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Abstract
Sparse general matrix-matrix multiplication on GPUs is chal-
lenging due to the varying sparsity patterns of sparse matri-
ces. Existing solutions achieve good performance for certain
types of matrices, but fail to accelerate all kinds of matri-
ces in the same manner. Our approach combines multiple
strategies with dynamic parameter selection to dynamically
choose and tune the best fitting algorithm for each row of
the matrix. This choice is supported by a lightweight, multi-
level matrix analysis, which carefully balances analysis cost
and expected performance gains. Our evaluation on thou-
sands of matrices with various characteristics shows that we
outperform all currently available solutions in 79% over all
matrices with >15k products and that we achieve the second
best performance in 15%. For these matrices, our solution
is on average 83% faster than the second best approach and
up to 25× faster than other state-of-the-art GPU implemen-
tations. Using our approach, applications can expect great
performance independent of the matrices they work on.

• Theory of computation→Massively parallel algo-
rithms; • Computing methodologies → Linear algebra
algorithms.

SpGEMM, Sparse Matrix, GPU, Analysis
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1 Introduction
Sparse general matrix-matrix multiplication (SpGEMM) is
ubiquitous in many applications like the algebraic multigrid
method [2], graph processing [12] and mesh operations [20].
While dense matrices, with identical numbers of products per
output element and predetermined memory access patterns,
can be accelerated well with single instruction, multiple
threads (SIMT) processors like the graphics processing unit
(GPU), SpGEMM poses a significant challenge on that kind of
hardware. Due to locally varying non-zero (NZ) patterns and
unpredictable numbers of intermediate and output elements,
SpGEMM leads to unbalanced workloads and uncoalesced
memory accesses, resulting in low performance on GPUs.
Since GPUs offer high theoretical peak performance and
are gaining importance in supercomputing, optimizing GPU
SpGEMM is of particular interest.

SpGEMM computes the sum of products for each element
of the matrix 𝐶 given two sparse input matrices 𝐴 and 𝐵:

C𝑖 𝑗 =
∑
𝑘

A𝑖𝑘 · B𝑘 𝑗 , (1)

where 𝑖 and 𝑗 are the row and column indices of the NZ
elements of A and B, and 𝑘 is the set of colliding indices.
In the following, we assume that the matrices are stored

in the compressed sparse rows (CSR) format, which is the
most commonly used format. CSR stores the NZ elements
sorted row-major and column-minor. Every entry consists
of its value and its column index. Additionally, a sorted array
of row offsets indicates the beginning of each row.

Challenges There are multiple challenges in computing
SpGEMM on SIMT hardware. First, the number of non-zeros
(NNZ) per row may vary from row to row in both input ma-
trices as well as the output matrix. Thus, achieving a uniform
work distribution and a good memory access pattern is non-
trivial. Second, determining the exact size of 𝐶 is similarly
complex as the SpGEMM itself. On this account, memory
requirement estimation and workload distribution is either
done heuristically or involves extensive matrix analysis and
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counting of temporary elements, i.e., the intermediate prod-
ucts before accumulation. Third, the distribution of elements
inside one row of the output matrix may vary between a
single element, small dense regions, or widely spread el-
ements throughout the row. Thus, choosing a well-suited
accumulator of temporary elements is difficult, especially
when targeting the use of fast on-chip scratchpad memory.

While existing GPU solutions work well for the kind of
matrices they were optimized for, they fail to adapt to ma-
trices with different characteristics. As a consequence, the
performance difference of the best performing algorithms is
often orders of magnitudes apart when targeting matrices
with different sparsity patterns. It is difficult to determine the
best-suited approach by only inspecting the input matrices
upfront. Other factors, such as temporary product counts,
number of products per resulting element and variability
between rows may completely alter the efficiency of an ap-
proach. Attempting to analyze these factors easily becomes
more costly than performing the complete SpGEMM. Fur-
thermore, these characteristics may vary strongly across the
output matrix and thus might require different approaches
for parts of the output. However, switching the algorithm
locally may worsen memory access patterns and caching,
reducing performance.

Contribution Considering the aforementioned challenges,
SpGEMM needs to balance the cost of analysis and the gains
by adaption of the SpGEMM algorithm. In this paper, we in-
vestigate this trade-off and propose spECK (SpGEMM achiev-
ing Efficient Computation for all Kinds of matrices), which
achieves high performance independent of the input matrix
characteristics. We make the following contributions:
• We propose a lightweight, multi-level matrix analysis,
which balances the expected gains and costs of the anal-
ysis based on information gathered on-the-fly.
• We describe an adaptable, hash-based accumulator that
adjusts to different row characteristics and optimizes
memory access patterns and thread utilization.
• We show that switching between our hashing, dense
accumulation and direct referencing allows to locally
adapt SpGEMM to a variety of matrix characteristics.
• We use the full SuiteSparse Matrix Collection [6] to de-

sign spECK ’s multi-level analysis and algorithm selection,
which ensures universal applicability.
Comparing spECK to six state-of-the-art GPU SpGEMM

implementations, spECK achieves the best performance for
79% and the second best for 15% out of 2263 matrices from
the SuiteSparse Collection. As spECK ’s performance is highly
consistent throughout the entire data set, we achieve an
average speedup of 83% over the second best approach.

2 Related Work
Researchers have proposed many SpGEMM approaches for
GPUs over the past years. These algorithms can be divided
in four categories: Expand, Sort and Compress (ESC), Hash-
ing, Merging and Dense accumulation. An overview of their
properties is given in Table 1.

ESC was introduced in CUSP [3] and has been adapted to
work locally in bhSPARSE [14], by Dalton et al. [4, 5] and
AC-SpGEMM [19]. ESC stores all intermediate products in
temporary memory (expand), sorts them by (row and) col-
umn index and finally accumulates the values with colliding
indices (compress). During sort and compress, it works on all
intermediate products, independent of their origin and thus
achieves good load balancing and memory access patterns
automatically. ESC is fast for matrices with small numbers of
products per output element (low compaction), but it usually
requires large amounts of temporary memory. Furthermore,
when used for large rows with high compaction, sorting
the intermediate products becomes increasingly expensive
compared to only sorting the resulting elements.

Hash-based solutions [1, 7] use hashmaps as accumulators.
nsparse [16] and cuSPARSE [17] are well known hash-based
examples. Hashmaps comewith the cost of atomic operations
during accumulation. However, the efficiency of atomic op-
erations in scratchpad memory makes hashing viable on the
GPU [16]. Hashing approaches typically rely on one or two
analysis steps: (a) estimate temporary memory requirements
and (b) a symbolic SpGEMM pass to determine the output
matrix size. Both introduce an overhead. Furthermore, global
load balancing is often used to assign rows of A to bins ac-
cording to their temporary memory requirements. Typically,
a fixed number of threads is assigned to each row, which
reduces memory access- and local load balancing efficiency
compared to ESC. If scratchpad memory is insufficient, per-
formancemay drop significantly, as hashmapsmust be stored
in slower global memory [7]. Thus, hashing performs well
for medium sized rows which fit into scratchpad memory.
Merging uses sorted lists for intermediate results and

combines them using a merge-sort-like algorithm [10, 11].
RMerge [10] decomposes the inputmatrices into sub-matrices
that can bemergedwith an efficient algorithm. bhSPARSE [14]
dynamically chooses between different merging solutions
(and optionally uses ESC). Merge-based solutions share char-
acteristics with ESC, such as high performance for matri-
ces with low compaction and high memory usage for large
matrices with high compaction. As merging typically uses
equally-sized temporary arrays, they suffer from bad uti-
lization for matrices strongly varying in density or show
high preprocessing costs to transform the data into usable
portions.
Dense accumulators [15, 18] store and accumulate inter-

mediate values in dense arrays. In contrast to hashing so-
lutions, they directly use the column indices to access the
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Table 1. Comparison between state-of-the-art GPU SpGEMM algorithms and their used accumulation type.

CUSP [3] nsparse [16] RMerge [10] AC-SpGEMM [19] bhSPARSE [14] spECK

Accumulation Type ESC Hashing Merging ESC Hybrid Hybrid
Analysis Costs none med high low med adapt

Memory Requirements high low high high high low
Memory Access good rand good good rand adapt
Load Balancing good binning fixed adapt binning adapt

Work load high low med med med low
Best Performance - med to denser very thin very thin to med - all

array, thereby avoiding hash calculation and collision han-
dling at the cost of lower memory utilization. Unsurprisingly,
dense accumulators can achieve high performance for matri-
ces with relatively dense output rows, while high memory
demands limit the performance for sparse results.

spECK uses an adaptive version of hashing and dense ac-
cumulation, which we configure based on a lightweight anal-
ysis. Our hashing in combination with local load balancing
is faster than previous hashing approaches and most often
outperform merging and ESC in their respective domains.
Additionally, spECK shows the lowest temporary memory
requirements, enabling the multiplication of larger matrices.

3 Background and Motivation
Unlike previous SpGEMM solutions, which work well only
on certain types of matrices, spECK aims for high perfor-
mance on all kinds of matrices. As a basis for our discussion,
we use the full SuiteSparse Collectionwith over 2800 matrices.

The customary way to perform SpGEMMwith CSR inputs
is to compute one row of C by accumulating all rows of B
referenced within one row of A. A natural way for paral-
lelization is over the rows of A, since the output for each
row can be calculated independently using one of the be-
fore mentioned accumulation approaches. Depending on the
rows being computed, different approaches work well. Thus,
multiple solutions select alternative accumulators depend-
ing on the matrix characteristics: bhSPARSE [14] chooses an
accumulator based on the number of intermediate products.
Likewise, Kunchum et al. [13] bin the rows using intermedi-
ate product counts and sub-bin based on the NNZ per row.
nsparse [16] uses a special row accumulator for very low
NNZ. AC-SpGEMM [19] handles long rows differently.
With spECK too, we target different accumulators. De-

pending on the number of temporary products and density
for each row, we plan to switch between three accumula-
tion approaches: For sparse output rows with widely spread
NZs, hashmaps are a good choice due to their low memory
requirements. If the space between first and last NZ in the
output rows is densely populated, dense arrays can avoid the
overhead of hashing and sorting. And if the current block is
only accessing a single row in B, we can avoid accumulation

all together and directly reference the row in B. However,
to achieve high performance SpGEMM, switching between
these accumulators and configuring them must not incur
complex analysis. Especially, if the involved matrices are uni-
form, i.e., the row lengths only vary slightly, the overhead
can reduce performance below that of simpler approaches
that fit the matrix type.

3.1 Global Load Balancing
Good load balancing is essential for achieving high perfor-
mance on the GPU. Unequal load and thus unused resources
may significantly slow down execution. Load balancing typi-
cally consists of two steps: global load balancing, i.e., splitting
the work into blocks and local load balancing, i.e. distributing
the work of a block to all threads of the block. Commonly,
global load balancing is combinedwith binning over the rows
of A for switching between different accumulators [14, 16].
The rows are often assigned to bins depending on the number
of temporary products. Thus, by assigning each bin to a dif-
ferent block size, rows with few products use fewer threads
than large rows; balancing the average number of products
per thread.
For hashing, using the hash map size for different bins

may be suboptimal. As the output rows become shorter, large
hash maps become increasingly detrimental to performance,
as scratchpad memory is wasted and extracting data from
nearly empty hash maps still requires to inspect all (empty)
entries. Thus, instead of binning over the temporary prod-
ucts, we use binning to fully utilize the available scratchpad
memory, which is the most performance critical factor ac-
cording to our experiments. Similar to nsparse [16], we can
bin each row of A depending on the amount of memory
needed for accumulation. In this way, we can optimize the
utilization of scratchpad memory and ensure that all tempo-
rary elements can be stored locally (as long as the required
memory does not exceed hardware limits).
We design a load balancer that finds fitting hash map

sizes after binning and sets up blocks of threads with match-
ing thread sizes. Ideally, both the symbolic and the numeric
SpGEMM step complete in scratchpad memory. However,
scratchpad memory sizes and numbers of threads per block
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Figure 1. Local load balancing using different group sizes 𝑔
per row of input matrix B. Given a hypothetical eight threads
per block, the three columns show the access patterns for
different numbers of threads per row. 𝑔 = 8 finishes the
multiplication in 4 iterations with coalesced memory access.
𝑔 = 4 requires 3 iterations, 𝑔 = 2 requires 4 with a worse
memory access pattern. (𝑔 = 1 would take 7).

cannot be scaled down below certain hardware limits when
trying to achieve full hardware utilization. Single rows are
often too short to provide enough parallelization even for the
smallest configuration. To tackle this issue, we combine mul-
tiple short rows into a single block to maximize the scratch-
pad memory usage and increase the thread utilization.

Still, binning comes at a cost. Many matrices have a nearly
uniform number of temporary elements per row, in which
case all rows fall into the same bin. In these cases, binning
(and the involved deep analysis), creates unnecessary over-
head. Note that in nearly 40% of the matrices in the SuiteS-
parse Collection, the highest number of temporary elements
is less than twice as large as the average. With spECK , we
aim to detect those cases where the row with the highest
memory demands does not exceed the average demands
greatly and avoid binning. Similarly, for small matrices the
expected performance gained by binning is small compared
to the overhead and we also want to avoid binning.

3.2 Local Load Balancing
The assignment of threads to entries in A and B has a big
effect on performance. Ideally, memory access to the rows
of B should be coalesced. However, as B’s rows may vary
in size, it is difficult to assign a fitting number of threads to
each row. Previous work [10, 14, 16] usually uses a constant
number of threads. Assigning many threads will yield perfect
memory access, however, for small rows many threads are

idle. Contrary, using few threads will assign work to all
threads, but memory access patterns worsen. An ideal local
load balancer would assign exactly as many threads to each
row in B as there are entries [19]. However, the costs of
such dynamic load balancing are high. In contrast, static
local load balancing omits further analysis, but often leads
to low utilization of the threads, see Figure 1. For example,
nsparse assigns a fixed number of 32 threads to each row of B,
independent of the block size and the NNZ of the row. Over
50% of the matrices in SuiteSparse Collection have less than
eight NZ per row on average, in which case only a fourth of
the available threads are utilized while the remaining threads
are idle. Idling also occurs, if few rows are assigned to a block:
For example, if a block only accesses eight rows of B and the
block size is 1024 threads, 768 threads (1024 − 32 · 8) do not
contribute any work.
With spECK we aim to improve the thread utilization

compared to static local load balancers, while requiring less
expensive analysis thanAC-SpGEMM . By choosing a suitable
number of threads per row of B for each block, we can find
a balance between the two extremes. Since every block ac-
cesses different sets of rows in B and a single SpGEMM may
use millions of blocks for the SpGEMM kernels, the local
load balancer still must be lightweight to minimize overhead.
Our experiments show that it is not necessary to take the
length of every row of B into account to get well-suited load
balancing. Rather, the number of rows and the average and
maximum row length in B are sufficient to choose suitable
values of 𝑔. In this way, we can reduce the overall number of
iterations for accumulation and ensure good memory access
patterns while avoiding complex, time consuming analysis.

3.3 Conditional Lightweight Analysis
Most of our optimizations rely on matrix analysis. While
extracting detailed information about the NZ distribution
can help selecting the best suited method and load balanc-
ing, the cost of the required analysis could easily exceed the
performance gains compared to using the same method for
every matrix and row. For example, nsparse [16] on average
requires about 30% of the execution time to determine in-
termediate memory requirements and count the number of
output elements. In extreme cases, up to 60% may be spent
on these steps. If an approach naturally fits the input matri-
ces, analysis would significantly reduce performance. While
avoiding the analysis may be tempting, tackling SpGEMM
with no knowledge about the expected workload or output
sizes involves heavy memory overheads and complicates
load balancing. For example, AC-SpGEMM [19] may over-
allocate temporary memory by a factor of 10×. spECK aims
to minimize the memory requirements, allowing for larger
matrices to be multiplied.
Our goal to achieve high performance for all matrices

requires information about the matrices involved in the mul-
tiplication while ensuring analysis overheads stay low. Thus,
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Figure 2. Procedure used in spECK . Load balancer and
SpGEMM select the best suited methods depending on the
previously obtained analysis.

we propose a lightweight, first analysis to gather general in-
formation about the involved matrices and decide whether a
deeper analysis and load balancing is advisable. While other
approaches also run a first analysis [14, 16], they fall short
of our approach: Previous work only considers the number
of temporary elements generated per row, which can be de-
termined by summing over the row lengths referenced in B.
While this yields an upper bound for the temporary memory,
it does not provide sufficient data to make an informed de-
cision between different algorithms or local load balancing.
Analyzing each referenced row in B in detail, i.e., looking at
all column indices, would give better insights, but incurs high
additional overhead. We found that, for algorithm selection
and adaption, general statistics among the referenced rows,
like average and maximum row length as well as maximum
and minimum column index of B (and thus C), are sufficient.
Using thisO(𝑁𝑁𝑍𝐴) analysis, we guide global and local load
balancing strategies, decide and configure the accumulation
strategy and decide whether to perform additional analysis
and load balancing before numeric SpGEMM.

4 spECK
spECK consists of six major stages, as illustrated in Figure 2:
First, a lightweight row analysis gathers information about
the involved matrix rows. Depending on its outcome, load
balancing is performed. Then, a symbolic SpGEMM step
determines the memory requirements for the output matrix
and gathers additional information about the execution. The
symbolic pass chooses between our adaptable hashing, dense
accumulation and direct referencing and performs local load
balancing. After a second, optional global load balancing
step, numeric SpGEMM is performed. Finally, the output data

is sorted in case the accumulation did not already provide
sorted NZs and C is generated.

4.1 Row Analysis
spECK parallelizes SpGEMM over the rows of A, which can
be processed independently. To this end, we start by ana-
lyzing the rows of A alongside the referenced rows of B. A
thorough analysis of each NZ in Bwould induce a large over-
head comparable to the actual execution of the SpGEMM
itself. Thus, we extract as few features as possible while still
being able to select a well suited accumulator and parameters
for each matrix and row. For each row of A, spECK extracts
the following information: a) the total number of products,
b) the number of products in the longest referenced row of
B and c) the minimum and maximum column index of all
referenced rows of B. Furthermore, we extract the maximum
number of products over all rows of A.

Algorithm 1: Row Analysis
1 𝑝𝑟𝑜𝑑 ← 0, 𝑝𝑟𝑜𝑑𝑚𝑎𝑥 ← 0
2 forall 𝑟𝑜𝑤A of A do
3 𝑝𝑟𝑜𝑑𝑟 ← 0, 𝑝𝑟𝑜𝑑𝑟,𝑚𝑎𝑥 ← 0
4 forall 𝑐𝑜𝑙A of 𝑟𝑜𝑤A do
5 𝑖𝑑B,0 ← off B [𝑐𝑜𝑙A], 𝑖𝑑B,𝑛 ← off B [𝑐𝑜𝑙A + 1]
6 𝑐𝑜𝑙𝑚𝑖𝑛 ← 𝑐𝑜𝑙𝑠B

[
𝑖𝑑B,0

]
7 𝑐𝑜𝑙𝑚𝑎𝑥 ← 𝑐𝑜𝑙𝑠B

[
𝑖𝑑B,𝑛 − 1

]
8 𝑝𝑟𝑜𝑑𝑟 ← 𝑝𝑟𝑜𝑑𝑟 + 𝑖𝑑B,𝑛 − 𝑖𝑑B,0
9 𝑝𝑟𝑜𝑑𝑟,𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝑝𝑟𝑜𝑑𝑟,𝑚𝑎𝑥 , 𝑖𝑑B,𝑛 − 𝑖𝑑B,0)

10 𝑝𝑟𝑜𝑑 ← 𝑝𝑟𝑜𝑑 + 𝑝𝑟𝑜𝑑𝑟
11 𝑝𝑟𝑜𝑑𝑚𝑎𝑥 ←𝑚𝑎𝑥 (𝑝𝑟𝑜𝑑𝑚𝑎𝑥 , 𝑝𝑟𝑜𝑑𝑟 )

Note that this analysis is stillO(𝑁𝑁𝑍𝐴) and we parallelize
it over the NZ of A, see Algorithm 1.
It provides all information needed to decide if the global

load balancer should be used in the symbolic step, and if
so, which bin each row falls into, and if not, which bin is
used instead, as well as the number of threads the local load
balancer assigns per row of B. Together with the NNZ per
row of C, determined in the symbolic SpGEMM stage, this
analysis also provides the information required to decide if
the global load balancer should be used for the numeric step
and which bins are required, and if a block is dense enough
to benefit from dense accumulation. The details about the
usage are described below.

4.2 Global Load Balancing
The goal of the global load balancer is to find fitting hash
map sizes to maximize the scratchpad memory usage and to
set up blocks of threads with matching thread sizes.

Configuration spECK uses five kernel configurations. The
first and largest uses the maximum available scratchpad
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memory (48 KB on Titan V) and maximum kernel size (1024
threads) which guarantees full hardware utilization. Each
successive kernel configuration uses half the amount of
scratchpadmemory and half the number of threads, ensuring
that kernel launches fully use the available resources. Note
that the Titan V allows to use double the shared memory size
(96 KB) with the same maximum of 1024 threads, essentially
halving the number of concurrently active blocks (halving
the occupancy). We additionally use this configuration to
enable a largest possible hash map size in efficient scratch-
pad memory, resulting in six kernels in total. As the load for
small output rows reaches below efficient kernel sizes, we
merge multiple small blocks to be processed within a single
block to avoid underutilization of the hash maps
To choose between those kernel configurations for the

symbolic step, the load balancer can use the information
from the row analysis. With the goal of ensuring that pro-
cessing can be completed in scratchpad memory, we use the
number of products as a conservative estimate for the kernel
configuration, i.e., the case where no products are combined
and no compaction occurs. According to our experiments,
this is a highly conservative estimate: Over the SuiteSparse
Collection, the average compaction factor is seven, whereas
there is a correlation with the matrix size. For example, for
matrices with fewer than 10 million products, the average
compaction factor is only two. While we could use these
factors to speculate about an ideal hash map size, using the
conservative estimate guarantees that the accumulation can
complete in scratchpad memory. Furthermore, it is impor-
tant not to fill the hashmap to keep hash collisions low and
performance high, which we achieve automatically with the
conservative size estimate. For the numeric step, the load
balancer does not have to rely on estimates. As the sym-
bolic step computes the row sizes of C, the load balancer can
use the exact output size to choose the appropriate kernel
size. To ensure hashmaps are not getting too full, we choose
scratchpad memory such that the final hashmap occupancy
does not exceed 66%.

Binning To perform load balancing, i.e., the assignment of
rows to kernels, we use binning. Previous approaches pull
apart neighboring rows by using atomic operations to insert
single rows to bins at a time [14, 16]. We found that this can
significantly hurt performance, which we attribute to the fact
that matrices often show internal structures, e.g., diagonal-
like patterns or local clustering (see Figure 8). To mitigate
this issue, we perform binning locally in each block first
and append them globally in a single transaction. For local
binning we use an efficient prefix sum to ensure the ordering
is kept according to the row order in the CSR format. We
use parallel prefix scans for each bin that can potentially be
non-zero, i.e.we skip the bins for the largest configurations if
they are not required for the matrix. By using the maximum
block size of 1024 threads, we ensure high consistency and

improve the cache hit rate for rows with overlapping NZ
column indices. At the same time, we avoid costly global
sorting within all bins.

To tackle the issue of having rows too short to fully utilize
the smallest kernel size, our load balancer performs a block
merging procedure for the smallest bin. This merging is re-
lated to the NP-complete bin packing problem, i.e., finding
the ideal subset of rows to fully utilize the available scratch-
pad memory. Again, considering the order of input rows,
we only consider merging neighboring elements. Still, com-
puting the ideal solution is—to the best of our knowledge—
infeasible in parallel. Greathouse and Daga [9] faced a similar
problem in their sparse matrix vector multiplication. They
opted for serial CPU preprocessing, which limits their ap-
proach to work efficiently only on architectures where both
CPU and GPU have efficient access to the matrix. With the
goal of running our load balancer on the GPU for unknown
inputs, we present a parallel approach for bin merging.

Algorithm 2: Block Merge
1 for 𝑖 ← 0 to 5 do
2 𝑘 ← 0, 𝑠𝑡𝑒𝑝 ← 2𝑖
3 while 𝑘 ≤ 𝑛 do
4 if 𝑏𝑘 + 𝑏𝑘+𝑠𝑡𝑒𝑝 < 𝑚𝑒𝑚𝑚𝑖𝑛 then
5 𝑏𝑘+𝑠𝑡𝑒𝑝 ← 𝑏𝑘 + 𝑏𝑘+𝑠𝑡𝑒𝑝
6 𝑘 ← 𝑘 + 2 × 𝑠𝑡𝑒𝑝

Algorithm 2 and Figure 3 illustrate the merging procedure
where the while loop in line 3 is run in parallel on all threads
of a block. Our approach merges two neighboring blocks as
long as their combined temporary memory requirements do
not exceed the available memory limit. We do 6 iterations of
the merging procedure, since our hashing accumulator can
handle up to 32 rows per block. This parallelization is similar
to running a prefix sum. In the worst case, we achieve a
solution which is within 50% of the maximum: two neighbors
can always be merged if their sum is less than 100%. Hence,
if they cannot be merged, their average utilization must be
higher than 50%.

No load balancing While aforementioned considerations
lead to good performance for the load balancer, allocating
memory for the bins and performing load balancing still
yields additional overhead. Thus, we execute the load bal-
ancer only if we expect a performance improvement higher
than the computational cost of the load balancer. For exam-
ple, small matrices or matrices with uniform distribution of
NNZ per row are processed using a fixed number of rows
per block with a single kernel size that has enough memory
to store all entries of the longest row. However, if there is a
large variety in row length, using equal kernel sizes may lead
to high underutilization of scratchpad memory. In this case,
using the load balancer will result in a significant speed-up.



spECK: Accelerating GPU SpGEMM PPoPP ’20, February 22–26, 2020, San Diego, CA, USA

7 8 3 0 1 5 4 3

15 3 6 7

15 3 13

15 3 13

5 2 2 3 0 0 1 2

7 5 0 3

12 3

15

15 3 13 15

Figure 3. Parallel reduction example for combining neigh-
boring blocks until they fully utilize available memory. Given
a maximum of 16 elements per block, neighboring blocks
with same row counts are combined as long as their sum of
elements is below 16. Our load balancer reduces the number
of blocks from 16 to 4. However, the optimal solution would
combine the blocks of size 3 and 13 and further reduce the
number of blocks to 3.

To decide whether to run the load balancer, we rely on the
information from row analysis and the symbolic SpGEMM
pass. We provide a detailed analysis of the best performing
choices alongside the other influenced stages in Section 5.

4.3 SpGEMM
We use the same approach for computing SpGEMM in a
symbolic pass to count the elements of C during analysis
and in the numeric pass for generating the final result.
In both cases, we decide per block which method to use

for expected best performance: direct referencing, hashing
or dense accumulation. Furthermore, both use a local load
balancer to decide which thread should work on which entry
in A and referenced entries in B.

Local load balancing The task of the local load balancer
is to assign threads to rows of B such that the workload is
balanced and the number of iterations is minimal. At the
same time, the number of threads per row should be high
enough to achieve coalesced memory access. spECK ’s local
load balancer again tries to balance the cost and performance
gains. In the beginning of the SpGEMM step, we divide all
𝑇 threads of a block into 𝑘 groups of size 𝑔 = 𝑇 /𝑘 . We then
assign those groups successively to the NZ of A and thus
the referenced rows in B, see Figure 1. In this way, we are
more dynamic than with a fixed 𝑔, but incur less cost than
completely dynamic load balancing.

Obviously, good performance depends on 𝑘 and thus 𝑔. To
this end, we again use the information available from the row
analysis. We use the average row length over all rows that
are referenced in the block as a starting point for 𝑔. While
this seems a natural fit, individual long rows may require
many iterations if only few threads are assigned to such
a row (𝑖𝑡𝑒𝑟𝑚𝑎𝑥 =

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑚𝑎𝑥

𝑔
). To counteract this issue, we

consider the following heuristic: If every group has to work
throughmany rows, themany iterations required for one row

1
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Figure 4.Working principle of hash-based SpGEMM, where
all NZ are stored in one hashmap of size 4. C has 3 rows, 2
columns and 3 NZ. Hashed row and column ids (ℎ(𝑖𝑑)) index
into the map. As the hashes of 𝑟0𝑐1 and 𝑟2𝑐0 collide, 𝑟2𝑐0 is
inserted in the next available slot.

may balance out overall. Thus, we compare 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 to the
number of rows every group will process 𝑛𝑟𝑜𝑤𝑠 = 𝑁𝑁𝑍𝐴/𝑘 .
If 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 > 2𝑛𝑟𝑜𝑤𝑠 , we increase 𝑔, i.e., we assume that being
one iteration off on average is acceptable. The new group size
is 𝑔𝑛𝑒𝑤 = 𝑔

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

2𝑛𝑟𝑜𝑤𝑠
. Similarly, if 𝑛𝑟𝑜𝑤𝑠 > 2𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , we reduce

𝑔 so that more rows of B can be processed simultaneously,
using 𝑔𝑛𝑒𝑤 = 𝑔

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

𝑛𝑟𝑜𝑤𝑠
. The idea behind this adjustment is

that we bring the maximum number of iterations closer to
the number of rows being processed, while prioritizing a low
𝑛𝑟𝑜𝑤𝑠 over a low 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 . Note that changing 𝑔 changes both
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 and 𝑛𝑟𝑜𝑤𝑠 .

Finally, if 𝑘 is larger than 𝑁𝑁𝑍𝐴, i.e., if there are more
groups than rows of B to work on, we reduce 𝑘 accordingly,
to ensure each thread is assigned to at least one NZ of A.

Since we use powers of two as potential thread block sizes,
we also round 𝑔 to the closest power of two, ensuring that
all groups are of the same size and all threads are used.

Sparse Rows of C Blocks with sparse result rows are han-
dled using a hashmap with linear probing [8] in scratchpad
memory (Figure 4). Hashmaps allow for fast indexing as
long as the map is sparsely filled and for keeping the mem-
ory requirements low compared to other methods. When
hashmaps are filling up, the number of collisions rises and lin-
ear probing becomes increasingly expensive. As mentioned
before, global load balancing considers this fact. During the
symbolic step, the average map utilization is about 15%, due
to the average compression rate of seven. For the numeric
step—for which we have exact information—we use a maxi-
mum utilization of 66%.
Our hash function multiplies the element index with a

prime number and uses the modulo operation to create an
array index inside the range of the hash map. The column
index of B is used as element index when only a single row
is processed by a block. For blocks that work on multiple
rows, we use a compound integer consisting of 5 bits for
local row index and 27 bits for the column index. This way,
we reduce the size of the indices to 32 bit, which introduces
a limitation to a maximum number of columns of 227. For
larger matrices, we switch to 64 bit integers.
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Figure 5. Dense accumulation in an array of size 3, for C
with 1 row and 6 columns. During the first iteration 𝑐0 to 𝑐2
are accumulated and then stored in global memory. For the
second iteration, the array is reset, the start offset advanced
and the remaining 3 columns are accumulated.

In the symbolic step, the hashmap is used to count the
number of output elements, thus simply storing the index is
sufficient. In the numeric step, the values are accumulated,
requiring an additional array. Using 32 bit per index and 64
bit (double) per value, the symbolic step can store three times
as many elements as the numeric step.

While we choose the kernel sizes such that the hashmaps
stay below a 66% fill rate, this is not possible for the largest
kernel size, where arbitrarily sized rows may be accumulated.
If the local hashmap runs out of space, we move all locally
accumulated elements to a global hash map. To this end,
we pre-allocate just as many global hash maps as we may
need in parallel, i.e., the minimum between: the maximum
number of blocks that can run concurrently on the given
GPU and the number of blocks requiring global hash maps.
If a block needs a global hash map, it allocates from this pool
and returns it after completion. We turn to the global hash
map if we detect that not all threads may be able to insert a
new element into the local map. We then move all entries in
parallel to the global map and reset the local map. This way,
we always hash locally first before moving large numbers of
element together into the global map.

Dense Rows of C For large and dense rows, hashing be-
comes inefficient. Thus, we switch to a special dense accu-
mulator which stores elements directly in a linear array. As
we do not need to store column indices to identify entries,
the dense accumulator can store a larger number of elements.
Furthermore, it does not require sorting or collision handling,
as all entries are stored in order.
If the range from minimum to maximum column index

in the resulting row does not fit in scratchpad memory, the
dense accumulator needs multiple iterations on different
column ranges, successively progressing through the output
row, as shown in Figure 5. To efficiently advance through
the rows in B, we store the positions of the last element that
could be processed in the current iteration for each row.
In the symbolic step, we use atomic operations to set bit

masks to capture NZ elements, which enables us to store

more than 500 000 entries in scratchpad memory compared
to roughly 24 000 when using hashmaps.

In the numeric step, the size advantage is not that signifi-
cant. However, reducing the number of collisions, avoiding
global hash maps and avoiding sorting can significantly im-
prove performance. After one iteration of dense accumula-
tion, we use a prefix-sum to compact the output data and
write the partial results to C.

Single entry rows of A We implement a third, efficient
SpGEMM method for rows with only a single NZ in A. In
this case, we can count the resulting NZ in the symbolic step
using only the row offset pointers of B without investigating
the specific elements. Numeric SpGEMM can directly write
the products to the resulting array in the order of appearance
in B without the need for temporary storage, exploiting the
characteristics of sorted indices in the CSR format. While the
number of rows with a single NZ element is small overall,
1112 of the 2672 tested matrices contain at least one such
row, indicating that this is common in sparse matrices.

Symbolic SpGEMM The symbolic SpGEMM step counts
the exact number of resulting elements without calculating
their values. This information is used to allocate the output
matrix and to compute the row offsets for the CSR format
using an exclusive prefix-sum. Furthermore, as the exact
memory requirements are known, the load can be balanced
more precisely for the numeric step. In the symbolic step,
we use dense accumulation only for rows which are more
than twice as large as the largest kernel size can store. Due
to the average compaction factor of about seven for large
matrices, rows with twice as many products than available
scratchpadmemory can usually still be stored in the hashmap
and thus global hash maps are most often avoided. However,
hashmaps in global memorymust still be allocated as fallback
if the compaction for those rows is unexpectedly low.

Numeric SpGEMM The numeric SpGEMM kernel calcu-
lates and accumulates intermediate products and stores the
resulting values and indices in row-major order. Sorting of
the hash results is expensive and often requires temporary
memory for efficient computation. Thus, we use different
sorting implementations for different row lengths and avoid
sorting for medium sized rows by using the dense accumula-
tor if their density is above 18%, i.e., if the number of itera-
tions required by the dense accumulator is less or equal three.
The smallest three block sizes sort the resulting elements in
scratchpad memory before writing the results to the output
array by counting the number of elements in the hashmap
with smaller indices. For larger kernels, this approach be-
comes too expensive due to 𝑂 (𝑛2) runtime. The resource
requirements for local radix sort would reduce overall oc-
cupancy. Thus, these kernels compact the data and store it
unsorted in global memory. An additional sorting pass using
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radix sort arranges them in the right order. The largest ker-
nel size would require a different, slower sorting algorithm
with additional memory allocations and potentially the use
of slow global hash maps. On this account, we always use
dense accumulation for long rows, i.e. rows which require
the largest kernel size.

5 Parameter Selection
Choosing the best suitedmethod and parameters has a strong
influence on the performance of the multiplication. The dif-
ferent numbers of threads per block, the influence of the
sorting implementations and various matrix characteristics
make the choice of good metrics and thresholds a difficult
task. Many parameters are derived by the hardware specifica-
tions, like the optimal number of threads per block to achieve
maximum occupancy. Other parameters, like the number of
threads per row of B, are calculated by the local load bal-
ancer by following the goal of minimizing the iterations for
accumulation. Some decisions can be made by benchmark-
ing different methods and selecting the fastest. This way,
we found that hashing, together with scratchpad memory
sorting, works best for small rows and dense accumulation
should be used when possible to avoid global memory sort-
ing for medium sized rows. The decision, whether the cost
of global load balancing is higher or lower than the gains,
is more complex. Using a single threshold, e.g., a minimum
number of products required for global load balancing, does
not suffice to achieve the best performance for all matrices.
On the other hand, using additional analysis for this decision
could have a higher cost than always using the load balancer.
On this account, we decided to use only information which
can be acquired at low cost during row analysis and sym-
bolic SpGEMM, and rely on auto-tuning to achieve a high
accuracy with only a few parameters.

Global Load Balancing To estimate the cost and gains for
global load balancing, we use the ratio between themaximum
and average required scratchpad memory (𝑚𝑚𝑎𝑥/𝑚𝑎𝑣𝑔) as a
measure for the variance among the computations and thus
the gains the load balancer can achieve. If this ratio is above a
threshold and the number of rows (𝑟𝑜𝑤𝑠C) is sufficiently high
to benefit from binning, we use the load balancer. Since we
use different sorting for the three smallest kernel sizes in the
numeric step, which leads to strongly different performance
measures, we use two sets of thresholds: one set of ratio and
minimum number of rows in case the longest row requires
one of the three largest kernels and one set independent of
the used kernels. For the symbolic step, we again use two
sets of parameters. However, we use one set of parameters
for only the two largest kernel sizes and one for all kernels.

Auto-Tuning We use line-search to optimize these thresh-
olds and to obtain the best overall performance. We first
benchmark all matrices with the four combinations of global

𝑚𝑚𝑎𝑥/𝑚𝑎𝑣𝑔 𝑟𝑜𝑤𝑠C 𝑚𝑚𝑎𝑥/𝑚𝑎𝑣𝑔 * 𝑟C *
Symbolic 39.2 28000 6.0 5431
Numeric 10.5 23006 1.3 1238

Table 2. Auto-tuned thresholds used to decide if the global
load balancer should be used for symbolic and numeric
SpGEMM. Columns marked with * are the parameters used
for the largest kernel sizes (three out of six kernels in sym-
bolic and two out of six kernels in numeric SpGEMM).

load balancing (none, symbolic only, numeric only, both)
and use the slowdown of the currently selected approach
compared to the best possible as a loss. Thus, we tune the
parameters not to select the best suited approach for as many
matrices as possible, but to minimize the average slowdown
compared to the best approach. This approach fits the design
of spECK , since we aim to achieve good performance for all
matrices.
We use an inverse 3-fold cross validation to evaluate our

parameters. Using only a third of the matrices for tuning
and two thirds for evaluation, the average slowdowns com-
pared to the best performing decision is 1.9% and 2.1%. The
auto-tuned values for the three training sets converge to
similar values, less than 10% apart. Since all test sets achieve
similar performance, we average the parameters over the
three training sets for the final parameters used in spECK .
This way, we reduce the slowdown to 1.7%, and we select
the fastest of the four combinations for 85% of the matrices.
The final parameters are listed in Table 2.

6 Evaluation
We use the SuiteSparse Matrix Collection, consisting of over
2800 matrices, for evaluation of spECK . Square matrices are
multiplied using 𝐶 = 𝐴𝐴, rectangular matrices are multi-
plied using 𝐶 = 𝐴𝐴𝑇 , where 𝐴𝑇 is precomputed. For FLOPS
measurements, we count each temporary product as two
operations, i.e., multiply and add. In addition, we exclude
all matrices that cannot be multiplied by at least one GPU
method because of memory limitations. The remaining data
set consists of 2672matrices. The test system uses an NVIDIA
TITAN V with 12 GB of memory, CUDA 10.1 and an Intel i7
7700 CPU with 16GB RAM on Ubuntu 18.04.

We compare spECK to six state-of-the-art solutions: cuS-
PARSE [17] (cu), AC-SpGEMM [19] (AC), nsparse [16] (n),
RMerge [10] (r), bhSPARSE [14] (bh), and KokkosKernels [7]
(kk). Additionally, we use the CPU-based Intel MKL to com-
pare the advantages and disadvantages of GPU- and CPU-
based solutions. In all benchmarks, wemeasure the execution
time of the approaches using double precision. The memory
allocation of the output matrix is not measured since every
implementation has to allocate the same amount of mem-
ory. All other memory allocations during the multiplication
are included in the execution times except for AC-SpGEMM .
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cu AC n r bh ours kk mkl
#best 7 335 86 10 0 1875 3 356
#best* 6 304 86 10 0 1777 3 77
#inv. 0 55 49 56 75 0 815 29
𝑡𝑎𝑣𝑔† 43.6 5.46 12.6 10.7 40.8 2.75 - 44.3
𝑚/𝑚𝑏† 1.01 5.57 1.87 2.66 4.36 1.00 - -
𝑚/𝑚𝑏 † ∗ 1.01 5.33 1.87 2.66 4.36 1.00 - -
𝑡/𝑡𝑏 12.3 2.29 4.13 5.03 13.1 1.48 46.5 9.16
𝑡/𝑡𝑏 * 13.6 1.98 3.26 4.83 12.9 1.08 27.3 10.6
#5× 1.2k 180 387 973 2.0k 71 2.4k 1.6k
#5× * 1.1k 87 204 836 1.8k 3 2.0k 1.6k

Table 3. Number of matrices with best performance and
invalid computations, average computation time (in ms) over
all finished executions 𝑡𝑎𝑣𝑔, peak memory usage relative to
spECK 𝑚/𝑚𝑏 , average relative computation time compared to
the fastest 𝑡/𝑡𝑏 and number of matrices where the execution
time is more than 5× above the best. Rows marked with * are
evaluated on multiplications with more than 15k products.
Rows marked with † are evaluated on matrices that could
be completed by all GPU approaches except KokkosKernels.
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Figure 6. Smoothed GFLOPS achieved over all matrices or-
dered by number of products. Line thickness indicates the
deviation. Benchmarks, which a method failed to compute,
are replaced by the slowest valid timing for the matrix.

AC-SpGEMM allocates very large chunks at the beginning
and usually has a high over-allocation—they leave exact
memory estimates to future work. We decided to exclude
their initial allocation time, as it takes longer than the actual
multiplication for the greater part of the test set. There is
one more important difference between the tested methods:
KokkosKernels returns unsorted columns and thus violates
the CSR specification. This way, KokkosKernels omits one
of the most expensive steps in SpGEMM for large matrices,
which can take up to 40% of the total computation time.

6.1 Overall performance
Table 3 shows the overall performance statistics with trend
plots in Figure 6. spECK achieves the best performance for
1875, i.e., 70.2%, of all matrices and the second best in 15.3%.
335 and 86 matrices are computed fastest with AC-SpGEMM
and nsparse. RMerge, cuSPARSE,KokkosKernels and bhSPARSE
achieve the best performance in 10, 7, 3 and 0, respectively.
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Figure 7. Slowdown compared to fastest method per matrix
over all matrices with > 15k products. A ratio of 1 means the
method is the fastest for this matrix.

Intel MKL is fastest for 356 matrices, most of them being
small matrices for which the overhead of using a GPU is too
large and the parallelization is low. Considering only ma-
trix multiplications with more than 15k products, Intel MKL
achieves the best performance for 77 out of 2263 matrices,
while GPU approaches win the remaining 96.6%.

The trend plot clearly shows that our approach achieves
the best GPU performance, independent of the input size.
Furthermore, it also shows that 15k products form the bound-
ary where GPU-based methods outperform Intel MKL on a
standard CPU. Thus, we use 15k products as a minimum for
the further evaluation and statistics, focusing on the differ-
ent GPU approaches. Looking at the average relative com-
putation time compared to the individual best approach, it
becomes clear that spECK achieves exceptional performance
throughout the entire test set, with only 108% of the mini-
mum computation time among all methods. AC-SpGEMM ,
nsparse and RMerge require 198%, 326% and 483% with a
large gap to bhSPARSE, cuSPARSE and KokkosKernels with
1290%, 1360% and 2730%. Even for those matrices, where our
solution is not the best, we require only 137%.

Figure 7 shows the slowdown of each method compared to
the respective fastest method for each matrix. spECK shows
the best performance overall and is always close to the best
performing method. nsparse and AC-SpGEMM achieve sim-
ilar results, but nsparse exhibits slowdowns of more than
5× for a larger number of matrices. The share of matrices
which are computed five times slower compared to the fastest
method is 0.1%, 3.8%, 9.0%, 36.9%, 50.1%, 77.6% and 89.3% for
spECK , AC-SpGEMM , nsparse, RMerge, cuSPARSE, bhSPARSE
and KokkosKernels, respectively.
cuSPARSE and spECK are the only approaches which are

able to complete the multiplication of all tested matrices. In
the following comparisons, we evaluate only on the 2092
matrices that could be completed by all methods and have
more than 15k products. We exclude KokkosKernels, as it fails
to compute 815 matrices and would significantly reduce the
remaining number of matrices.
The average computation time of spECK over these ma-

trices is 2.75ms. The second fastest method, AC-SpGEMM ,
already takes twice the time for computation with 5.46ms
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Figure 8. Non-zero patterns of common matrices used in
evaluation.

excluding their initial chunk allocation. RMerge and nsparse
achieve a comparable average performance with 10.69ms
and 12.55ms. bhSPARSE and cuSPARSE require more than
ten fold the time of spECK to complete the computation with
40.8ms and 43.6ms.

Looking at the average peak memory usage, hash-based
methods clearly outperform ESC and merging implementa-
tions. We include all allocations done during SpGEMM, in-
cluding the allocation of the matrix C. spECK has the lowest
average peak memory usage per matrix. cuSPARSE achieves
nearly the same memory usage, followed by nsparse with
87% higher average memory usage respectively. We attribute
our lower memory requirements to a better analysis of the
requirements for global hashing and only allocating memory
for the global load balancer if we use binning.

6.2 Common Matrices
We provide detailed analysis on 11 matrices, as shown in
Table 4 and Figure 8 & 9. These matrices are used in evalu-
ation of many prior SpGEMM implementations and likely
represent the subset of matrices these methods are optimized
for. While AC-SpGEMM , nsparse and RMerge together are
able to achieve a higher performance than spECK in 3 of 11
cases, spECK is always only slightly behind. In contrast, AC-
SpGEMM , nsparse and RMerge often fall back significantly,
achieving only fractions of the highest performance. The
memory consumption for the commonmatrices again clearly
shows the difference between hashing and other methods,
cf. Figure 10.
It can be observed that nsparse and spECK achieve com-

parable speed in many of these matrices, but significantly
differ for QCD, hugebubbles, stat96v2 and email-Enron. These

Matrix Rows Cols A NNZ A Prod. NNZ C
webbase 1000 1000 3.1 69.5 51.1
hugebu. . . 21.2k 21.2k 63.6 190.7 132.7
mario0. . . 389.9 389.9 2.1 12.8 6.4
stat96. . . 29.1 957.4 2.9 8.7 0.4
email-. . . 36.7 36.7 0.4 51.5 30.5
cage13 445.3 445.3 7.5 137.3 60.6
144 144.6 144.6 2.1 33.0 10.4
poisso. . . 13.5 13.5 0.4 11.8 3.0
QCD 3.1 3.1 0.1 4.7 0.6
harbor 46.8 46.8 2.4 156.5 7.9
TSC. . . 8.1 8.1 2.0 1352.4 8.8

Table 4. Statistics about often-used matrices for in-depth
comparisons. Rows and columns are given in thousands,
NNZ and products are given in millions.
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are examples where their default setup, i.e., always using
hashing and having no local load balancing hurts their per-
formance. For example, stat96v2 has medium to long rows
in 𝐴, but very short rows in 𝐵. While our solution chooses
appropriate thread counts to access 𝐵, nsparse always uses
32 threads, leading to a utilization of only 9%.
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minimum of 702 (the smallest kernel size with dense accu-
mulation).
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6.3 Additional Evaluations
The cost of each stage in spECK is shown in Figure 11. The
majority of the computation time is spent in the actual nu-
meric SpGEMM kernel which calculates the resulting matrix
values. The row analysis step is very cheap and introduces
only a small overhead of less than 10% in most cases. Run-
ning the load balancer for both SpGEMM stages is roughly as
expensive as the row analysis step on average. Even though
spECK only sorts a fraction of the rows which are computed
with hashmaps, sorting of the results can take up to 40% of
the computation time.

spECK has many similarities with nsparse, but provides a
set of improvements for different aspects in SpGEMM compu-
tation. For example, we use dense accumulation for medium
to large rows to avoid expensive sorting, which can improve
the performance more than 60% compared to using only
hashmaps (Figure 12). For rows exceeding the size of the

largest scratchpad memory hashmap, the performance in-
creases up to 40×, e.g., for the matrix 208bit, as slow global
memory is avoided. Another improvement is the local load
balancer with dynamic selection of 𝑔, the number of threads
per row of 𝐵. The dynamic selection of 𝑔 has a significant
impact on the performance, accelerating the computation up
to 8× (Figure 13). Outside of the sweet spot around 300 NZ
per row of 𝐶 , where 𝑔 = 32 achieves a good occupancy, the
performance decreases strongly for larger and smaller rows.
Using our dynamic selection of 𝑔, the average number of iter-
ations compared to the best value of 𝑔 is only 1.02. Contrary
to nsparse, our load balancer is only used for matrices where
we expect a performance improvement. Thus, we reduce the
overhead strongly and achieve twice the performance for
small matrices (Figure 14). Again, the average slowdown us-
ing our decision if load balancing should be used, compared
to always selecting the best performing decision, is below
2%.

7 Conclusion
Computing SpGEMM on GPUs is difficult due to varying
sparsity patterns and the different sizes of the matrices. We
propose a solution that addresses these challenges by com-
biningmultiple approaches and enhancing themwith amulti-
level analysis as well as global and local load balancing. Con-
sidering the cost and gains of the analysis and activating load
balancing, spECK achieves high performance for all kinds
of matrices. We achieve the best performance for 79% out of
2263 matrices from the SuiteSparse Matrix Collection and we
always achieve performance close to the best implementa-
tion for the remaining 21%. Furthermore, our approach has
the lowest temporary memory requirements. A limitation of
spECK is the necessity to keep both input matrices and the
output matrix in memory during the computation. Even with
one of the lowest memory demands, the limited amount of
memory available on GPUs limits the size of matrices which
can be multiplied, forcing the use of slow CPU-SpGEMM for
large matrices instead. We plan to solve that in future work
with partial multiplications of large matrices on single GPUs
and shared matrix storage in multi-GPU setups.
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A Artifact description
A.1 Getting Started

1. Install CUDA 10.1 or 10.2 from
https://developer.nvidia.com/cuda-downloads

2. Download cub 1.8.0 from https://nvlabs.github.io/cub/
and extract content into include/external

3. Install g++ >7 and gcc on Linux or url Studio with
"Desktop development with C++" workload

4. Install CMake 3.15.5 or newer from https://cmake.org/
5. Clone spECK from Github

https://github.com/GPUPeople/spECK
6. Set spECK_STATIC_MEM_PER_BLOCK and

spECK_DYNAMIC_MEM_PER_BLOCK in
include/Multiply.h line 9 & 10 to the values your hard-
ware supports
• spECK_STATIC_MEM_PER_BLOCK should be
49152 for all recent devices
• spECK_DYNAMIC_MEM_PER_BLOCK should be
49152 for all devices before Volta and Turing, 65536
for Turing devices and 98304 for Volta devices
• if you do not know your GPU generation or hard-
ware limits, compile and run spECK and it will throw
errors with information about the correct values

7. Build
• Windows: (use CMake GUI to setup project) or build
the project using "cmake
-DCUDA_BUILD_CC70=TRUE -S . -B build -A x64"
(set CCXX to correct Compute Capability) followed
by opening "runSpeck.sln". Select "Release" configu-
ration and build
• Linux: Set the correct ComputeCapability (Default
is CC70) in "linuxsetup.sh" and run "./linuxsetup.sh"

8. Run
• Windows: ".\build\Release\runspECK.exe
<path-to-matrix> config.ini"
• Linux: "./build/runspECK
<path-to-matrix> config.ini"

A.2 Using spECK
spECK is compiled into a library "spECKLib.lib" and an ex-
ecutable "runspECK.exe" (or linux equivalents). The exe-
cutable comes with an .mtx (Matrix Market File Format)
reader which converts the .mtx file into and saves an ".hicsr"
binary file for faster runtimes. runspECK takes 2 input pa-
rameters:
• path to matrix in .mtx file format (required)
• path to config.ini (optional)

Config.ini contains helpful options for:
• TrackCompleteTimes: enable/disable benchmarking
• TrackIndividualTimes: enable/disable benchmarking
of all stages of speck (comes with performance over-
head)
• CompareResult: enable/disable result matrix structure
comparison with CUSPARSE. Prints an error message
if column indices do not match
• IterationsWarmUp/IterationsExecution: set number of
warm up and execution iteration for benchmarking.
WarmUp is helpful to make sure that the GPU is run-
ning at it’s highest clock rate
• InputFile: override input matrix - if an input file is de-
fined in the config, this will override the first command
line parameter

A.3 Detailed Results
The achieved GFLOPS of all methods over all 2672 matrices
can be found in Figure 15. The GLOPS are calcucated using
twice the number of products per multiplication (1×multiply,
1× add) divided by the duration of the SpGEMM.
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Figure 15. GFLOPS achieved by all methods for each matrix. We use twice the number of products as number of operations
(multiply and add) divided by the duration of the computation for all methods.
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