followed by a
5x5 median filter to remove noise. Now the actual algorithm is initialized by placing a start (seed)
point in the image.

As explained in Section 4.4 the first algorithm step is to calculate the static local cost map of the
image. Therefore we apply three different Laplacian of Gaussian convolutions and add them together
to form a static cost functiofiy/(¢). We use a 5x5, a 9x9 and a 15x15 kernel, respectively, all of them
being defined in floating point accuracy. The three convolution results are added with the following
weights:

fz =0.15 % LoGs + 0.45 x LoGg + 0.4 * LoG15

This reflects the 5x5 kernel’'s tendency to produce a lot of noise, so its weight is lower compared to
the other two kernels, which detect stronger edges quite successfully. A slight emphasis lies on the
9x9 kernel because the 15x15 kernel tends to find only real strong gradients like the border between
heart and lung, with the result of attracting the Live Wire path onto this border.

Gradient magnitude and gradient direction cost functions were calculated by convoluting the im-
age with the two 3x3 Sobel kernels for the gradients in x- and y-direction. They were calculated
according to the description in the algorithm section.

The weights of the local cost functions are chosen like this:

wyz: 0.4
wa: 04
wp: 0.2

This resembles that the gradient location and magnitude informations are far more important than the
smoothness of the boundary incorporated in the gradient direction function.

For the actual implementation of the minimum cost path map creation some other parameters have
to be specified. The discretization value of the cost funclibrwhich represents the discrete range of
possible values the cost function can have, is chosen t@heAs a consequencd® R_ BUCKETS
is equal tol28 x V2 * 3602 = 65166 (image width and height are 360, respectively). So we have an
active nodes list with 65166 entries. Of course this number could be chosen smaller by implementing
the active nodes list as a ring buffer like suggested in the paper, but there is no dramatic performance
gain using this technique in the author’s opinion.

After placing the seed point in the image, the operator has to point the mouse cursor along the
border of the object to be segmented. Again the operator was the author, the same considerations
as in the Snakes evaluation apply here, too. It is assumed that the error due to the author’s lack of
radiological experience does not have a great impact on the results, because the exact segmentation is
performed by the Live Wire algorithm.

While pointing around with the mouse cursor and using the path cooling feature, a closed contour
is defined. This contour is used to crop the left ventricle region and calculate a volume. The volumes
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Figure 6.16: Evaluation of volumes by means of Live Wire segmentation and parametric model. End-
diastolic and end-systolic results of the Live Wire algorithm applied to all 31 data sets compared with
the results from the parametric model. The performance is quite good, it is comparable with the Active
Contours and the manual contours evaluation.
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Figure 6.17: Evaluation of volumes by means of Live Wire segmentation. End-diastolic and end-
systolic results of the Live Wire algorithm applied to all 31 data sets compared with the results from
the manually drawn contours. The correlation is excellent leading to the assumption that the Live
Wire tool would be a great enhancement in the hands of a radiologist.
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Figure 6.18: Comparison of volumes calculated after Live Wire and Snakes segmentation. End-
diastolic and end-systolic results of Snake and Live Wire algorithms applied to all 31 data sets. The
correlation is high proving that the results are well comparable.

of the Live Wire segmentation are compared with the volumes from the parametric model (Figure
6.16), the manually drawn contours (Figure 6.17) and the Snake segmentation (Figure 6.18).

What we can conclude from these evaluations is, that Snake and Live Wire segmentation behave
quite similar with respect to the parametric model results. The regression lines and the correlation
coefficients are nearly equal. Very The excellent behaviour of the Live Wire segmentation result
compared with the contours drawn by Prof. Rienmdiller is very interesting. It shows a high correlation
of more than 97% in the end-diastolic as well as the end-systolic case. Furthermore we have a nearly
linear regression. Obviously the consequence of this result is that it is possible to imitate the contour
definition of an experienced radiologist by simply looking at his contours and drawing the Live Wire
contour. In this context it should be noted again, that the operator who performed the Live Wire
segmentation was the author of this work, who has no radiological experience. So it can be assumed
that Live Wire is a very powerful tool if used by an experienced radiologist.

Nevertheless there is an obvious disadvantage, the time-consumption of the method. Although it
is a lot faster than manual contour definition, processing of data still requires a considerable amount
of time. We also realized that the time consumption of the Live Wire segmentation and the Active
Contours segmentation is similar, with Live Wire being far more accurate. Another disadvantage is
that an automatization of Live Wire is not possible, while well-defined and well-parameterized Snakes
could be utilized in a more automatic schema.

The direct comparison of the Live Wire and the Snake segmentation provides no more interesting
information, it only validates the similarity of both techniques by showing their good correlation.

Figure 6.19 shows some steps of interactively segmenting images utilizing the Live Wire mode of
the implemented segmentation tool.

Again, similar to the Snakes evaluation, the accuracy of the computed contours is measured by
comparing them with the manually drawn contours. The previously presented technique of overlap-
ping the contour regions and calculating a relatteatour_performances applied. The results are
illustrated in Figure 6.20. These results again show the excellent performance of the Live Wire seg-
mentation, the accuracy of the contours is much higher compared to the Snakes contours. The figure
shows the same data sets presented in the Snakes contour evaluation sections.
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Figure 6.19: Example for drawing a Live Wire contour. The top left image shows the seed point,
afterwards we drag the mouse cursor along the ventricle border. On the left side of the border it
becomes necessary to set some additional start points (path cooling). It is easily possible to draw the
line separating the left ventricle from the other blood-filled chambers. The papillary muscle can also
easily be avoided.

Some results for good and bad ventricle segmentations are shown in Figure 6.21 and Figure 6.22.
The overall performance of the ventricle contours is excellent, so we don’t have images showing a
critical failure of the algorithm. For comparison reasons we present the same data sets as in the Snake
evaluation section, namely data sets 10 and 20. Further some images from a data set with very weak
contours are shown, compared to the manually drawn contours (Figure 6.23). Here we can see the
fine overlap of manually drawn contours and Live Wire contours even if the underlying images have
low contrast. The livewire contour is drawn in red and green while the manual contour is blue-yellow.
Finally Figure 6.23 shows a contour comparison provided a data set with good contrasts. We can see
that the problems of defining a border between left ventricle and surrounding heart chambers as well
as the inclusion of the papillary muscle are solved here.
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Figure 6.20: Comparison of manually drawn contours and Live Wire results. These charts show some
representative results of the comparison of manually drawn and Live Wire contours. All results are
better than the results after Snake segmentation, some are even dramatically better like e.g. data set
19. End-diastolic image slices are indicated by a '+’, end-systolic ones by a *'. Note again the
tendency of the performance values to be higher on the inner slices, where the gradient information is
better. The outer slices are worse due to partial volume effects and less contrast. Nevertheless these
effects are not as strong as in Figure 6.12.
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Figure 6.21: Live Wire result Data Set 10.
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Figure 6.22: Live Wire result Data Set 20.
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Figure 6.23: Live Wire result Data Set 13. A comparison between manually drawn contours and Live
Wire contours on an image data set with low contrast. The Live Wire contour is red-green, the manual
one blue-yellow.
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Figure 6.24: Live Wire result Data Set 12. A comparison between manually drawn contours and Live
Wire contours. The livewire contour is red-green, the manual one blue-yellow. We can see that the
definition of the border between left ventricle and other heart chambers is performed very well. The
inclusion of the papillar muscle into the segmented volume also is ho problem.
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6.3 Summary and Discussion

In this chapter we presented the experiments that we performed on the medical image data sets. The
algorithm for automatic ROI detection was found to be useful, while the ellipse detection algorithm
didn’t show appealing results. Furthermore we presented the evaluations of the end-diastolic and
end-systolic volumes derived by the different segmentation techniques and the parametric model.

An important conclusion of the evaluations is that there are large variances in the application of
the parametric model. If there are two different operators evaluating the same data set, we end up with
a systematic error as well as a weak correlation. This shows the inter-operator variability which is
due to different assumptions and experience with the medical and radiological aspects. The obvious
implication is that the parametric model lacks in reproducibility.

The manually drawn contours of Prof. Rienmuller compared with the parametric model empha-
size the consistency of his contours which correspond to a certain ventricle shape he has in mind
during work. Prof. Rienmdller is a very experienced radiologist, therefore his results are constant and
reproducible. If we compare our results from the Active Contour and the Live Wire segmentation with
the parametric model we get similar results like from the comparison to the manually drawn contours.
This validates that our methods are also reproducible. The accuracy of our models (and especially
the Live Wire model) are validated in the direct comparison of our contours with Prof. Rienmiller’s.
The high correlation between these two models implies that we found a way to easily derive con-
tours which lead to volume results similar to Prof. Rienmdller’s results with the parametric model.
The main difference is that we don’t need a long learning curve to obtain these results but can find
reproducible results with the help of the segmentation tool.

Nevertheless a certain degree of radiological experience is a prerequisite for the application of our
tools, but much of the time-consuming low-level work is performed by the tool. The author simulated
the medical experience by looking at the contours of Prof. Rienmiiller before using the segmentation
tools.

Especially the Live Wire algorithm was very useful in segmentation, so we can conclude that it
would be a very powerful tool in the hands of a radiologist. With this tool it was possible to perform
an important step in investigating comparability and reproducibility of parametric models and image
segmentation (Simpson-Rule based) models.
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Chapter 7

Summary

7.1 Conclusion

In this document we presented an image processing system to calculate the volume of left ventricles
from computer tomographic image slices of the heart. The 31 medical image data sets which were to
be investigated come from an Ultrafast CT Scanner. This scanner is fast enough to image a beating
heart accurately. The images are available in the DICOM standard file format and show the left
ventricle.

A parametric model and digital image processing techniques for volume estimation were inves-
tigated to enable a direct comparison. The parametric model is cBlledAxes Method by Greegne
this is the model radiologists at the Department for Radiology use to determine ventricle volumes. It
makes use of the assumption that the left ventricle has an approximate ellipsoid contour and calcu-
lates the volume of this ellipsoid by seeking the slice with a typical projection of the ventricle and
measuring ellipse parameters in this projection.

The digital image processing algorithms which were applied to the data sets are an automatic
region-of-interest finding algorithm using the temporal information in the images, a Hough transform
for ellipse detection to automatically locate the projection needed for the parametric model, and three
different segmentation techniques to calculate volumes by separating the left ventricle area from the
rest of the images and sum up the number of pixels of the separated regions multiplied by their voxel
size over the slices. The region-of-interest algorithm showed good performance. In nearly all of the
data sets a meaningful ROI could be found. The ellipse detection algorithm did not work very well due
to different reasons. One of them is the algorithm’s failing robustness if the ellipses to be found are
not exact or too much additional information is incorporated in the images. Another one is the large
number of parameters that have to be tuned in our implementation of the ellipse Hough transform.

The main part of the work was concerned with volume estimations. First of all a reference
estimation was produced by comparing the volumes of the parametric model with the volume derived
from manually drawing left ventricle contours into the images. These manual contours came from
an experienced radiologist. Unfortunately it is necessary to be content with this kind of reference
estimation due to the fact that there are no absolutely correct volume estimations available to compare
with. Calculating the volume of in vivo (living) ventricles would only be possible by a complicated
and dangerous operation and the measurement of dead hearts is not really representative, because a CT
scan of a non-beating heart does not show imaging artifacts like e.g. artifacts due to motion aliasing.

The segmentation techniques utilized for the comparisons Waresholding Active Contours
(SnakespandIntelligent Scissors (Live Wirepased on graph-theory. The following table shows the
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results of the segmentation techniques with respect to certain problem areas:

problem area | Thresholding| Snakes | Live Wire
accuracy of the estimated very weak | good very good
volumes

accuracy of the segmented - good very good
contours

total time for segmentation very fast | slow slow

sensitivity to partial volume high high, hard to take high, easy to take
effect into account into account
sensitivity to weak image high high, hard to take high, easy to take
contrast into account into account
dependency on algorithm pa- no yes no

rameters

The table shows that the Live Wire segmentation technique is the most useful one. It has the
advantage that it supports a manual segmentation by an operator in an optimal way by specifiying an
exact delineation of a contour while the operator is responsible for the recognition of the object to be
segmented. The problems which appeared with the Snakes algorithm like tendency to be drawn to high
gradients, laborious parameter tuning and problems with region separation and papillary muscles can
easily be avoided with the Live Wire tool. We think that in the hands of an experienced radiologist
this tool is a very powerful one to segment images, especially in situations where full-automatic
segmentation techniques fail.

7.2 Future Work
Some possible areas for future work are:

e Testing 3D segmentation techniques like a 3D region growing algorithm. The third dimension
incorporates new information which can be used for an effective segmentation. A manually
defined cutting plane could be used to separate the different heart chambers. Nevertheless this
approach will fail in including the papillary muscle and the problem of the low z-resolution of
the image slices (only 8 image slices can be used for the 3D visualization of the heart) is to be
considered.

e Incorporate learning and classification algorithms like an Active Appearance Model. By pro-
viding more similar data sets it would be possible to establish a training set of left ventricles
and build a classificator, e.g. by an Active Shape or an Active Appearance Model which is able
to automatically segment image data sets. Here either a more powerful and more robust way to
automatically locate end-diastolic and end-systolic images has to be found or this choice has to
be incorporated in a separate classification schema.

e Test other algorithms for ellipse detection. Perhaps a generalized Hough transform would be
capable of automatically finding the interesting projections for the parametric model.
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