
Stochastic Substitute Trees for Real-Time Global Illumination
Wolfgang Tatzgern
Graz University of

Technology

Benedikt Mayr
Graz University of

Technology

Bernhard Kerbl
TU Wien

Markus Steinberger
Graz University of

Technology
SamplingVPL Tracing

new fr
ame

Substitute Tree Denoising + Filtering

Output

Figure 1: Global illumination with stochastic substitute trees: For every frame, we distribute VPLs (0.4ms), build a substitute
tree over the VPLs (0.9ms), stochastically sample the tree (3.4ms), apply CNN denoising (17.4ms) and temporal filtering (0.9ms).

ABSTRACT
With the introduction of hardware-supported ray tracing and deep
learning for denoising, computer graphics has made a consider-
able step toward real-time global illumination. In this work, we
present an alternative global illumination method: The stochastic
substitute tree (SST), a hierarchical structure inspired by lightcuts
with light probability distributions as inner nodes. Our approach
distributes virtual point lights (VPLs) in every frame and efficiently
constructs the SST over those lights by clustering according to
Morton codes. Global illumination is approximated by sampling
the SST and considers the BRDF at the hit location as well as the
SST nodes’ intensities for importance sampling directly from inner
nodes of the tree. To remove the introduced Monte Carlo noise, we
use a recurrent autoencoder. In combination with temporal filtering,
we deliver real-time global illumination for complex scenes with
challenging light distributions.

CCS CONCEPTS
• Computing methodologies→ Ray tracing; Graphics processors.

KEYWORDS
Global illumination, many lights, ray tracing, real-time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
I3D ’20, May 5–7, 2020, San Francisco, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7589-4/20/05. . . $15.00
https://doi.org/10.1145/3384382.3384521

ACM Reference Format:
Wolfgang Tatzgern, BenediktMayr, Bernhard Kerbl, andMarkus Steinberger.
2020. Stochastic Substitute Trees for Real-Time Global Illumination. In
Symposium on Interactive 3D Graphics and Games (I3D ’20), May 5–7, 2020,
San Francisco, CA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3384382.3384521

1 INTRODUCTION
Real-time global illumination (GI) is one of the most sought-after
features in computer graphics. Path tracing renownedly provides
an elegant solution to simulating global light transport by recur-
sively sampling along a large number of rays that traverse the scene.
Today, almost all competitive path tracers leverage the massively
parallel processing power of the graphics processing unit (GPU). Re-
cent GPUs have been fitted with dedicated ray tracing modules that
help mitigate the bottleneck of ray-based scene traversal. Further-
more, specialized inferencing units (tensor cores) have been added to
evaluate pre-trained convolutional neural networks (CNN) to filter
undersampled images. Although backed by hardware, ray tracing
and inference remain prohibitively expensive. Hence, these novel
GPU features are mostly used in combination with rasterization for
bulk geometry rendering, contributing minor visual enhancements.

In contrast to path tracing, instant radiosity (IR) describes an
alternative solution to GI on hardware rasterization [Keller 1997].
IR effectively reduces the problem of indirect illumination to trivial
direct illumination by introducing a large number of virtual point
lights (VPL) that are distributed throughout the scene. In addition
to avoiding image-order complexity, such many-light rendering
approaches are particularly effective when combined with the con-
cept of lightcuts: instead of full surface shading with all lights in the
scene, lightcuts select a subset of VPLs and amplify their intensity
for shading [Walter et al. 2005]. However, generating lightcuts is
computationally intensive and usually implies off-line processing.

https://doi.org/10.1145/3384382.3384521
https://doi.org/10.1145/3384382.3384521
https://doi.org/10.1145/3384382.3384521

I3D ’20, May 5–7, 2020, San Francisco, CA, USA Wolfgang Tatzgern, Benedikt Mayr, Bernhard Kerbl, and Markus Steinberger

In this paper, we describe a new approach for fast, high-quality
global illumination on modern GPUs by extending the concept of
stochastic lightcuts (SLC) [Yuksel 2019]. Our Stochastic Substitute
Trees (SST) use custom substitute lights whose geometric properties
are purpose-built to stochastically approximate a continuous light
distribution. In the context of real-time GI, we show how SSTs pro-
vide an ideal complement to recently introduced GPU capabilities:
in combination with ray tracing for visibility, deep learning for im-
age reconstruction and adaptive temporal filtering, SSTs compare
favorably to other state-of-the-art solutions in terms of performance
and temporal stability. We make the following contributions:

• We introduce a novel method for generating substitutes for
inner light tree nodes that model their light contribution as
distributions. To the best of our knowledge, we are the first
to propose using representatives whose geometric properties
are disjoint from the initial VPLs.

• We show how SSTs can be generated in parallel on the GPU
each frame for real-time animations and dynamic lighting.

• We demonstrate how the SST can be efficiently sampled for
Lambertian and glossy materials.

• Wedemonstrate our approach inNVIDIA Falcor and evaluate
it against state-of-the-art methods for global illumination on
a variety of static and animated scenes.

• We discuss the combination with hardware ray tracing, in-
ferencing capabilities, and temporal filtering.

2 BACKGROUND AND RELATEDWORK
With the original rendering equation [Kajiya 1986], path tracing
emerged as the de facto Monte Carlo method for global illumination.
While path tracing entire frames remains unattainable in real-time,
ray tracing is commonly used for effects such as shadows, ambient
occlusion or glossy reflections [Keller et al. 2019]. Ray tracing is
classified as “embarrassingly parallel”, but achieving optimal uti-
lization of the GPU has proven challenging [Aila and Laine 2009].
Recent models thus contain dedicated ray tracing hardware [Haines
and Akenine-Moller 2019; NVIDIA Corporation 2018].

Aside from path tracing, the most prominent alternatives for
simulating global illumination include metropolis light transport,
photon mapping and instant radiosity [Jensen 1996; Keller 1997;
Veach and Guibas 1997]. Among these methods, instant radiosity
stands out as an approach that easily maps to standard rasterization
APIs, since all indirect illumination is approximated by VPLs. To
compute their distribution, initial light sources emit multiple VPLs,
whose path is traced throughout the scene. Each intersection with
geometry may lead to another bounce or the termination of the
path and final placement of the VPL. Based on this idea, many-
light rendering has emerged as a new class of algorithms for image
synthesis [Dachsbacher et al. 2014; Lin and Yuksel 2019; Prutkin
et al. 2012; Ritschel et al. 2008; Segovia et al. 2007]. While using a
higher number of VPLs yields superior results in most many-light
methods, the implied effort for shading severely inhibits scalability.

To cap the number of VPLs that participate in shading, Walter
et al. [2005] presented lightcuts. They generate a static binary light
tree over all VPLs, where each inner node represents the lights
in its leafs. These representative lights are obtained by recursively
merging nodes with similar attributes. While the position of each

representative is chosen randomly from one of its child nodes, its
intensity equates to their sum to satisfy the preservation of radiant
flux in arbitrary tree cuts. For a portion of the output image domain
(e.g., one pixel), they traverse the light tree and identify a lightcut
that bounds the error caused by shading with the corresponding
representatives. Visibility determination plays a key role, because
fully occluded light sources and subtrees can be trivially rejected.
Multidimensional lightcuts [Walter et al. 2006] extend the core al-
gorithm to raise its efficiency in higher-order domains accounting
for visual effects like depth-of-field, motion blur and participating
media. Lightcuts interpolation [Rehfeld and Dachsbacher 2016]
exploit the similarity between tree cuts of nearby shading points.
Spherical virtual point lights [Hašan et al. 2009] introduces a spher-
ical light type which addresses the loss of energy due to clamping
and enables glossy lighting scenarios. Rich-VPLs [Simon et al. 2015]
propose a new light type accounting for multiple incident light
paths. Stochastic Light Culling [Tokuyoshi and Harada 2016] uses
Russian Roulette for unbiased culling of VPLs in real-time.

Due to the inherent sample correlation between cuts from the
same static light tree, visible indicators of undersized lightcuts
manifest as discretized penumbrae and isolated “blobs” of light,
making them difficult to resolve with automated filtering. Stochastic
lightcuts by Yuksel [2019] trade these structured artifacts for Monte
Carlo noise. The selection of inner nodes’ light positions is made
via importance sampling of their respective leafs for each lightcut,
thus rejecting the idea of precomputed representatives.

As lightcuts were originally devised as an offline method on the
CPU, Hašan et al. proposed a GPU-friendly, matrix-based method
for scalable many-light rendering [Hašan et al. 2007]. Several op-
timizations have been proposed that extend the original idea and
further improve its performance [Huo et al. 2015; Ou and Pellacini
2011]. However, runtimes for rendering single frames with these
techniques remain in the order of seconds to minutes.

Stochastic methods for image synthesis can often be enhanced
by the application of reconstruction techniques on noisy or under-
sampled input. In many cases, a single sample per pixel suffices
to produce high-fidelity output with state-of-the-art image recon-
struction techniques [Dammertz et al. 2010; Li et al. 2012]. In this
context, animations pose a particular challenge since reconstruction
must take both spatial and temporal stability into account to pre-
serve frame-to-frame coherence [Schied et al. 2017, 2018]. Recent
work focusing on machine learning has shown that spatio-temporal
denoising can largely be delegated to the run-time inference of pre-
trained neural networks [Chaitanya et al. 2017].

3 STOCHASTIC SUBSTITUTE TREES
Our complete pipeline is outlined in Fig. 1: We first distribute VPLs
according to IR and build our SST over the resulting VPLs. We
then generate G-buffers using rasterization and for all fragments
sample the illumination from the SST, yielding a noisy light im-
age. With the help of G-buffers, we use a CNN for denoising and
temporal filtering to ensure consistent shading over time. In the
following, we give a detailed description of the substitute tree con-
cept and its parallel construction. In Section 4, we describe the
process of drawing samples from the SST and provide additional,
implementation-specific details in Section 5.

Stochastic Substitute Trees for Real-Time Global Illumination I3D ’20, May 5–7, 2020, San Francisco, CA, USA

(a) Traced VPLs (b) Substitute Distributions

Figure 2: (a) 150 k VPLs distributed in the Pink Roomwith their RGB intensity. (b)While previous work uses discrete locations
from the input VPLs for inner tree nodes, our stochastic substitute trees store continuous distributions of VPLs, defined by a
substitute position and variance: red and green lines show the standard deviations on the surface; blue lines along the normal.
Notice how large planar regions are captured by single distributions and variance along the normal is virtually undetectable.

3.1 The Substitute Tree
Our substitute light trees are motivated by the original methods for
lightcuts and, specifically, stochastic lightcuts [Walter et al. 2005;
Yuksel 2019]. The inner nodes of light trees copy their geometric
properties from one of the leaf nodes, i.e., one of the original VPLs.
This policy leads to noticeable lighting patterns when the number
of VPLs is low.With stochastic lightcuts, the inner nodes’ geometric
properties are chosen via hierarchical importance sampling from
one of the leaf nodes for each cut, eliminating the sampling correla-
tion. In order to support dynamic light sources and animated scenes
in real-time, we aim to keep the number of VPLs low to permit
updating the tree each frame while minimizing visual artifacts.

To better approximate the sampling of the—in general smooth—
indirect illumination, we do not use leaf VPL locations for the inner
nodes of our light tree. Instead, we pretend as if the leafs were dis-
tributed more densely than they actually are by first merging VPLs
into clusters and then approximating those clusters with fitting
substitute distributions (see Fig. 2). Although we could theoretically
use any probability distribution to describe the clusters, we aim
to use a compact and efficient representation for sampling. We
intuitively chose a normal distribution to describe the individual
clusters and were content with the yielded results, hence we did
not investigate further distributions for this work.

Similar to previous approaches, we construct the full light tree
bottom-up and merge substitute clusters as we go. For traditional
lightcuts, ideal merge candidates should be spatially close and have
similar normals to minimize the view-dependent deviations from
full shading when using representatives. For our approach, the
situation is more complicated since we must ensure that estimated
distributions align with the geometry of the scene. As describing
distributions that follow non-trivial surfaces would be costly, we
try to limit clusters to surfaces that can be described and sampled
straightforwardly. The simplest surface, a plane, can be described
by a location and normal. Incidentally, this corresponds to the re-
quired information for shading with a VPL. Following our previous
considerations, we generate normally distributed samples on the
plane defined by the cluster position and normal. A multivariate
normal distribution described by a covariance matrix would also
work, but incur greater memory and computational requirements.

3.2 Distribution Merging and Errors
To obtain a suitable substitute distribution for each inner node, we
compute the intensity-weighted cluster position p and the posi-
tional variance 𝜎2. To have 𝜎2𝑥 and 𝜎2𝑦 represent the variance of
lights on the plane surface, we transform their positions into a local
plane coordinate system where the z-axis matches the cluster plane
normal. Merged position and variance are computed using

p =
𝑐1 · p1 + 𝑐2 · p2

𝑐1 + 𝑐2
and (1)

𝜎2 =
𝑐1 · (𝜎1

2 + ∆′
p1 ⊙ ∆′

p1) + 𝑐2 · (𝜎2
2 + ∆′

p2 ⊙ ∆′
p2)

𝑐1 + 𝑐2
, (2)

where 𝑐1, 𝑐2 are the child contributions, p1, p2 are the child cluster
positions, 𝜎1

2, 𝜎2
2 are the child cluster variances, ∆′

p1,∆
′
p2 are the

difference vectors from p to p1 and p2 in transformed cluster space
and ⊙ is the Hadamard product. The weights 𝑐1, 𝑐2 correspond to
the luminance of the cluster’s RGB light intensity. While we could
compute a spread (and thus variance) alongside the VPL distribution
and use this spread as initial variance, we have found that starting
with simple VPLs where the variance is zero and the mean equals
the position works equally well in practice and avoids complex
spread computations. An example of a SST is given in Fig. 2(b).

Similar to regular lightcuts, the merged node’s intensity is simply
the sum of the child intensities and its extent is encoded by an
axis-aligned bounding box that encloses all light sources in its
subhierarchies. The merged normal is linearly interpolated based
on the child contributions 𝑐1, 𝑐2. Hence, clusters with high weights
(and thus high intensities) have a stronger influence on the outcome.

Note that strongly diverging normals will alter the cluster coor-
dinate system and thus partially invalidate the local variance values
during merging. To avoid corresponding artifacts, we therefore
compute and store additional information on each cluster’s suitabil-
ity for sampling. During sampling, we then skip any distribution
that does not fulfill the corresponding criteria. For evaluating the
suitability of a substitute node for sampling, we use two indicators:

• The normal similarity metric 𝜈 = 𝜈1 · 𝜈2 ·max(⟨n1, n2⟩, 0)
• The variance 𝜎𝑧 along the plane normal

I3D ’20, May 5–7, 2020, San Francisco, CA, USA Wolfgang Tatzgern, Benedikt Mayr, Bernhard Kerbl, and Markus Steinberger

(a) Normal octant clustering

00

01 10

1100 1110

1101

1111

Pz Px

Py

Pxy

Pxz

Pyz

(b) Triangle bit encoding

Figure 3: (a) Normal clustering in an octant of the unit
sphere using 3 refinement levels; (b) the corresponding bit
values for two refinements.

For the normal similarity metric 𝜈 , n1 and n2 as well as 𝜈1 and 𝜈2
capture normals and the normal similarities of the child clusters.
The normal similarity metric serves as an indicator for both the
similarity between the child cluster distribution orientations and the
curvature of the surface. Furthermore, 𝜈 is guaranteed to decrease
when going up the tree. The variance 𝜎𝑧 indicates any deviations
along the plane normal, i.e., even if VPL normals point into the
same direction, they may not lie on the same surface. For leaf
nodes the normal similarity is initialized to one and the variance to
zero. Given a set of suitable parameter thresholds, we can combine
these indicators to form a joint condition for ensuring that merged
substitute clusters are of sufficient quality for sampling:

𝜈 ≥ 𝜈min ∧ 𝜎𝑧 ≤ 𝜎max . (3)

3.3 Parallel Construction
Since we aim to rebuild the light tree in every frame, minimizing
its construction time is essential. Traditional lightcuts follow an
O(𝑛2) approach to find pairs of lights/clusters that minimize the
introduced error according to their metric. As this approach is in-
compatible with our real-time constraints, we follow the algorithm
by Karras [2012] for building bounding volume hierarchies.

To start the hierarchy construction, we sort VPLs according to a
spatial index using Morton codes. Additionally, we incorporate bits
extracted from the normals, since we seek VPLs that point in similar
directions to obtain candidates for suitable substitute distributions.
Using polar coordinates to describe normal directions leads to non-
uniform quantization, as bits cover differently-sized areas on the
sphere. Thus, we first identify the octant the normal points to
and then subdivide the octant as a triangle to yield approximately
equally-sized areas [Taubin and Rossignac 1998], as shown in Fig. 3.
Each octant is represented by three bits, followed by six bits for the
subdivision level of the triangle. Our final code 𝐶 for each VPL is
composed of the Morton code𝑀 , normal code 𝑁 and a unique id:

𝐶 = 𝑀 ⊕ 𝑁 ⊕ 𝑖𝑑, (4)

where ⊕ is the bit concatenation operator. We thus sort primarily
according to position, since VPLs lying on the same surface will be
close to each other. Secondary sorting occurs according to normals,
to ensure that VPLs with similar normals are prioritized merge
targets. To circumvent any duplicate codes, a unique ID is concate-
nated at the end. In the final 64-bit code,𝑀 uses 30 bits and 𝑁 uses
9 bits. The remaining bits are used for the unique id.

Following the initial sort according to (4), the tree is constructed
bottom-up. For merging the inner node substitute distributions, one
thread per leaf node is started. At each level, only one thread may
continue to the next-higher parent. After computing the distribu-
tions and corresponding quality metrics, the node information is
stored as an array of structs. For each node, we store:

• distribution variance, ID and child IDs, (3 floats + 3 ints)
• the world space position and normal, (2 × 3 floats)
• the bounding box, (2 × 3 floats)
• light color and intensity, (4 floats)
• a flag indicating if the distribution is suitable for sampling,

yielding a total structure size of 96 bytes (padded). Thus, the full
node information can be written with six vector store instructions.

4 STOCHASTIC LIGHT SAMPLING
We sample our stochastic substitute tree by traversing it until we
arrive either at a leaf VPL or a suitable inner node, in which case
we draw the sample from its substitute cluster distribution. The
number of suitable inner nodes depends on the scene geometry,
since the surface planarity relates to the usability of our substitute
distributions. For drawing multiple samples, we can simply run the
traversal multiple times from the root. However, since the evalu-
ation of a sample requires expensive visibility determination, we
aim to maximize the quality gain using only one sample per pixel.

4.1 Tree Traversal
We define a cluster’s illumination 𝐿C for a shading point x from
direction 𝜔 with the same terms as in the original lightcuts paper:

𝐿C (x, 𝜔) ≈ 𝑀𝑗 (x, 𝜔) ·𝐺 𝑗 (x) ·𝑉𝑗 (x) · Ij, (5)

where for a tree node 𝑗 ,𝑀𝑗 is the material term,𝐺 𝑗 is the geometric
term, 𝑉𝑗 (x) represents visibility of x from the light source and Ij is
the sum of VPL intensities in the subtree. In order to stochastically
sample clusters based on their expected contribution to the shading
of x, we start traversal from the root and continually compute
weights𝑤1,𝑤2 for the current node’s children. Similar to stochastic
lightcuts, the probability of choosing the 𝑖th child is given by 𝑤𝑖

𝑤1+𝑤2
.

If we enter a dead branch (i.e.,𝑤1 +𝑤2 = 0), we stop the traversal.
While this wastes a light sample, backtracking within the shader is
not feasible for our performance requirements. We compute𝑤 as
an upper bound of 𝐿C for each child by plugging in adequate upper
bounds for those terms in (5) that are too expensive to evaluate.
To map the RGB value of Ij to R1, we use its relative luminance in
practice. 𝑉𝑗 can be trivially set to 1, thus assuming no occlusions.

For the material term𝑀𝑗 , we use the upper bound of the cosine
between 𝜔 and the surface normal at x, multiplied by the BRDF.
The upper bound of the cosine is computed w.r.t. the bounding
box [Walter et al. 2005]. The diffuse BRDF is independent of the
view or light direction, thus constant. For the glossy part of the
BRDF, we use the following heuristic: We compute the perfect re-
flection R of the view vector along the surface normal at x, i.e., a
mirror-like reflection. We then test if the ray x+ 𝑡 ·R intersects with
the cluster’s bounding box. If so, we use R for the glossy BRDF com-
putation. Otherwise, the BRDF is evaluated with a direction vector
R′ that actually does intersect the bounding box and minimizes the
difference to R.

Stochastic Substitute Trees for Real-Time Global Illumination I3D ’20, May 5–7, 2020, San Francisco, CA, USA

(a) IR ground truth (b) SST sampling (c) SLC sampling

Figure 4: Comparing the accuracy of color bleeding in the
final image. While SST (b) faithfully captures the soft reflec-
tion of the red fabric on the pillar as it is seen in the ground
truth (a), it is almost entirely missing with SLC (c). The bot-
tom right half of (b,c) shows the pixel difference ×10.

Since we focus on omni-directional lights, 𝐺 𝑗 reduces to inverse
quadratic attenuation. We note that, in order to guard against sin-
gularities in the geometric term during hierarchical importance
sampling, stochastic lightcuts set𝐺 𝑗 = 1 for omni-directional lights
if x lies inside the cluster’s bounding box, i.e., ignoring the distance
from the sample to the cluster. However, we found that this leads to
missing color bleeding when using few samples per pixel, as shown
in Fig. 4. Noticeable color bleeding at x is often due to VPLs that are
close to x and thus—especially for lower levels of the tree—likely to
be enclosed by the same bounding box as x, leading to rejection of
the distance term. This makes tree traversal more likely to end up
in different subtrees, which do not contribute to the color bleeding
and therefore increases the noise. We avoid singularities by simply
bounding the distance from below against an 𝜀 term.

4.2 Sampling the Substitute Distribution
In contrast to previous many-light methods, which usually focus
on diffuse shading only, we also consider non-Lambertian BRDFs.
Before traversing the tree, we decide whether to sample the diffuse
or glossy portion of the BRDF, based on the magnitude of the re-
spective material terms. For diffuse samples, we stop the traversal at
the first usable substitute distribution, see (3). A suitable substitute
distribution is often found early on, reducing the sampling depth
significantly without any visible difference to the final illumination
(see Fig. 5). For drawing a light position sample pS from the distri-
bution, we generate three normally distributed random variables,
according to the cluster variance 𝜎2 in the local coordinate frame.
After transformation to world coordinates, we clamp pS by the
node’s bounding box and evaluate the incoming radiance according
to Eq. (5). This implies visibility testing to determine the binary
value for 𝑉𝑗 at shading point x, which we resolve through ray trac-
ing. When sampling the glossy portion of the BRDF, we ignore
the substitutes and only consider leaf VPLs as viable candidates,
since highly glossy reflections would be overly blurred by picking
substitute samples. While this leads to performance penalties for
glossy surfaces, it is vital for ensuring high quality. We note that
our substitute distributions introduce bias, since we generate VPLs
which are not part of the traced light transport paths, which implies
that drawn light positions may also be slightly inside geometry.
Nonetheless, we did not encounter any obvious light leakage during
our tests.

SLC
4.87 ms

SST
3.54 ms

SLC
.0146 RMSE

SST
.0138 RMSE

Figure 5: (left) The color-coded tree traversal depth (/
for low/high) is on average 20 for SLC, whereas SST only re-
quires 15 steps on average for a 100k VPL tree. (right) SST
are both faster and achieve better image quality compared
to the ground truth (difference ×10).

5 IMPLEMENTATION
We implemented our approach on top of the NVIDIA Falcor frame-
work [Benty et al. 2019] in DirectX 12 and CUDA. Ray tracing is
done via hardware accelerated RTX. For diffuse lighting, we use
the Lambertian model. For the glossy BRDF, we use Cook-Torrance
reflectance [Cook and Torrance 1982].

VPL Generation. For VPL generation, we follow the core approach
described by instant radiosity [Keller 1997].We start by probabilistic
sampling of the original light sources according to their size and
flux. The number of VPL paths to trace for each light depends on its
intensity, as well as the configured maximum number of bounces.
To trace these rays, we use hardware supported DX12 ray tracing.
At every hit, we generate a new VPL and append it to a global buffer.
We use cosine-weighted sampling for the next bounce direction
and early path termination via Russian Roulette.

Substitute Tree Generation. Substitute trees are built in parallel
on the GPU with CUDA. Internal nodes are stored in the same
buffer as the previously generated VPLs. The tree is constructed
by a single kernel, decreasing the number of active threads while
progressing up through the tree. Since the number of active nodes
usually quickly falls below the core count of modern GPUs, the
performance loss due to keeping inactive threads around is minimal.

Sampling. Substitute tree sampling is done by a ray tracing shader.
We first fill a GBuffer with first hit shading information [Deering
et al. 1988]. For each pixel, we traverse the tree to draw a VPL
sample and cast a shadow ray from the VPL location pS to the
pixel’s stored position in world space in the GBuffer. We offset the
origin of the ray by a scene size dependent epsilon value, since
VPL samples may be slightly inside geometry. To account for direct
illumination, we randomly pick and sample one of the scene’s light
sources. Thus, we trace two shadow rays per pixel—one for tree
sampling and one for direct illumination.

Denoising and Temporal Stability. Our approach produces Monte
Carlo noise and thus, in theory, any Monte Carlo denoiser is ap-
plicable. In practice, we use a recurrent autoencoder (RDAE) with
the same training procedure and loss function as stated in the orig-
inal paper [Chaitanya et al. 2017]. To improve temporal stability,
we apply the temporal accumulation step of the adaptive spatio-
temporal variance-guided filter (A-SVGF) [Schied et al. 2017, 2018],
using the pixel-wise intensity gradient from the RDAE output as
temporal accumulation factor to control blending. This mitigates
artifacts like ghosting and temporal lags, especially for animated

I3D ’20, May 5–7, 2020, San Francisco, CA, USA Wolfgang Tatzgern, Benedikt Mayr, Bernhard Kerbl, and Markus Steinberger

Pink Room Living Room Sponza San Miguel

1
sa
m
pl
e
pe
rp

ix
el

1s
pp

+
de
no

ise
d

Gr
ou

nd
Tr
ut
h

Figure 6: Sampling result of SST with 1 spp for 100k VPLs, denoised and ground truth. While there is some loss of indirect
lighting (e.g. the wall in the Pink Room), which we attribute to the denoiser, SST overall produces high quality lighting.

scenes. To save time on inference, we reduce the number of features
of RDAE, while still maintaining high quality. For downsampling,
we use 24, 40, 54, 72, 96, and 96 features. For upsampling, we use
(96, 96), (72, 72), (54, 54), (40, 40), (64, 32). As activation function
we use ReLu, for upsampling we use the deconvolution operator.
The network was modeled and trained with Tensorflow and Ten-
sorRT as inference engine. The training data was generated with
the Sponza and San Miguel scene, with 500 captured frames per
scene. Inference is executed on NVIDIA tensor cores in fp16 mode.
While testing, we found that the trained denoiser generalized well
to scenes which have not been part of the training sets. We further
confirmed that our method is compatible with other denoisers by
substituting our CNN-based denoiser with the SVGF [Schied et al.
2017] and comparing the visual results.

6 EVALUATION
We compare our stochastic substitute trees (SST) in detail to regu-
lar path tracing (PT) with varying number of bounces, stochastic
lightcuts (SLC), and show the main differences w.r.t. the recent
real-time method for Lighting Grid Hierarchies [Lin and Yuksel
2019] (LGH). All timings are generated on a GeForce RTX 2080Ti.
We use 𝜈min = 0.5 and 𝜎max = 0.1; choosing smaller 𝜈min and greater
𝜎max leads the algorithm to accept clusters further up the tree and
increases chances of sampling VPLs in mid-air or inside geometry.

The reference path tracer is based on NVIDIA’s Falcor framework
and uses next event estimation to improve convergence. The first
hit is determined by a rasterized G-Buffer, additional bounces are
computed with RTX. For quality comparisons, we use path tracing
with 4000 samples per pixel (spp) and seven bounces as ground truth.
We evaluate on four scenes with an image resolution of 1280 × 720
shown in Fig. 6. The Pink Room and Living Room are simple in terms
of geometry, but offer interesting lighting situations and highly
glossy surfaces. Sponza is slightly more complex in geometry and

shows high amounts of color bleeding and shadowing through
the corridors. Finally, San Miguel offers high geometric load and
enforces diverse light paths. Fig. 6 shows that SST produces lighting
close to the ground truth and accurately reconstructs the lighting
under noisy conditions and complex setups. Some difficult-to-reach
areas, like the table in the living room scene or the shelfs in the pink
room, appear slightly darker, which is typical for VPL approaches.

For runtime evaluation, we separately look at SST construction,
which we can run in every frame or when lighting changes; SST
sampling, which rasterizes a G-buffer, samples the tree and per-
forms direct lighting using RTX; denoising; and temporal filtering.
For temporally stable lighting, we require ∼100 k VPLs. Their dis-
tribution takes 0.27 ms to 0.85 ms, with an additional 0.9 ms for
SST building. Sampling takes 2.7 ms to 7.3 ms, denoising 17.4 ms
and temporal filtering 0.9 ms. Including VPL distribution and tree
building, a full frame takes 22.17 ms to 27.35 ms. While we achieve
30fps overall, denoising is clearly the limiting factor, making up 63 %
to 80 % of frame time. With GPU hardware set to further advance
CNN performance, we expect this issue to lessen in the future.

6.1 Comparison
Table 1 shows the sample timings and final image quality for all
tested approaches. SST is always faster and always achieves su-
perior quality to SLC. We attribute our quality advantage to two
factors: First, using substitute distributions approximates global
illumination as if it were generated with more VPLs and thus can
achieve image qualities for which other approaches require signifi-
cantly higher VPL counts. Second, our node selection during tree
traversal generalizes attenuation also to close-by VPLs, which have
a higher contribution to localized lighting effects (see Fig. 4). Since
the ground truth is generated with path tracing, PT variants may
be slightly advantaged w.r.t. the quality comparison. Nevertheless,
Table 1 shows that while PT with a single bounce is efficient, the

Stochastic Substitute Trees for Real-Time Global Illumination I3D ’20, May 5–7, 2020, San Francisco, CA, USA

Table 1: Comparison between SST and SLC (100k VPLs) and path tracing with increasing number of bounces. While 1 bounce
PT is faster than SST, its quality is lower, as it misses large amounts of indirect lighting. With increasing bounces, PT achieves
comparable quality, but is considerably slower. To quantify the potential performance gains, we show the relative increase
SSIM per invested ms compared to the worst performing approach (higher is better, best in bold).

Sampling time (ms) RMSE denoised SSIM denoised Gain (% SSIM/ms)
SST SLC PT1′ PT2′ PT3′ SST SLC PT1′ PT2′ PT3′ SST SLC PT1′ PT2′ PT3′ SST SLC PT1′ PT2′ PT3′

di
ffu

se

Pink Room 2.65 3.59 1.73 3.20 4.71 .036 .048 .133 .081 .053 .960 .951 .912 .956 .968 5.22 2.10 0.00 2.99 1.88
Living Room 2.88 4.34 1.78 3.33 4.76 .026 .033 .070 .039 .024 .960 .956 .928 .965 .972 2.91 1.09 0.00 2.39 1.48
Sponza 3.36 4.54 2.75 5.45 8.10 .017 .017 .029 .015 .012 .971 .967 .877 .967 .975 15.41 5.03 0.00 3.33 1.83
San Miguel 5.77 6.83 8.86 17.81 27.18 .048 .049 .046 .045 .045 .872 .862 .873 .880 .881 1.89 0.00 0.54 0.16 0.09

+
gl
os
sy Pink Room 4.24 5.08 1.88 3.62 5.33 .048 .059 .147 .092 .062 .947 .940 .900 .943 .958 1.99 1.25 0.00 2.47 1.68

Living Room 4.11 5.14 1.91 3.77 5.27 .040 .047 .087 .051 .032 .946 .940 .910 .952 .966 1.64 0.93 0.00 2.26 1.67
Sponza 3.99 5.31 2.95 5.82 8.67 .017 .017 .029 .015 .012 .970 .967 .876 .967 .975 9.04 3.86 0.00 3.17 1.73
San Miguel 7.34 7.84 8.76 17.83 27.45 .072 .074 .065 .059 .058 .758 .752 .772 .793 .795 2.40 0.00 2.17 0.41 0.22

Figure 7: Path tracing with a single bounce (left) misses sig-
nificant portions of indirect illumination. SST (right) dis-
tributes VPLs throughout multiple bounces (in a fraction of
the trace time) and thus faithfully recovers the illumination.

image quality is clearly inferior to SST (see also Fig. 7). In all scenes,
there are areas that require more than a single bounce to be prop-
erly lit. When the number of bounces is increased, PT catches up
in terms of quality, but also requires more time than ours, i.e., PT
requires 2 to 3 bounces to achieve our quality while being 1.5×
slower. San Miguel is an exception, where all approaches struggle
to achieve good quality, showing the highest error among all scenes.
However, substitute trees are faster than even single-bounce PT, as
ray tracing is particuarly expensive due to the geometric load.

To quantify the potential gains of the different approaches, we
list the SSIM gain per invested ms when switching to either tech-
nique from the lowest-quality approach, e.g., switching from PT1′
to SST for Pink Room, achieves an ∼.052 SSIM increase for the
invested 1 ms. SST always yields the best gains for pure diffuse
lighting. When using a non-Lambertian BRDF, scenes with highly
glossy materials, like Pink Room and Living Room, work slightly
better with path tracing. Sponza, featuring only moderately glossy
materials, again works best with SST. In San Miguel, little gains can
be achieved overall with either method.

Unfortunately wewere unable to include LGH in this comparison
as the LGH framework is not compatible with Falcor to produce
identical scene setups. Nevertheless, we compare a view of Sponza
directly between LGH and SST, as shown in Fig. 8: It is lit with
indirect illumination generated from a single point light, placed at
the center of the scene. The ground truth is generated by the LGH
framework using instant radiosity. LGH significantly overestimates

LGH 26.7 ms SST 24.57 ms

LGH diff ×5

GT

SST diff ×5

Figure 8: While LGH requires similar times as SST, it is fur-
ther from the ground truth indirect illumination. LGH’s
shadowing heuristics overestimate the general illumination
and predict high shadows around corners (red boxes).

lighting in some places, while being too dark in others. We attribute
these issues to LGH’s shadow heuristic, which is insufficient to
distinguish between the brighter (but occluded) VPLs in the center
of the scene and the less bright (but visible) VPLs in the corridors.
Increasing the shadow ray count to 2 per pixel (the maximum
supported by the framework) did not improve quality, but prolonged
the frame time from 26.7 ms to 37.6 ms (from hierarchy generation
to final image). For the entire pipeline, SST requires 24.57 ms and
creates clearly superior results compared to LGH.

6.2 Scalability
Since we regularly (potentially in every frame) generate new VPLs
and the substitute tree, performance of these steps is essential. Ta-
ble 2 shows the timings for VPL generation and tree building with
different scenes. The runtime for VPL generation is governed by
the scene’s complexity, while the duration of tree building depends
only on the number of VPLs. About 100 k VPLs are needed for tem-
porally stable lighting in our tests, resulting in ∼1.2ms to 1.7ms
in total. Table 3 shows that the sample time also increases with
tree depth. Sampling from the SST is more efficient as soon as the
tree is not too shallow. For very small VPL counts (10k)—which
imply temporally instable lighting conditions—SLC is slightly faster.

I3D ’20, May 5–7, 2020, San Francisco, CA, USA Wolfgang Tatzgern, Benedikt Mayr, Bernhard Kerbl, and Markus Steinberger

Table 2: Timings for VPL generation and substitute tree
building with varying VPL counts. VPL generation depends
on the scene geometry due to ray tracing. Tree building only
depends on the VPL count. All times in ms.

VPL generation Tree building
VPLs 10k 100k 500k 1M 10k 100k 500k 1M
Pink Room 0.13 0.27 0.74 1.47 0.58 0.89 2.44 4.51
Living Room 0.13 0.30 0.83 1.54 0.54 0.89 2.38 4.43
Sponza 0.14 0.40 1.32 2.38 0.59 0.88 2.39 4.35
San Miguel 0.19 0.85 3.44 7.05 0.56 0.91 2.35 4.38

Table 3: Sampling timings inmswith 1spp. For shallow trees
(which are temporally not stable) SLC is slightly faster than
sampling from SST. However, as the tree size increases, our
substitute sampling clearly has the performance edge.

10k 100k 500k 1M
SST SLC SST SLC SST SLC SST SLC

di
ffu

se

Pink Room 2.22 2.10 2.65 3.59 2.88 5.45 3.10 6.79
Living Room 2.27 2.17 2.88 4.34 3.36 6.63 3.73 8.04
Sponza 2.77 2.74 3.36 4.54 3.78 6.12 3.92 7.00
San Miguel 4.81 5.19 5.77 6.83 6.64 8.51 7.30 9.39

+
gl
os
sy Pink Room 3.90 3.62 4.24 5.08 5.02 7.08 5.18 9.14

Living Room 3.68 3.27 4.11 5.14 5.03 7.01 5.24 8.86
Sponza 3.36 3.26 3.99 5.31 4.58 6.99 4.73 8.02
San Miguel 6.45 6.29 7.34 7.84 8.92 9.85 10.04 11.80

For 100k VPLs, SST is already 1.35× faster. Our performance edge
increases with the tree size, indicating a better scalability of sub-
stitute trees. When sampling glossy reflections, the performance
difference is less pronounced, as glossy sampling is more complex
and we traverse the tree further. Nevertheless, SST is still faster for
all tree sizes above 10k VPLs. Our performance edge comes from
two factors. First, we stop our traversal early, as outlined in Fig. 5.
Second, SLC’s random sampling of VPL locations leads to scattered
memory accesses, while SST only requires the (coherent) fetching
of distribution information and thus less memory bandwidth.

6.3 Discussion and Limitations
So far, we only reported our results on image quality for individual
still frames. However, our experiments have shown that denoising
the result of our sampling stage with temporal filtering produces
temporally stable global illumination in animated scenes, where
we rebuild the SST each frame with sufficiently many VPLs. Thus,
our approach supports dynamic light sources and scenes while
maintaining good frame-to-frame coherence. Due to the difficulties
of establishing temporal stability via conventional illustrations and
for lack of a universally accepted quality metric, we kindly refer the
reader to our supplemental video for an adequate demonstration.

Compared to path tracing, one particular advantage of SST is
that it can handle difficult-to-reach light sources due to its VPL
distribution in the style of instant radiosity, as shown in Fig. 9(a).
Although SST does support glossy BRDFs, mirrors and glossy re-
flections pose a challenge, as sampling the tree will in general not
sample the perfect reflection direction and thus degrade sharpness

(a) Occluded Light Source (b) Highly Glossy Material

Figure 9: (a) An area light source, pointed at a corner, is sam-
pled well with SST (left). Path tracing (right) has difficulties
connecting the rays to the light source, which leads to under-
sampling. (b)While SST (left) supports glossy BRDFs, highly
glossy surfaces are challenging to resolve with 1spp, as the
reflection directions are usually not sampled and thus more
noise remains compared to path tracing (right).

(see Fig. 9(b)). As a remedy, one can trace an additional ray for
samples that hit a mirror and sample the tree from the next hit.

Working with VPLs, using heuristically driven importance sam-
pling, and estimating VPL distributions leads to a biased approach.
Additionally, as is common with VPL approaches, we avoid singu-
larities in the geometric term by clamping, which results in slightly
darkened corners. However, focusing on the creation of convincing
real-time rendering content, being unbiased is not our main goal.

7 CONCLUSION
We have presented a new, scalable many-light rendering approach
for simulating global illumination in real-time in animated scenes.
Our stochastic substitute trees approximate the actual global illumi-
nation by converting clusters of input VPLs into suitable probability
distributions. While we can benefit from the same advantages as
stochastic lightcuts, sampling with our tree is more efficient since
traversal can be stopped early. Furthermore, our substitute distribu-
tions generate higher-quality lighting than approaches that directly
sample from the underlying VPLs. Our sampling method compares
favorably to stochastic lightcuts and the recently proposed Lighting
Grid Hierarchy in terms of quality and runtime. We can usually
capture indirect illumination more accurately with a single bounce
than path tracing and report higher gains for image quality metrics.
By combining our sampling method with CNN denoising and tem-
poral filtering, we can generate temporally stable approximations
of global illumination in real-time, in fully dynamic scenes.

Our approach supports highlights and produces agreeable re-
sults for semi-glossy surfaces. However, highly glossy surfaces and
sharp, mirror-like reflections may still produce noise and are better
handled with path tracing. Looking forward, we believe that tracing
additional rays for those hits may combine the best of both worlds,
leading to hybrid VPL sampling and path tracing. Our work can be
downloaded from https://github.com/wotatz/ sst-demo.

ACKNOWLEDGMENTS
This research was supported by the German Research Foundation
(DFG) under GrantNo.: STE 2565/1-1, the Austrian Science Fund
(FWF) under GrantNo.: I3007 and the Research Cluster “Smart Com-
munities and Technologies (Smart CT)” at TU Wien. Test scenes
were kindly provided by Morgan McGuire’s Computer Graphics
Archive [McGuire 2017].

https://github.com/wotatz/sst-demo

Stochastic Substitute Trees for Real-Time Global Illumination I3D ’20, May 5–7, 2020, San Francisco, CA, USA

REFERENCES
Timo Aila and Samuli Laine. 2009. Understanding the Efficiency of Ray Traversal on

GPUs. In Proceedings of the Conference on High Performance Graphics 2009 (HPG
’09). ACM, New York, NY, USA, 145–149. https://doi.org/10.1145/1572769.1572792

Nir Benty, Kai-Hwa Yao, Lucy Chen, Tim Foley, Matthew Oakes, Conor Lavelle, and
Chris Wyman. 2019. The Falcor Rendering Framework. https://github.com/
NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-
struction of Monte Carlo Image Sequences Using a Recurrent Denoising Au-
toencoder. ACM Trans. Graph. 36, 4, Article 98 (July 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073601

R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics.
ACM Trans. Graph. 1, 1 (Jan. 1982), 7–24. https://doi.org/10.1145/357290.357293

Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, BruceWalter, and
Jan Novák. 2014. Scalable Realistic Rendering with Many-Light Methods. Comput.
Graph. Forum 33, 1 (Feb. 2014), 88–104. https://doi.org/10.1111/cgf.12256

Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik P. A. Lensch. 2010.
Edge-avoiding À-Trous Wavelet Transform for Fast Global Illumination Filtering. In
Proceedings of the Conference on High Performance Graphics (HPG ’10). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 67–75. http://dl.acm.org/
citation.cfm?id=1921479.1921491

Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and Neil Hunt.
1988. The Triangle Processor and Normal Vector Shader: A VLSI System for
High Performance Graphics. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 21–30.
https://doi.org/10.1145/378456.378468

Eric Haines and Tomas Akenine-Moller. 2019. Ray Tracing Gems: High-Quality and
Real-Time Rendering with DXR and Other APIs. Apress, Berkely, CA, USA.

Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. 2009. Virtual Spherical
Lights for Many-Light Rendering of Glossy Scenes. In ACM SIGGRAPH Asia 2009
Papers (SIGGRAPH Asia ’09). Association for Computing Machinery, New York, NY,
USA, Article Article 143, 6 pages. https://doi.org/10.1145/1661412.1618489

Miloš Hašan, Fabio Pellacini, and Kavita Bala. 2007. Matrix Row-column Sampling
for the Many-light Problem. ACM Trans. Graph. 26, 3, Article 26 (July 2007).
https://doi.org/10.1145/1276377.1276410

Yuchi Huo, RuiWang, Shihao Jin, Xinguo Liu, and Hujun Bao. 2015. AMatrix Sampling-
and-recovery Approach forMany-lights Rendering. ACMTrans. Graph. 34, 6, Article
210 (Oct. 2015), 12 pages. https://doi.org/10.1145/2816795.2818120

Henrik Wann Jensen. 1996. Global Illumination Using Photon Maps. In Proceedings of
the Eurographics Workshop on Rendering Techniques ’96. Springer-Verlag, London,
UK, UK, 21–30. http://dl.acm.org/citation.cfm?id=275458.275461

James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (Aug.
1986), 143–150. https://doi.org/10.1145/15886.15902

Tero Karras. 2012. Maximizing Parallelism in the Construction of BVHs, Octrees, and
K-d Trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference
on High-Performance Graphics (EGGH-HPG’12). Eurographics Association, Goslar
Germany, Germany, 33–37. https://doi.org/10.2312/EGGH/HPG12/033-037

Alexander Keller. 1997. Instant Radiosity. In Proceedings of the 24th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’97). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 49–56. https://doi.org/
10.1145/258734.258769

Alexander Keller, Timo Viitanen, Colin Barré-Brisebois, Christoph Schied, and Morgan
McGuire. 2019. Are We Done with Ray Tracing?. In ACM SIGGRAPH 2019 Courses
(SIGGRAPH ’19). ACM, New York, NY, USA, Article 3, 381 pages. https://doi.org/
10.1145/3305366.3329896

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based Optimization for
Adaptive Sampling and Reconstruction. ACM Trans. Graph. 31, 6, Article 194 (Nov.
2012), 9 pages. https://doi.org/10.1145/2366145.2366213

Daqi Lin and Cem Yuksel. 2019. Real-Time Rendering with Lighting Grid Hierarchy.
Proc. ACM Comput. Graph. Interact. Tech. (Proceedings of I3D 2019) 2, 1, Article 8
(2019), 17 pages. https://doi.org/10.1145/3321361

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data
https://casual-effects.com/data.

NVIDIA Corporation. 2018. NVIDIA Turing GPU Architecture. https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

Jiawei Ou and Fabio Pellacini. 2011. LightSlice: Matrix Slice Sampling for the Many-
lights Problem. ACM Trans. Graph. 30, 6, Article 179 (Dec. 2011), 8 pages. https:
//doi.org/10.1145/2070781.2024213

Roman Prutkin, Anton Kaplanyan, and Carsten Dachsbacher. 2012. Reflective Shadow
Map Clustering for Real-Time Global Illumination. (2012).

Hauke Rehfeld and Carsten Dachsbacher. 2016. Lightcut Interpolation. In Proceedings
of High Performance Graphics (HPG ’16). Eurographics Association, Goslar, DEU,
99–108.

T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. 2008.
Imperfect Shadow Maps for Efficient Computation of Indirect Illumination. ACM
Trans. Graph. 27, 5, Article 129 (Dec. 2008), 8 pages. https://doi.org/10.1145/1409060.

1409082
Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty

R. Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn,
and Marco Salvi. 2017. Spatiotemporal Variance-guided Filtering: Real-time
Reconstruction for Path-traced Global Illumination. In Proceedings of High Per-
formance Graphics (HPG ’17). ACM, New York, NY, USA, Article 2, 12 pages.
https://doi.org/10.1145/3105762.3105770

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. 2018. Gradient Estima-
tion for Real-time Adaptive Temporal Filtering. Proc. ACM Comput. Graph. Interact.
Tech. 1, 2, Article 24 (Aug. 2018), 16 pages. https://doi.org/10.1145/3233301

B. Segovia, J.C. Iehl, and B. Peroche. 2007. Metropolis Instant Radiosity. Computer
Graphics Forum (2007). https://doi.org/10.1111/j.1467-8659.2007.01065.x

Florian Simon, Johannes Hanika, and Carsten Dachsbacher. 2015. Rich-VPLs for
Improving the Versatility of Many-Light Methods. Comput. Graph. Forum 34, 2
(May 2015), 575–584. https://doi.org/10.1111/cgf.12585

Gabriel Taubin and Jarek Rossignac. 1998. Geometric Compression Through Topologi-
cal Surgery. ACM Trans. Graph. 17, 2 (April 1998), 84–115. https://doi.org/10.1145/
274363.274365

Yusuke Tokuyoshi and Takahiro Harada. 2016. Stochastic Light Culling. Journal of
Computer Graphics Techniques (JCGT) 5, 1 (March 2016), 35–60. http://jcgt.org/
published/0005/01/02/

Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In Proceedings
of the 24th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA,
65–76. https://doi.org/10.1145/258734.258775

Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. 2006. Multidi-
mensional Lightcuts. ACM Trans. Graph. 25, 3 (July 2006), 1081–1088. https:
//doi.org/10.1145/1141911.1141997

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and
Donald P. Greenberg. 2005. Lightcuts: A Scalable Approach to Illumination. ACM
Trans. Graph. 24, 3 (July 2005), 1098–1107. https://doi.org/10.1145/1073204.1073318

Cem Yuksel. 2019. Stochastic Lightcuts. In High-Performance Graphics (HPG 2019). The
Eurographics Association. https://doi.org/10.2312/hpg.20191192

https://doi.org/10.1145/1572769.1572792
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/3072959.3073601
https://doi.org/10.1145/357290.357293
https://doi.org/10.1111/cgf.12256
http://dl.acm.org/citation.cfm?id=1921479.1921491
http://dl.acm.org/citation.cfm?id=1921479.1921491
https://doi.org/10.1145/378456.378468
https://doi.org/10.1145/1661412.1618489
https://doi.org/10.1145/1276377.1276410
https://doi.org/10.1145/2816795.2818120
http://dl.acm.org/citation.cfm?id=275458.275461
https://doi.org/10.1145/15886.15902
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/258734.258769
https://doi.org/10.1145/3305366.3329896
https://doi.org/10.1145/3305366.3329896
https://doi.org/10.1145/2366145.2366213
https://doi.org/10.1145/3321361
https://casual-effects.com/data
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1145/2070781.2024213
https://doi.org/10.1145/2070781.2024213
https://doi.org/10.1145/1409060.1409082
https://doi.org/10.1145/1409060.1409082
https://doi.org/10.1145/3105762.3105770
https://doi.org/10.1145/3233301
https://doi.org/10.1111/j.1467-8659.2007.01065.x
https://doi.org/10.1111/cgf.12585
https://doi.org/10.1145/274363.274365
https://doi.org/10.1145/274363.274365
http://jcgt.org/published/0005/01/02/
http://jcgt.org/published/0005/01/02/
https://doi.org/10.1145/258734.258775
https://doi.org/10.1145/1141911.1141997
https://doi.org/10.1145/1141911.1141997
https://doi.org/10.1145/1073204.1073318
https://doi.org/10.2312/hpg.20191192

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Stochastic Substitute Trees
	3.1 The Substitute Tree
	3.2 Distribution Merging and Errors
	3.3 Parallel Construction

	4 Stochastic Light Sampling
	4.1 Tree Traversal
	4.2 Sampling the Substitute Distribution

	5 Implementation
	6 Evaluation
	6.1 Comparison
	6.2 Scalability
	6.3 Discussion and Limitations

	7 Conclusion
	Acknowledgments
	References

