
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo
(Guest Editors)

Volume 39 (2020), Number 2

Subdivision-Specialized Linear Algebra Kernels for Static and
Dynamic Mesh Connectivity on the GPU

D. Mlakar1,2 , M. Winter2 , P. Stadlbauer1 , H.-P. Seidel1 , M. Steinberger2 , R. Zayer1

1Max Planck Institute for Informatics, Germany
2Graz University of Technology, Austria

(a) Control Mesh (b) Subdiv at lvl 6 (c) 14 topology changes (d) 75 topology changes

Figure 1: A set of modeling operations applied to the control mesh of the BigGuy model (a). In total, a sequence of 75 connectivity changing
operations are performed from (b) to (d). The current industry standard, OpenSubdiv, needs serial preprocessing after each topology change.
These delays sum up to a two-minute idle time till (c) and an eleven-minute delay till (d). Using our subdivision-specialized linear algebra
kernels, a modeler performs the whole sequence within two minutes with a consistent 30 fps preview of the subdivision surface at level six.

Abstract
Subdivision surfaces have become an invaluable asset in production environments. While progress over the last years has allowed
the use of graphics hardware to meet performance demands during animation and rendering, high-performance is limited
to immutable mesh connectivity scenarios. Motivated by recent progress in mesh data structures, we show how the complete
Catmull-Clark subdivision scheme can be abstracted in the language of linear algebra. While this high-level formulation
allows for a fully parallel implementation with significant performance gains, the underlying algebraic operations require
further specialization for modern parallel hardware. Integrating domain knowledge about the mesh matrix data structure, we
replace costly general linear algebra operations like matrix-matrix multiplication by specialized kernels. By further considering
innate properties of Catmull-Clark subdivision, like the quad-only structure after refinement, we achieve an additional order of
magnitude in performance and significantly reduce memory footprints. Our approach can be adapted seamlessly for different use
cases, such as regular subdivision of dynamic meshes, fast evaluation for immutable topology and feature-adaptive subdivision
for efficient rendering of animated models. In this way, patchwork solutions are avoided in favor of a streamlined solution with
consistent performance gains throughout the production pipeline. The versatility of the sparse matrix linear algebra abstraction
underlying our work is further demonstrated by extension to other schemes such as

√
3 and Loop subdivision.

CCS Concepts
• Computing methodologies → Shape modeling; Massively parallel algorithms;

1. Introduction

Throughout four decades, subdivision surfaces have evolved from a
pure research topic to an indispensable tool in 3D modeling pack-
ages and production software. This rise in prevalence is largely due
to the performance gains achieved by adapting the evaluation part of
the subdivision to take advantage of modern graphics hardware, as
in OpenSubdiv [Pix19]. While this offers artists the ability to modify

the vertex data, e.g. positions, interactively during simulation and
animation, mesh connectivity must stay static. However, modelers
change the mesh connectivity frequently, which causes slow, serial
re-initialization of the subdivision process (cf. Fig. 1). Accelerating
this step is challenging as the control mesh undergoes a series of
averaging, splitting and relaxation operations, which complicate the
problem of efficient parallelization of subdivision.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-4500-0325
https://orcid.org/0000-0002-7778-9770
https://orcid.org/0000-0003-1199-9641
https://orcid.org/0000-0002-1343-8613
https://orcid.org/0000-0001-5977-8536

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

Existing efforts towards high performance subdivision usually
follow one of two ideas: (1) Splitting the mesh into patches that can
be subdivided independently [BS02, BS03, SJP05, PEO09] seems
appealing for parallelization, but entails a series of issues. First,
patches require overlap, introducing redundant data and compu-
tations, which may lead to cracks between patch boundaries due
to floating point inaccuracies. Second, global connectivity is lost,
as patches are treated independently. And third, re-patching and
workload distribution are required as the model is subdivided re-
cursively. (2) Factoring the subdivision into precomputation and
evaluation [NLMD12,Pix19]. The bulk of the subdivision process is
performed as preprocessing on the CPU, while the evaluation only
performs simple vertex mixing on the GPU. While this is an ideal
solution for parallel rendering of animated meshes, it is restricted to
immutable topology, as the cost of CPU precomputation of subdivi-
sion tables is orders of magnitude higher than the GPU evaluation.
Thus, these approaches are unusable for interactive modeling.

The lack of efficient, parallel and versatile subdivision approaches
prompted a patchwork of solutions across production pipelines.
When uniform subdivision is required, e.g., for physics simulation,
patch-based parallelization is used. During topology-changing mod-
eling operations, only low-level previews of the full subdivision are
shown to provide high performance. After modeling is completed,
subdivision tables are used for animation. Finally, during rendering,
partial subdivision or patch-based approaches are used to reduce the
workload. As different approaches lead to slightly different results,
the meshes used for simulation, preview, animation and rendering
may differ in detail—the modeling experience is further spoiled.

In this work, we start with the mesh matrix formalism by Za-
yer et al. [ZSS17] to write geometry processing algorithms using
sparse matrix operations. We extend their work to describe the com-
plete Catmull-Clark subdivision scheme and reveal opportunities
for parallelization. Combining this high-level view with low-level
knowledge about execution on massively parallel processors, we
propose a flexible, high-performance subdivision approach running
entirely on the GPU. We make the following contributions:

• We extend Zayer’s action map notation with lambda functions,
increasing the formalism’s expressiveness and versatility. Lambda
functions for mapped matrix multiplication allow us to gather
and create expressive adjacency data, which is vital for efficient
topology changing operations during subdivision.
• We show that algebraic operations reveal potential for paralleliza-

tion and optimization of data access and thus achieve significant
performance gains compared to a serial approach.
• We combine the high-level algebra formulation with low-level

knowledge about the execution platform to replace costly gen-
eral algebra kernels with subdivision-specialized kernels, which
are optimized for the target hardware platform and use domain
knowledge about the subdivision process.
• We demonstrate that our approach is modular in the sense that

topological operations can be separated from evaluation, leading
to an efficient parallel preprocessing for immutable topology, fol-
lowed by a single matrix-vector product vertex-data refinement.
• We extend our approach with sharp and semi-sharp creases and

subdivision of selected regions, e.g., for feature adaptiveness or
path tracing, demonstrating its extendability.

Compared to the state of the art OpenSubdiv implementation com-
monly used in production, our specialized subdivision kernels
achieve speed-ups of up to 1.7× in the surface evaluation and over
15× in preprocessing.

We further demonstrate the versatility of the sparse matrix linear
algebra abstraction underlying our work by devising appropriate
algorithmic formulations for additional schemes such as

√
3 and

Loop subdivision and show consistent performance gains.

2. Related Work

Mesh subdivision has been honed for geometric modeling through
the concerted effort of Chaikin [Cha74], Doo et al. [Doo78, DS78]
and Catmull and Clark [CC78]. Subdivision meshes are com-
monly used across various fields, from character animation in fea-
ture films [DKT98] to primitive creation for REYES-style render-
ing [ZHR∗09] and real-time rendering [TPO].

2.1. Mesh Representations

Mesh subdivision is a refinement procedure, relying on data struc-
tures supporting fast adjacency queries and connectivity updates.
Often variants of the winged-edge mesh representations [Bau72],
like quad-edge [GS85] or half-edge [Lie94,CKS98] are used. While
they are well suited for the serial setting, parallel implementations
are difficult to achieve, require locks, suffer from scattered memory
access and increased storage cost. Compressed formats designed for
GPU-rendering, like triangle strips [Dee95,Hop99], do not offer con-
nectivity information and are thus not suitable for subdivision. There-
fore, patch-based GPU subdivision approaches have tried to find
efficient patch data structures for subdivision [PS96,SJP05,PEO09].

2.2. Efficient Subdivision

Given the pressing need for high-performance subdivision, various
parallelization approaches have been proposed. Shiue et al. [SJP05]
splits the mesh into patches that can be subdivided independently
on the GPU. This introduces redundancies and potentially cracks
due to numeric inaccuracies. Patch-based approaches hide adja-
cency relations between patches, complicating further processing
post subdivision. Subdivision tables have been introduced to ef-
ficiently reevaluate the refined mesh after moving control mesh
vertices [BS02]. However, the creation of such tables requires a
symbolic subdivision, whose cost is similar to a full subdivision.
Table-based approaches are no solution to parallel subdivision, as
the assembly of the tables is performed on the CPU and only the
simple evaluation via weight mixing is done in parallel. Similarly,
the precomputed eigenstructure of the subdivision matrix can be
used for direct evaluation of Catmull-Clark surfaces [Sta98].

To avoid the cost induced by exact subdivision approaches, ap-
proximation schemes have been introduced. Peters [Pet00] trans-
forms the quadrilaterals of a mesh into bicubic Nurbs patches, which
imposes restrictions on the mesh. Loop et al. [LS08] represents the
Catmull-Clark subdivision surface in regular regions using bicu-
bic patches. Irregular faces still require additional computations.
Approximations are fast, but along the way, desirable properties
are lost and visual quality deteriorates. While regular faces can

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

be rendered efficiently by exploiting the bicubic representation us-
ing hardware tessellation, irregular regions require recursive sub-
division to reduce visual errors [NLMD12, SRK∗15]. Brainerd et
al. [BFK∗16] improved upon these results by introducing subdivi-
sion plans. Beyond classical subdivision, several extensions have
been proposed to allow for meshes with boundary [Nas87], sharp
creases [DKT98], feature-based adaptivity [NLMD12] or displace-
ment mapping [Coo84, NL13].

We provide a parallel subdivision approach that keeps track of the
entire mesh while being able to do both: fully evaluate subdivision
in one shot or split the processes into preprocessing and evaluation,
both efficiently parallelized.

2.3. Matrix algebra

Using matrix algebra for subdivision was attempted before. The
effort by Mueller-Roemer et al. [MRAS17] for volumetric subdi-
vision uses boundary operators to boost performance on the GPU.
While these differential forms have been used earlier [CRW05], their
storage cost and redundancies continue to limit their practical scope.
As an alternative to subdivision tables, Driscoll [Dri14] proposed
the use of sparse matrix-vector multiplication to speedup per-frame
evaluations. However, data conversion and processing cost makes it
unsuitable for practical use. This suggests that using matrix algebra
alone does not solve the problem of efficient subdivision. With our
approach, we show that an extended matrix algebra in combina-
tion with bottom-up knowledge and optimizations is key to achieve
modular, high-performance, parallel subdivision.

3. Mapped Matrix Algebra for Catmull-Clark Subdivision

To start the discussion of our approach, we review the sparse matrix
mesh representation of Zayer et al. [ZSS17], propose our extensions
to their formalism and describe how they can be used to derive
Catmull-Clark subdivision using efficient sparse linear algebra.

3.1. Mesh Representation and Operations

We use the sparse mesh matrixM [ZSS17] in our linear algebra
formulation. Each column inM corresponds to a face. Row indices
of non-zeros in a column correspond to the face’s vertices and the
values reflect the cyclic order of the vertices locally within a face.
For example, assume face i is comprised of vertices j,k, l,m in that
order, then column i ofM has entries in row j,k, l,m with values
1,2,3,4, respectively.

Mapped SpMV [ZSS17] extends the common sparse matrix-vector
multiplication (SpMV) to alter its outcome on the fly:

v′ = Mv
µ

= Mv
σ→δ

; v′(i) = ∑
j

µ(M (i, j))v(j), (1)

where M is a matrix, v is a vector and µ = σ→ δ is an action
map. µ = σ→ δ is a user-defined, univariate function describing
a mapping from the set of non-zero entries σ in M to a set of
destination values δ. The mapping is performed on the fly, leaving M
unchanged. This leads to a multiplication with a matrix of identical
sparsity pattern but different values without explicitly creating it.

Figure 2: The Catmull-Clark scheme inserts face-points (left), edge-
points (center) and creates new faces by connecting face-points,
edge-points and the original central point, which is updated in a
smoothing step (right).

Mapped SpGEMM proposed by Zayer et al. is not sufficiently
general to formalize the full Catmull-Clark scheme. Thus, we extend
the notation to offer more freedom in altering the result of a sparse
general matrix-matrix multiplication (SpGEMM):

C = AB
{µ}[λ]

; C(i, j) = ∑
k

λ(µ(A(i,k) ,B(k, j)) , i, j,k,a,b) ,

where A, B, and C are sparse matrices, µ is an action map [ZSS17]
and we call λ the lambda function. The map µ is a user-defined,
bivariate function that maps from {A×B} to a set of values passed
to the lambda function. The lambda function is user-defined and
may perform arbitrary computations relying on information about
the colliding non-zeros. During the multiplication, whenever a non-
zero entry of A, e.g. a = A(i,k), collides with a non-zero entry of
B, e.g. b = B(k, j), λ is invoked with parameters µ(a,b), i, j,k,a,b
and performs the user-defined operations and returns a value that re-
places the result of the multiplication a ·b of the common SpGEMM.
In contrast to action maps, lambda functions can capture any data
available before the mapped SpGEMM is performed, which has two
important implications: (1) Lambdas may use and manipulate data
that would otherwise not be available in an SpGEMM, e.g., vertex
or face attributes. (2) Lambdas might have a state, e.g., a lambda can
count the number of collisions during the multiplication or create
a histogram of non-zero values and alter their behavior based on
the state. Thus, the matrix algebra captures data movement, while
action maps and lambdas capture the operations to be carried out.

3.2. Catmull-Clark Subdivision

The Catmull-Clark scheme offers a generalization of bicubic patches
to the irregular mesh setting [CC78]. It can be applied to polygonal
faces of arbitrary order and always produces quadrilaterals. Fig. 2
outlines the four steps of a Catmull-Clark subdivision iteration.

Face-Points fi are calculated for each face i by averaging the face’s
vertices. To compute the barycenters, face orders can be obtained
using an action-mapped SpMV:

c =MT 1
val→1

, (2)

where 1 is a vector of ones spanning the range of the faces. The
mapping replaces all entires inMT by 1. Thus, the SpMV counts
the non-zero entries in each row ofMT , i.e., the number of vertices
in each face, cf. Figure 3. This information is subsequently used in

f = MT P
vali,∗→ 1

ci

(3)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

1 2 1
4 2 4
 3 3 3
 3 4 2
2 1 1
3 4 1
 4 2 1
 3 2 4

1 2 3 4 5 6
1
2
3
4
5
6
7
8

 2 2 2
1 2 2
 4 2 2
2 6 2
3 2 2
 5 9 2
 8 10 2
 7 11 12

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

 3 2 1
1 3 5
 5 3 6
3 6 2
2 1 4
 1 4 5
 6 2 4
 5 4 6

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1

2

3

4

5

67

12

3

56

12

3

10 9

58

46

4

M

Figure 3: The matrices used throughout one subdivision step for a
small mesh (top left): mesh matrixM, the edge indices provided in
E and the adjacent face indices in F.

to calculate the face-points, where P is the vector of all vertex
data. Every non-zero value vali,∗ in rowMT (i,∗) is mapped to the
reciprocal of the number of vertices in face i.

Edge-Points are placed on every edge at the average of each edge’s
end-points and the face-points on its adjacent faces. The compu-
tation of edge-points requires the assignment of unique indices to
mesh edges. Such an enumeration can be obtained from the lower
triangular part of the adjacency matrix of the undirected mesh graph.
With the standard linear algebra machinery, this matrix could be
created by first computing the adjacency matrix of the oriented mesh
graph and then summing it with its transpose to account for meshes
with boundaries. This is not viable since it requires additional data
creation (transpose) and, more importantly, matrix assembly, which
is notoriously costly on parallel platforms.

We conveniently encode this step as a mapped SpGEMM

E = MMT

{Qc+Qc−1
c }[ι]

, (4)

where c is the face order, ι is a lambda function, and Qc and its
power Qc−1

c are combined to capture the counterclockwise (CCW)
and clockwise (CW) orientation inside a given face. For quads, Q4
captures the CCW and Q3

4 the CW adjacency. These two maps can
be thought of as small circulant matrices, e.g., of size 4×4 for quads,
which are not created explicitly, as their entries can be computed
on demand. This is particularly useful, when the face orders vary
within a mesh:

Qr
c (i, j) =

{
1 i f j = ((i+ r−1)mod c)+1
0 otherwise

. (5)

The lambda function ι returns the number of faces shared by the
vertices i and j. Thus, we can create unique indices for edges (and
edge-points) by enumerating the non-zeros in the upper or lower
triangular part of E as indicated by the orange entries in Figure 3.

To complete the computation of edge-points, faces adjacent to
a given edge are required. For this purpose, we construct a second
matrix, F , which has the same sparsity pattern as the adjacency
matrix of the oriented graph of the mesh, but each non-zero entry
stores the index of the face containing the edge. It can be similarly
constructed by mapped SpGEMM:

F =MMT

{Qc}[γ]
(6)

γ(k,a,b) =

{
k i f Qc(a,b) = 1
0 otherwise

. (7)

Whenever the action map returns a non-zero for a collision between
elementsM(i,k) andMT (k, j), the face index k is stored in F(i, j),
see Figure 3. Hence, for each edge i, j in the mesh, its unique edge
index is known from E and the two adjacent faces are F(i, j) and
F(j, i). The edge-point position can then be computed.

Updating Vertex-Points The vertex data refinement is concluded
by updating original vertex positions according to

S(pi) =
1
ni

(
(ni−3) pi +

1
ni

ni

∑
j=1

f j +
2
ni

ni

∑
j=1

1
2
(

pi + p j
))

, (8)

where ni is the vertex’s valence, f j are the face-points on adjacent
faces and p j the vertices in the 1-ring neighborhood of pi. Eq. (8)
can be conveniently rewritten as

S(pi) =

(
1− 2

ni

)
pi +

1
n2

i

ni

∑
j=1

p j +
1
n2

i

ni

∑
j=1

f j. (9)

With vertex valences obtained as the vector

n =M1
σ→1

, (10)

the updated vertex locations can be written as three mapped SpMVs:

Psub = IP
vali,i→1−2n−1

i

+ EP
vali,∗→n−2

i

+ Mf
vali,∗→n−2

i

. (11)

With I representing the identity matrix, the first mapped SpMV
corresponds to an element-wise multiplication.

Topology Refinement The refined topology is built by inserting
new edges that connect the face-point to the face’s edge-points,
splitting each face of order c into as many quadrilaterals. A new
face consists of one (updated) vertex of the parent, its face-point and
two edge-points (see Figure 2, right). We enumerate the subdivided
vertices sequentially starting with the (updated) vertices, followed by
the face-points and edge-points. To create the mesh matrixMsub for
the subdivided mesh, a column referencing the respective vertices
for each face has to be created. AssumeM has |v| vertices and | f |

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

faces.Msub can be created with the help of a mapped SpGEMM

T =MMT

{Qc}[σ]
(12)

σ =

{
{i, E(i, j)+ |v|+ | f | ,k+ | f | , E(g(i,k), i)+ |v|+ | f |}
0 i f Qc(a,b) = 0

,

where g is a function that returns the predecessor vertex of a given
vertex in a certain face. Each non-zero value of T is a quadruple
that references the vertices of a face in the subdivided mesh, i.e., the
non-zeros form the columns of the subdivided mesh matrixMsub.

Combination Clearly, the described operations can be split into
operations related to topology refinement and computing vertex
location. Thus, one subdivision iteration can be split into what we
call a build and evaluation step. The build step takes the current
mesh matrix and generates F , E as well as the mesh matrix of the
subdivided mesh. The evaluation step receives the matrices F and
E as well as the mesh matrix and vertex positions from the last
iteration to generate the new vertex locations. This split is possible
over any number of iterations, carrying out all topology changing
operations before subdividing the vertex data.

4. Mapping SpLA Catmull-Clark to Efficient Kernels

We implemented the high-level formalization discussed in Section 3
on top of standard sparse linear algebra (SpLA) kernels, which we
extended with action maps. While those allow for efficient prototyp-
ing, they are not adapted to the particular computation patterns of the
subdivision approach. In this section, we show that specialized GPU
kernels designed for the structure of the underlying matrices and the
exact computations carried out throughout subdivision can take full
advantage of the parallel compute power of graphics hardware.

Data structure We use the Compressed Sparse Column (CSC)
sparse matrix format, which is comprised of three arrays. The first
two hold row indices and values of non-zero entries, both sorted by
column. The third is a column pointer array that contains an offset
to the start of each column in the first two arrays [Saa94]. CSC
allows to efficiently access the vertices of a face, which is important
during subdivision. Thus, the involved matrix operations can also be
completed more efficiently than with a different format. To reduce
memory requirements, we omit the value array in the mesh matrix
and sort the row indices to reflect the traversal order of vertices in
the mesh [ZSS17].

4.1. Adjacency, Offset and Mapping

Eq. (10) computes the valency for each vertex in the mesh by count-
ing the number of non-zero entries in each row ofM. GPU SpMV
would at first transpose the CSC format to allow for parallelization
over the rows. As transpose is costly, we avoid it and consider the
alternatives: gather and scatter. Gather would also parallelize over
the rows, while searching through the columns of the CSC format.
According to our experiments this does not improve performance
compared to computing an explicit transpose. Thus, we use a scatter
approach, which increases parallelism and improves read access;
see Alg. 1. Each thread reads one non-zero from the mesh matrix (ln.
1). Consecutive threads read consecutive row indices, which yields

perfect read access. Each thread uses atomic operations to increment
the output vector element corresponding to its row and stores the old
value in an offset array (ln. 2-3); note the perfect write access pat-
tern. We use this offset, which enumerates the occurrences of each
vertex, during later processing. While atomic operations cause over-
head if they access the same memory location, the number of these
collisions is limited to the valency of each vertex—which is low
compared to the overall number of entries. Thus, scatter performs
best among the presented alternatives.

ALGORITHM 1: Valency and offset calculation
input :row indices ofM
output :vertex valences and offset array

1 v← Mrids [t] ; // read vertex id
2 old← atomicAdd(valences [v], 1) ; // increase valency
3 offsets [t]← old ; // store occurrence id

ALGORITHM 2: Filling non-zero entries of E

input :sparsity pattern ofM, column pointer of E, offsets
output :row indices of and temporary values of E

1 first← Mcptr [t] ; // first entry in column t
2 next← Mcptr [t +1]; // first entry in column t +1
/* iterate over face t */

3 for k← first to next −1 do
4 i← Mrids [k];
5 j← nextVertInFace(i, k);
6 off← Ecptr [i]+ offsets [k] ; // global offset
7 Erids [off]← j;
8 Evals [off]← i < j ; // entry in lower tri. of E?

GPU SpGEMM is commonly performed in two steps. First, in
the symbolic pass, the column pointer of the resulting matrix is
determined. The multiplication is performed without generating the
result, but only counts the number of non-zeros in each resulting
column. A parallel prefix sum over those yields the column pointer
of the resulting matrix. Second, the row indices and values are filled
by running the multiplication routine again with the numeric opera-
tions. As SpGEMM must support arbitrary matrices, it is expensive
on parallel devices and we want to avoid SpGEMM if possible.

As E stores the number of shared faces for any pair of vertices in
the mesh, we can avoid the explicit SpGEMM of Eq. (4): First, the
number of non-zeros in each column does not have to be computed.
Each column is linked to a vertex with entries equal to the vertex’
valence. A parallel prefix sum over the already available valences
n yields the column pointer of E. Second, we directly compute the
row indices and values of E, as outlined in Fig. 4 and Alg. 2: A
column i in the resulting matrix has a non-zero entry in row j if
vertices i and j share an edge. Thus, the row indices of E can be
determined by inspecting the row indices ofM. We use one thread
t per column ofM (ln. 1-2). Each thread iterates over its column
(ln. 4), creates an entry in E’s row indices (ln. 8) for each edge i, j
and writes a 1 to a temporary array if i < j and 0 otherwise (ln. 9).
To determine the position of an entry in the two arrays, the offsets
from Alg. 1 are used, which enumerate the entries of each row in
M (ln. 7)—each column in E has the same number of entries as
a row inM. A parallel prefix sum over the temporary value array

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

6 5 2 7 2 5 9 4 …

0 1 2 3 4 5 6 7

3 4 4 5 4 2 3 5 …

0 1 2 3 4 5 6 7

valency

M row ids

T1

T1
3

3 2 …

0 1 2 3 4 5 6 7

offsets

T1

0 3 7 11 16 20 23 27 …

0 1 2 3 4 5 6 7

E col ptr

3 2 …

0 1 2

0 3 7 11 16 20 23 27 …

0 1 2 3 4 5 6 7 …

… … 1 2 … … … 5 …

… 20 21 22 23 24 25 26 …

… 0 1 1 0 1 0 0 …

… 20 21 22 23 24 25 26 …

… 14 15 16 16 17 17 17 …

… 20 21 22 23 24 25 26 …

6 5 2 7 2 5 9 4 …

0 1 2 3 4 5 6 7 …

T0

T0

T0

5 < 2 6 < 5
2 3

T0

T0

T0

T0

Figure 4: Thread k operates on a single column ofM and creates
entries in E for each edge (i, j) of face k. The thread uses the column
pointer of E and the offset array to determine the position p for
the new entry in the row indices and values of E. The row index j
is written to the row indices at position p. A subsequent write to a
temporary value array at position p indicates whether i < j, i.e., if
the new entry is in the lower triangle of E. A prefix sum over the
temporary value array yields the actual value array of E.

yields the values of E, containing the unique edge indices in the
lower triangular part of the resulting matrix. The index of edge i, j is
stored in E(max(i, j),min(i, j)), which we denote as E(i, j) in the
following.

4.2. Topology Refinement

Commonly, we parallelize over the non-zeros ofM. For topology
refinement, we need to know which face a non-zero belongs to.
Using the CSC format, this would require a search in the column
pointer ofM. To avoid this search, we attach an array toM holding
the corresponding column/face index for each non-zero, effectively
creating a hybrid with the coordinate format (COO) ofM.

Next, the subdivided topology can be created as in Eq. (12).
Again, a straightforward implementation misses high performance
goals. In Eq. (12) a collision, causing the lambda to return a face of
the refined mesh, happens whenever two vertices are connected in
CCW order in a face. This information is already contained inM.
Two non-zeros in the same column with consecutive values create a
face of the refined mesh. Thus, we replace the mapped SpGEMM
of Eq. (12) with a custom kernel, detailed in Alg. 3.

We parallelize over the non-zeros ofM, such that each thread
builds a single face of the refined mesh. The original vertex and face
index are trivially obtained from the previously computed COO form
(ln. 1-2). To determine the vertex index of the next and previous
index, we read the cyclic next and previous entry in the column

ALGORITHM 3: Refining the topology
input :M, E, Mcids
output :refined topology Mrids_ref

1 v0← Mrids [t] ; // vertex id
2 f0← Mcids [t] ; // face id
3 vn = nextVertInFace(v0, f0);
4 vp = prevVertInFace(v0, f0);
5 v1← E(v0,vn)+ |v|+ | f | ; // out-edgepoint id
6 v2← f0 + |v|; // in-edgepoint id
7 v3← E(vp,v0)+ |v|+ | f | ; // facepoint id
8 writeVec(Mrids_ref [4t], vec4 (v0, v1, v2, v3));

ofM (ln. 3-4). As neighboring threads access the same column,
these reads are often cached. We then compute the remaining vertex
indices according to Eq. (12), using two entries from E (ln. 5-7).
The number of vertices |v| and faces | f | are trivially tracked from
one subdivision iteration to the next from the size ofM and are
directly provided to the specialized kernel. As each refined edge is a
quad, we write the result using an efficient vector-store operation
(ln. 8) with a perfect write memory pattern among threads.

4.3. Vertex Data Refinement

The face-points, cf. Eq. (3), are calculated in a single kernel given
in Alg. 4. Each thread t is assigned to a column ofM and averages
all referenced vertices (ln. 2-4). As we store face-points next to one
another in memory, the stores are coalesced (ln. 5).

ALGORITHM 4: Face-point calculation
input :M, vertex data
output : facepoints

1 val← 0;
/* iterate over face t */

2 for k← Mcptr [t] to Mcptr [t +1] −1 do
3 v← Mrids [k] ; // vertex id
4 val← val + data [v]; // accumulate vertex data

5 facepoints [t]← val
Mcptr[t+1]−Mcptr[t] ; // average data

An edge-point is given by the average of the two adjacent face-
points and the two edge endpoints. To access those points the SpLA
version uses the matrices E and F (Eq. (4) and (6)). However, relying
on the topology information computed for the refined mesh (Alg. 3),
we completely avoid the creation of F , as shown in Alg. 5. Each
thread t is assigned a non-zero entry of the mesh matrixM and
thus a face in the refined mesh (compare to Alg. 3). Using the
original vertex index (ln. 2) and the already computed face-points
(ln. 3), each thread adds its contribution to the edge-point on its
outgoing edge (ln. 4). Thus, the computation of each edge-point is
distributed to two threads and requires atomics (which show hardly
any congestion).

The vertex update is the sum of three terms, see Eq. (11). We
parallelize the first component-wise division over the elements and
initialize the updated vertex array. To efficiently compute the second
mapped SpMV we could again rely on atomics. However, as the
sparsity pattern of E is symmetric, we instead multiply with the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

ALGORITHM 5: Edge-point calculation
input :refined topology Mrids_ref, vertex data, facepoints
output :edgepoints

/* indices_ref = x:vp, y:ep_out, z:fp, w:ep_in */
1 indices_ref← readVec(Mrids_ref [4t], 4); // refined face
2 vp← data [indices_refx]; // vertex data
3 fp← facepoints [indices_refz]; // facepoint data
/* add contribution to edge-point */

4 atomicAdd(edgepoints [indices_refy], 1
4 (vp+ fp));

vertex data from the left and thus parallelize over E’s columns.
In this way, atomics are avoided and writes are coalesced (and
vectorized). For the third summand, we use the mapped SpMV
parallelized over the non-zeros with atomics similar to Alg. 1.

4.4. Quadrilateral-Mesh Refinement

As the Catmull-Clark scheme exclusively produces quadrilaterals,
further specialization of the subdivision kernels are possible, even
if the input mesh has arbitrary face orders. As the number of faces
increases exponentially with subdivision iterations, it is of particular
importance to maximize the throughput for quadrilateral meshes. To
keep the discussion concise, we only describe changes compared to
the previous version.

Specialized Adjacency, Offset and Mapping The computation
of row indices and values of E (Alg. 2) can be parallelized on
a finer granularity: over the non-zeros instead of columns ofM.
This eliminates the traversal of columns and thereby the access
to the column pointer—because face i in a quad mesh starts at
position 4i in the row indices ofM. Furthermore, the read access
to the row indices of M improves because consecutive threads
read consecutive entries. Each thread then reads the row index it
is assigned and the next vertex index in the face and creates the
respective entry in E, see Alg. 6. Additionally, we omit the creation
of the COO format, as the mapping of a non-zero entry to a column
directly follows from its position in the row index array; entries 4i
to 4(i+1)−1 belong to face i.

ALGORITHM 6: Filling non-zero entries of E in a quad mesh
input :row indices ofM, column pointer of E, offsets
output :row indices of and temporary values of E

1 v0 ← Mrids [t];
2 vn ← shuffleFromNextThreadInFace(v0);
3 off← Ecptr [v0]+ offsets [t];
4 Erids [off]← vn;
5 Etmpvals [off]← v0 < vn;

Specialized Topology Refinement In the topology refinement
stage, we now use four threads to work cooperatively to subdi-
vide an input quad. We still assign one thread to each non-zero
element inM. However, as four consecutive threads are guaranteed
to execute on the same SIMD unit, they can communicate efficiently
using so-called shuffle instructions. In the polygon refinement ker-
nel, each thread originally read three row indices: its own and the

two adjacent non-zeros in the same face (next and previous vertex
index). Furthermore, two threads working on the same face queried
E for the same edge-point index on the edge connecting the two ver-
tices. For quad input meshes, we replace those additional accesses
by shuffle instructions, as shown in Alg. 7. The index of the next
vertex in the face vn is shuffled from the (cyclic) next thread in the
face (ln. 2). The face index is not read from the mapping as in the
polygon subdivision kernel, but is computed from the thread index
(ln. 4). As the incoming edge corresponds to the outgoing edge of
the previous vertex, this edge index is also obtained using shuffling
(ln. 3). Overall, each thread of the quad kernel reads two values,
compared to five reads in the general kernel.

ALGORITHM 7: Refining the topology in a quad mesh
input :Mrids, E
output :refined topology Mrids_ref

1 v0← Mrids [t];
2 vn← shuffleFromNextThreadInFace(v0);
3 v1← E(v0,vn)+ |v|+ | f |;
4 v2←

⌊ t
4

⌋
+ |v|;

5 v3← shuffleFromPrevThreadInFace(v1);
6 writeVec(Mrids_ref [4t], vec4 (v0, v1, v2, v3));

Specialized Vertex Data Refinement To calculate a face-point on
a quad, vertex data of four vertices is averaged. Edge-points com-
bine two vertices with two face-points, which means most of the
data to calculate an edge-point is already available in the face-point
computations. Thus, we fuse both into a single kernel to increase
performance, as shown in Alg. 8. We use one thread per non-zero
element in the mesh matrix. Each thread reads the non-zero row
index and the corresponding vertex data (ln. 1-2). Four consecutive
threads’ data are summed, essentially performing a reduction us-
ing shuffle instructions (ln. 4-5). The sum is broadcast to all other
threads assigned to the same face (ln. 6), as initially only the first
of the four threads has the correct sum. Then, the final face-point
is calculated and stored (ln. 7-8). For the edge-point, each thread
combines its vertex data and the computed face-point and adds this
contribution to the edge-point on the outgoing edge using an atomic
addition (ln. 9-10). That way, two threads from two adjacent faces
contribute to the edge-point on the shared edge.

ALGORITHM 8: Face- and Edge-points in a quad mesh
input :M, refined row indices Mrids_ref, vertex data
output : facepoints, edgepoints

1 v0← Mrids[t];
2 vp← data[v0];

3 fp← vp;
4 fp← fp + shuffleDown(fp, 2, 4);
5 fp← fp + shuffleDown(fp, 1, 4);
6 fp← shuffle(fp, 0, 4);

7 fp← fp
4 ;

8 facepoints[t
4]← fp

9 e0← Mrids_ref[4t +1]−|v|− | f |;
10 atomicAdd(edgepoints [e0],

vp+fp
4);

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

In the vertex update, the average of face-points around each vertex
(the third summand) can now omit the traversal of each column of
M, as each column has exactly four entries (Alg. 9). Each thread
reads the four non-zeros of its column using a single vectorized load
instruction and loads the corresponding face-point (ln. 1-2). It then
proceeds to weight them and adds the result to the correct output
vector element using atomics (ln. 3-6).

ALGORITHM 9: Calculation of Psub in a quad mesh
input :M, facepoints, valences
output :s3

1 face← readVec(Mrids [4t], 4);
2 fp← facepoints [t];
3 atomicAdd(s3[face.first], fp/valences[face.first]2);
4 atomicAdd(s3[face.second], fp/valences[face.second]2);
5 atomicAdd(s3[face.third], fp/valences[face.third]2);
6 atomicAdd(s3[face.fourth], fp/valences[face.fourth]2);

5. Extensions through Efficient Kernels

Subdivision surfaces found their way from the lab to production
when extensions where proposed. In this section, we extend our
approach to address relevant aspects of such extensions.

5.1. Creases

Sharp and semi-sharp creases have become indispensable to describe
piecewise smooth and tightly curved surfaces [DKT98]. Creases are
realized as edges tagged by a (not necessarily) integer sharpness
value and updated according to a special rules during subdivision.
For an in-depth description of creases, we refer the reader to DeRose
et al. [DKT98]; we present an efficient integration into our approach.

To support creases, we use a sparse, symmetric crease matrix C
of size |v|× |v|, with C(i, j) = σi j being the sharpness value of the
crease between vertex i and j. To subdivide creases, we need the
crease valency k, i.e., number of creases incident to a vertex, and the
vertex sharpness s, i.e., average of all incident crease sharpnesses.
Both can be described by the same SpMV with different maps:

k = C1
val→1

, s = C1
vali, j→

vali, j
ki

. (13)

As C is symmetric, we again perform the summations over the
columns rather than the rows. Furthermore, we merge both into
a single kernel to reduce memory accesses. With the computed
vectors k and s and the adjacency information in E, we correct
crease vertices in parallel using the corresponding rules [DKT98],
as an additional step after standard subdivision. Treating creases as
a separate step avoids thread divergence and increases performance.

After each iteration, a new crease matrix with the updated sharp-
ness values is required. We determine the crease values according
to a variation of Chaikin’s edge subdivision algorithm [Cha74] that
decreases sharpness values [DKT98]:

σi j = max
(

1
4
(
σi +3σ j

)
−1,0

)
, (14)

σ jk = max
(

1
4
(
3σ j +σk

)
−1,0

)
, (15)

where σi, σ j and σk are sharpness values of three adjacent parent
creases i, j and k. σi j and σ jk are the sharpness values of the two
child creases of j. To allocate the memory for the new crease matrix,
we count the number of resulting non-zeros in parallel over all
columns and compute a prefix sum. In a second step, we perform the
same computations again, but write the updated crease values. If all
crease sharpness values decrease to zero, the subsequent subdivision
steps are carried out identically as for a smooth mesh. Note that
the core of the subdivision process remains the same; the crease
matrix is created additionally in the build step. During evaluation,
we re-evaluate and overwrite vertices influenced by a crease.

5.2. Selective and Feature Adaptive Subdivision

Our approach cannot only be used to describe uniform subdivision,
but also selective processing. Consider feature adaptive subdivi-
sion, where only regions around irregular vertices are subdivided
recursively, which is interesting for hardware-supported render-
ing [Pix19,NLMD12]: Using our scheme, extraordinary vertices are
easily identified from Eq. (10), i.e., where valency is 6= 4. To identify
the regions around the extraordinary vertices, we start with a vector
s0 spanning the number of vertices. s0 is 0 everywhere except for
extraordinary vertices, where it is 1. To determine the surrounding
faces, we propagate this information with the mesh matrixM. The
neighboring faces are determined as the non-zeros of

qi =MT si (16)

and their vertices can be revealed as the non-zero entries of

si+1 =Mqi. (17)

We construct the matrix Si which corresponds to an identity matrix
with deleted rows according to si+1. The extraction of the vertex-
data is then performed by the SpMV

P′i = SiPi. (18)

To extract the mesh topology, the matrix S̊i—analogue to Si—is
created from the information acquired in the propagation step. S̊i
can again be created from the identity matrix by, in contrast to Si,
deleting columns corresponding to faces that should be disregarded
during extraction. This information is readily available in qi. The
extracted mesh matrix is then determined via

M′ = SiMS̊i. (19)

This can similarly be described as a mapped SpGEMM, replac-
ing the two extraction matrices by identity matrices and mapping
rows/columns to zero according to si/qi. This would not explicitly
reduce the size of the mesh matrix as Equation 19, but would set
rows and columns to zero, that are not part of the extracted mesh.

5.3. Meshes with boundaries

In practice, meshes often contain boundaries, which require special-
ized subdivision rules. Catmull-Clark subdivision places edge-points
on boundary edges on the edges’ mid-points. A boundary vertex pi
is only influenced by adjacent boundary vertices

S(pi) =
3
4

pi +
1
8
(pi−1 + pi+1). (20)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

Similar to creases, we handle mesh boundaries in a compute
and overwrite fashion. First, the refined vertex-data is computed
as usual. In a subsequent step, boundary vertices can be conve-
niently identified from E, and are replaced in parallel according to
Eq. (20). Edge-points on edges connecting external vertices are set
to the edge-mid points. Their indices can again be obtained from
the enumeration of the non-zeros in the lower triangular part of E.

6. Operational Mode

Applications exhibit different requirements concerning subdivision
approaches. Our method is versatile and can adapt to the current
use-case by balancing computational cost between preprocessing
(build) and vertex-data refinement (eval). However, we distinguish
two main categories on opposite ends of the spectrum: dynamic and
static topology of the control mesh.

6.1. Dynamic topology

Dynamic topology is ubiquitous in 3D modeling and CAD appli-
cations during the content creation process. Faces, vertices and
edges are frequently added, modified and removed, which poses
a great challenge to existing approaches, which rely on expensive
preprocessing, as it has to be repeated on every topological update.
This fact has led to the use of different subdivision approaches for
model preview and production rendering, resulting in discrepancies
between the two. Due to the efficiency of our complete approach,
we can avoid any preprocessing and alternate between build steps
and eval steps, computing one complete subdivision step before the
next. As additional data like Ei is only needed for a single iteration,
memory requirements are low.

6.2. Static topology

Static topology is common, e.g., in production rendering, where
vertex attributes, like positions, change over time but the mesh con-
nectivity is invariant. Mesh connectivity information can be prepared
upfront and does not require re-computation every frame, which
reduces the overall production time. We factor all computations
dealing with mesh connectivity throughout all subdivision levels
into the build step, i.e., generate all Ei and Mi+1; si and Ci in case
of selective subdivision and creases; and Fi for the SpLA version.
As control polygon vertices are updated, only the vertex position
computations throughout all levels are computed during eval.

6.3. Single SpMV evaluation

Given that each iteration of eval is a sequence of mapped SpMVs,
it is also possible to capture the entire sequence in a single sparse
vertex subdivision matrix Ri. Ri captures the eval step of a single
subdivision from level i to i+1:

Pi+1 = RiPi. (21)

Each column in Ri corresponds to a vertex at subdivision level i
and each row corresponds to one refined vertex at level i+1. Thus,
the entire evaluation from the first level to a specific level i can be
written as a sequence of matrix-vector products as follows:

Pi = Ri−1Ri−2 . . .R1R0P0 =RP0. (22)

Thus, the whole eval step can be rewritten as a single SpMV with
the subdivision matrixR, regardless of the subdivision depth.

Building Vertex Subdivision Matrices To construct R, we first
build the individual Ri, using the precomputed information that
would otherwise be used in the normal eval step. First, we determine
the number of non-zero entries in each row. A row in Ri reflects
the influence of the previous iteration vertices on the vertices in the
subdivided mesh. Thus, working with the compressed sparse rows
(CSR) format, the transpose equivalent to CSC, is more efficient for
constructing Ri. Consequently, the number of non-zero entries in
a row is equal to the number of vertices that contribute to a vertex
in the refined mesh. The first |v| rows correspond to the updated
original vertices and they receive a contribution from 1+∑

n
i (ci−2)

vertices, where n is the number of neighboring faces and ci their
order. These entries can be obtained from the mapped SpMV

1+ M1
val∗,i→(ci−2)

. (23)

In a quad mesh the number of entries is 1+2ni, which we compute
directly from n. The next | f | rows correspond to face-points, which
are a linear combination of ci vertices, which we have computed
before (Eq. (2)) and is always 4 in a quad mesh. The remaining
rows contain coefficients for edge-points, computed from cl +cr−2
control vertices, with cl and cr being the order of the two adjacent
faces. These counts are computed with one thread per non-zero
element inM and each thread in face i adds ci−1 to the non-zero
count of the edge-point on the outgoing edge. In a quad mesh the
number of non-zeros in each row corresponding to a face-point is
6. As with CSC matrices, we use a parallel prefix sum over the
non-zero counts to create the pointers array of Ri.

To fill the sparsity pattern with values, we again parallelize over
the non-zeros of the mesh matrix. Each thread distributes the influ-
ence of the referenced vertex to the rows of all influenced vertices in
the refined mesh, as shown in Figure 5. The indices of the influenced
vertices are again directly taken from the refined topology and their
contributions are given as follows:

• a face-point on an adjacent face is influenced with fd = 1
c .

• a vertex influences its updated location directly with vs1 = 1− 2
n .

• a vertex influences its updated location indirectly via a single
adjacent face-point with vs2 =

1
n2c

• a vertex connected via an edge with vd = 1
n2

(
1+ 1

cl
+ 1

cr

)
.

• a vertex connected via a face but no edge with vi =
1

n2c .
• an edge-point on an incident edge with ed = 1

4 +
1

4cl
+ 1

4cr
.

• a non-incident edge-point of an adjacent face with ei =
1
4c .

SpMV Subdivision We construct R computing all SpGEMMs
from Eq. (22). As R captures the combination of many mapped
SpMVs, there is usually no common structure to exploit. However,
we also use the CSR format to storeR to allow efficient row access
and perform the SpMV without atomic operations. Furthermore, we
pad the row indices and value arrays, such that each row is 16 Byte
aligned, to enable vectorized loads. For the same reason we also pad
the vertex-data vector. For evaluation, we assign eight non-zeros to
a single thread, which performs the multiplication with eight padded
entries in the vertex array, i.e., 32 values. Each thread needs to know

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

Ti
Ti+3Ti+2Ti+1

Tj Tj+1 Tj+2 Tj+3

Tk Tk+1 Tk+2 Tk+3

Figure 5: The refinement matrix is built in parallel with one thread
per non-zero element of the mesh matrix. Each thread adds one
entry in each row that is influenced by its assigned vertex. Each
thread’s vertex contributes to an edge-point on the outgoing edge
with ed (orange), to edge-points on edges of the face that are not
incident to the thread’s vertex with ei (yellow), to the face-point on
the face the assigned non-zero element belongs to with fd (gray),
to the vertex it shares the outgoing edge with vd (dark blue), to all
other vertices of the face it does not share an edge with vi (light
blue) and finally to its own vertex with vs1 + vs2 (green).

Figure 6: Selection of evaluation meshes: Neptune, ArmorGuy (c/o
DigitalFish), Car, Hat and Eulaema Bee (c/o The Smithsonian).

the row index of its eight non-zero entries—this information is pre-
computed withR as neither the matrix nor the assignment changes
during consecutive evaluations. We then use shuffle operations to
merge results that correspond to the same row spread across multiple
threads on the same SIMD unit. We collect data in on-chip memory
using atomics and finally write the data coalesced to global memory.

7. Evaluation

We evaluate two implementations of the method presented in Section
3. The first approach uses common Linear Algebra Kernels (LAK)
extended by action maps. The second approach uses the Specialized
Linear Algebra Kernels (SLAK) as described in Section 4. While
there is literature on parallel subdivision, there are hardly any im-
plementations available for comparison. Thus, we compare to the
current industry standard, OpenSubdiv (OSD), which is based on
the approach by Nießner et al. [NLMD12] and splits subdivision
into three steps. First, a symbolic subdivision is performed to create
refined topology, which is then used in a second step to precompute

the stencil tables. We summarize these two steps as preprocessing.
The stencil tables are then used to perform the evaluation of refined
vertex data, i.e., vertex positions. While OpenSubdiv executes its
evaluation on the GPU, preprocessing is entirely CPU-based. To
provide a comparison to a complete GPU approach, we compare
against Patney et al. [PEO09].

All tests are performed on an Intel Core i7-7700 with 32GB of
RAM and an Nvidia GTX 1080 Ti. The provided measurements are
the sum of all kernel timings required for the subdivision, averaged
over several runs. We perform a variety of experiments on differently
sized meshes (examples in Fig. 6) in order to evaluate subdivision
performance. As LAK/SLAK can adapt to the specific needs of an
applications, we distinguish two use cases which are on opposite
sides of the full spectrum: “modeling” and “rendering”.

7.1. Catmull-Clark Modeling

This use case represents all applications in which the mesh con-
nectivity changes frequently. This poses a challenge to approaches
relying on precomputed data, e.g., subdivision tables, as they have to
be recomputed. Due to this fact, modeling software, like Blender, do
not support OpenSubdiv in edit mode and instead rely on proprietary
implementations. Similarly to using different subdivision levels for
preview and rendering, proprietary solutions may show large visual
differences between preview and final render.

Results for the modeling use case are shown in Fig. 7, where we
evaluate the subdivision duration and peak memory consumption of
the different approaches after a presumed topological change, i.e.,
when the subdivision is re-initialized. LAK outperforms OpenSub-
div with an average speed-up of 26.6×, indicating that a complete
GPU implementation is significantly faster than the split CPU-GPU
approach of OpenSubdiv. SLAK is more than one order of magni-
tude faster than LAK and outperforms OpenSubdiv by more than
two orders of magnitude, underlining that our specializations are
highly effective. We did not include OpenSubdiv’s memory transfer
times between CPU and GPU, which would reduce it performance
even further. Note that this is not the main use case of OpenSubdiv,
which targets static topology. However, there is no efficient solution
for this use case, underlining the importance of a complete paral-
lelization to the problem. LAK needs similar or slightly more mem-
ory than OpenSubdiv’s stencil tables due to the memory consumed
by all matrices. SLAK reduces the memory of the mesh matrices
and avoids the explicit creation of F and thus stays significantly
below the memory requirements of the other two approaches.

Fig. 1 shows the clear advantage of using our approach in dy-
namic editing. Even at level six subdivision, SLAK yields results
in real-time, whereas OpenSubdiv breaks the interactive modeling
experience due to costly serial reprocessing. The accompanying
video shows these circumstances for the same modeling sequence.
Furthermore, as we perform all computations on the GPU, it is suf-
ficient to transfer the updated geometry to the GPU instead of the
complete subdivision tables. As our approach is instantaneous, it is
also faster than previewing workarounds while being accurate.

As OpenSubdiv is more focused on efficient evaluation than op-
timizing the whole subdivision pipeline, we also compare to the
GPU-based implementation by Patney et al. [PEO09], which we

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

Arm
or

Guy
Roa

dB
ike

Spo
rts

Car

an
ge

l

ha
t

fu
rc

oa
t

do
g

ne
pt

un
e

dr
es

s

10-4

10-2

100

R
el

at
iv

e
T

im
e SLAKs LAKs OpenSubdiv

Arm
or

Guy
Roa

dB
ike

Spo
rts

Car

an
ge

l

ha
t

fu
rc

oa
t

do
g

ne
pt

un
e

dr
es

s
0

1

2

R
el

at
iv

e
M

em
or

y

SLAKs LAKs OpenSubdiv

SLAK LAK OpenSubdiv
Mesh c f r f t m t m total GPU m

ArmorG. 8.6k 35.2M 39.1 1.8 1273.4 3.7 39506 24.4 4.8
RoadB. 53.9k 13.4M 14.4 0.7 470.0 1.4 16459 10.0 1.9
S.Car 149.7k 38.5M 40.3 2.0 1320.5 4.0 45471 34.8 5.5
angel 474k 1.4M 4.5 0.1 33.4 0.1 495 0.6 0.1
hat 4.4k 18.1M 20.3 0.9 684.5 1.9 24229 14.1 2.8
coat 5.6k 22.8M 24.3 1.2 850.5 2.4 29753 17.7 3.5
dog 994k 2.98M 18.8 0.2 83.41 0.3 1401 2.8 0.2
neptune 4.0M 48.1M 39.3 2.5 1263.0 4.9 25775 31.7 4.2
dress 2.3k 9.2M 10.6 0.5 350.6 1.0 12074 6.6 1.4

Figure 7: Catmull-Clark subdivision time in ms after a topology
changing operation was applied to the mesh. SLAK and LAK relative
to OpenSubdiv and relative memory requirements (in GB). Details
are given in the table. The number of control mesh faces c f and the
number of refined mesh faces r f are provided as well.

configured to perform uniform subdivision. We could only test small
quad-only meshes, as their implementation fails when generating
more geometry and on meshes with triangles. Nevertheless, as seen
in Tab. 1, SLAK is about 2.6− 5.6× faster than the patch-based
implementation of Patney et al.. We attribute this fact to our highly
streamlined formulations and optimizations, which avoid redundant
work and result in efficient memory movements. Aside from im-
proved performance, we still have access to a fully connected mesh
after subdivision compared to disconnected patches provided by Pat-
ney et al. These adjacency information is often required for further
global processing or simulation of the subdivided mesh.

7.2. Catmull-Clark Rendering

In contrast to modeling, we consider topology static in the rendering
use case. This enables efficient evaluation, as information that de-
pends on mesh connectivity can be precomputed. Evaluation reuses
this information to subdivide the vertex data in every render frame,
e.g., when replaying an animation. Using the modularity of SLAK,
we rely on the split of build and eval to adapt to this use case.

Mesh c f r f SLAK Patney ↑
bigguy 1.5k 371k 1.15 4.17 3.6
complex 1.4k 346k 0.96 4.07 4.2
cupid 29k 458k 0.72 3.65 5.1
frog 1.3k 331k 0.81 4.51 5.6
pig 381 390k 1.34 5.54 4.1
blocks 18 18k 1.07 2.75 2.6

Table 1: Comparison of SLAK with the GPU-based approach by
Patney et al. for uniform subdivision from a given input mesh in ms.
Our approach is 2.6−5.6× faster (↑).

We present a detailed comparison of SLAK and OpenSubdiv as
well as relative runtime and memory consumption in Fig. 8. We omit
LAK in these figures to reduce clutter. However, in summary, LAK
is on average 29.5× better in preprocessing than OpenSubdiv, but
3.6× slower in evaluation. Overall, SLAK leads the performance
chart throughout all test cases—preprocessing and evaluation. In the
preprocessing step, SLAK computes the refined mesh connectivity,
assembles the sparse subdivision matrix and computes parameters
for load balancing, exclusively on the GPU, outperforming Open-
Subdiv’s CPU preprocessing by more than an order of magnitude.
In the evaluation phase, SLAK only performs a single SpMV, which
is optimized using the precomputed load balancing scheme, outper-
forming OpenSubdiv by 1.6×. Note that OpenSubdiv’s evaluation
kernels have been optimized by NVIDIA, further underlining the
efficiency of our evaluation step.

Our approach has similar memory requirements as OpenSubdiv in
the uniform case, as the subdivision matrix and OpenSubdiv’s stencil
tables capture the same information. The memory requirement of
SLAK is slightly higher if only one or two iterations are performed
(Bee and Neptune). For higher subdivision levels, SLAK needs
slightly less memory than OpenSubdiv.

To reach real-time rendering performance, hardware-supported
tessellation can be used for regular regions of the control mesh.
However, regions around irregular vertices require full subdivi-
sion. To demonstrate that our approach can be used in this set-
ting, we compare to the feature adaptive Catmull-Clark implemen-
tation of OpenSubdiv, which is based on the approach proposed
by Nießner [NLMD12]. In this evaluation, regions around irregular
vertices are successively subdivided and regular patches are split
from the subdivision process.

Fig. 9 compares performance and required memory of our ap-
proach with OpenSubdiv. Formulating the extraction of irregular
regions as a sequence of SpMVs that can directly be integrated
into the global subdivision matrix is very efficient. Together with
the parallel topology refinement, assembly and accumulation of
the subdivision matrix SLAK performs preprocessing on average
15.5× faster than OpenSubdiv. For evaluation, OpenSubdiv uses
its stencil tables on the GPU, while we perform a single SpMV.
While both approaches are similar in their nature, the simple static
load balancing applied to SLAK’s SpMV evaluation reflects in a
speed-up of 1.7× compared to OpenSubdiv’s eval. Compared to the
uniform subdivision from before, we observe that our optimizations
work even better with the generally smaller subdivision matrices

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

Arm
or

Guy
Roa

dB
ike

an
ge

l
be

e
be

et
le ha
t

fu
rc

oa
t

do
g

ne
pt

un
e

dr
es

s

10-4

10-2

100

R
el

at
iv

e
T

im
e

SLAKs OpenSubdiv

Arm
or

Guy
Roa

dB
ike

an
ge

l
be

e
be

et
le ha
t

fu
rc

oa
t

do
g

ne
pt

un
e

dr
es

s

0

0.5

1

R
el

at
iv

e
T

im
e

SLAKs OpenSubdiv

Prepro. Eval. Memory
Mesh c f r f SLAK OSD SLAK OSD SLAK OSD

ArmorG. 8.6k 35.2M 971 39481 14.0 24.4 4.57 4.93
RoadB. 53.9k 13.4M 311 16449 5.7 10.0 1.83 1.93
angel 474k 1.4M 12 494 0.4 0.6 0.08 0.08
bee 16.9M 50.8M 120 13290 9.4 16.0 2.91 2.72
beetle 2.0M 6.0M 93 2904 5.4 7.1 0.35 0.32
hat 4.4k 18.1M 850 24215 7.7 14.1 2.50 2.84
furcoat 5.6k 22.8M 892 29735 9.6 17.7 3.14 3.56
dog 994k 2.98M 40 1398 2.6 2.8 0.17 0.16
neptune 4.0M 48.1M 1000 25743 14.5 31.7 4.64 4.33
dress 2.3k 9.2M 373 12067 3.9 6.5 1.26 1.40

Figure 8: Catmull-Clark subdivision: Evaluation of preprocessing
and evaluation performance (in ms) as well as memory requirements
(in GB) of SLAK and OpenSubdiv. c f gives the number fo control
mesh faces and r f the refined mesh faces.

in the adaptive case. We believe this is due to our load balancing
strategies for the single SpMV evaluation, which allows to draw
more parallelism from the operations and thus increases relative
performance for small matrices. SLAK performance increase is less
pronounced for beetle and dog. On closer inspection we found that
these model have a particularly bad layout, causing a high number
of scattered memory accesses, which seems to have more influence
on SLAK. Memory requirements are similar for both approaches.

Considering the sum of these results, SLAK seems to be a suitable
drop-in replacement for OpenSubdiv in both use cases, virtually re-
moving preprocessing costs and increasing evaluation performance.

7.3. Loop and
√

3 Performance

The linear algebra machinery underlying our work naturally extends
to other subdivision schemes. As a proof of concept, a brief algo-
rithmic outline for

√
3 and Loop subdivision is given in Appendix

A and B, respectively. The kernel specializations devised earlier
can be applied to both schemes as well. A performance comparison
for the modeling use case for Loop subdivision is given in Fig. 10,

Roa
dB

ike
Spo

rts
Car

an
ge

l
ar

ch
er

be
et

le
kil

ler
oo do
g

fro
g

ph
il

10-2

10-1

100

R
el

at
iv

e
T

im
e

SLAKs OpenSubdiv

Roa
dB

ike
Spo

rts
Car

an
ge

l
ar

ch
er

be
et

le
kil

ler
oo do
g

fro
g

ph
il

0

0.5

1

R
el

at
iv

e
T

im
e

SLAKs OpenSubdiv

Prepro. Eval. Memory
Mesh c f r f SLAK OSD SLAK OSD SLAK OSD

RoadB. 54k 564k 101 3896 0.38 0.62 231 251
S.Car 150k 1.3M 306 9089 0.89 1.59 540 607
angel 474k 1.4M 52 799 0.41 0.58 82 76
archer 1.6k 11.7k 9 76 0.01 0.02 4 5
beetle 2.0M 6.0M 348 5400 5.41 7.14 346 320
k.roo 2.9k 9.9k 7 63 0.01 0.02 4 4
dog 994k 2.98M 154 2536 2.57 2.76 172 159
frog 1.3k 9.9k 8 60 0.01 0.02 3 4
phil 3.0k 9.9k 8 65 0.01 0.02 4 4

Figure 9: Adaptive Catmull-Clark: preprocessing and evaluation
performance (in ms) as well as memory requirements (in MB) of
SLAK and OpenSubdiv. c f gives the number fo control mesh faces
and r f the refined mesh faces.

again showing that LAK and SLAK, both running completely on
the GPU, outperform the partially CPU-based OpenSubdiv. LAK
runs out of memory for the larger archerT and neptune models.√

3 performance is shown in Tab. 2 comparing LAK and SLAK to
the CPU-based OpenMesh. LAK is about one order of magnitude
faster than OpenMesh and SLAK is about 20× faster than LAK.
These results highlight that the speedups achieved for Catmull-Clark
subdivision also carry over to other subdivision schemes.

8. Conclusion

We revisited Catmull-Clark subdivision from the ground up in the
light of sparse linear algebra. To maintain an expressive and concise
notation, we introduced lambda functions, which alter the result
of matrix multiplications on the fly and thereby greatly increase
flexibility and versatility of these operations. Using our extended
formalism enables us to describe the full algorithm as a series of
mapped SpMVs and SpGEMMs on the GPU. While our formal-
ism can be implemented with minor adjustments to existing linear
algebra kernels, we showed that the key to top-of-the-shelve per-
formance is the combination of high-level domain knowledge with
low-level knowledge about the execution platform.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

Hho
m

er
ar

ch
er

T

be
e

ha
tT

go
ble

tT
ne

pt
un

e

ph
ilT sta
r

10-4

10-2

100

R
el

at
iv

e
T

im
e SLAKs LAKs OpenSubdiv

SLAK LAK OpenSubdiv
Mesh c f r f t m t m total GPU m

Hhomer 10.2k 41.8M 26.1 1.8 1003.0 2.2 22633 11.8 2.6
archerT 3.2k 13.1M 12.2 0.6 334.3 0.7 7117 3.7 0.8
bee 16.9M 67.8M 27.5 2.4 - - 9289 11.2 2.0
hatT 8.8k 36.2M 29.0 1.6 894.1 1.9 19073 9.8 2.2
gobletT 1.0k 4.1M 3.6 0.2 117.4 0.2 2232 1.5 0.3
neptune 4.0M 64.1M 30.2 2.7 - - 16383 16.5 2.8
philT 6.1k 24.9M 19.3 1.1 622.1 1.3 13840 7.6 1.6
star 10.4k 42.5M 25.5 1.8 1009.9 2.2 22650 11.5 2.6

Figure 10: Loop subdivision time after a topology changing opera-
tion for SLAK and LAK relative to OpenSubdiv. Details in the table
include timing in ms and memory in GB, the number of control mesh
faces c f and the number of refined mesh faces r f .

Mesh c f r f SLAK LAK OpenMesh

fox 622 453.4k 1.24 35.16 127.40
girl_bust 61.3k 44.7M 93.18 1283.62 15394.00
goblet 1.0k 729.0k 1.49 42.23 207.64
Hhomer 10.2k 7.4M 12.59 207.25 2474.35
star 10.4k 7.6M 12.36 214.10 2481.43
bee 16.9M 50.8M 16.91 - 7520.05
neptune 4.0M 36.1M 22.64 - 7454.20

Table 2:
√

3-subdivision time in ms for the GPU-based LAK and
SLAK and the CPU-based OpenMesh implementation. c f is the
number fo control mesh faces and r f the refined mesh faces.

Our approach virtually removes idle times during subdivision
surface design that are caused by expensive preprocessing in current
approaches. Using our approach, modelers can modify the mesh
topology and see an accurate preview of the subdivision surface
instantly. Our experiments suggest that the applicability of our ap-
proach goes beyond the dynamic mesh connectivity setting, i.e.,
modeling, as it outperforms the industry standard OpenSubdiv on
static connectivity scenarios, i.e., rendering, as well. Our approach
operates fully on graphics hardware without requiring trips to the
CPU. Furthermore, our formulation is open for extension with de-
sign features, as we showed for creases and selective subdivision.
Thus, our approach can be readily integrated in all stages of the
production pipeline. By open sourcing SLAK, we hope to inspire
further developments in high performance geometry processing:
https://github.com/GPUPeople/SLAK

9. Acknowledgments

This research was supported partly by the Max Planck Center for
Visual Computing and Communication, the German Research Foun-
dation (DFG) grant STE 2565/1-1, and the Austrian Science Fund
(FWF) grant I 3007.

References
[Bau72] BAUMGART B. G.: Winged Edge Polyhedron Representation.

Tech. rep., Stanford University, Stanford, CA, USA, 1972. 2

[BFK∗16] BRAINERD W., FOLEY T., KRAEMER M., MORETON H.,
NIESSNER M.: Efficient GPU Rendering of Subdivision Surfaces Using
Adaptive Quadtrees. ACM Trans. Graph. 35, 4 (July 2016), 113:1–113:12.
3

[BS02] BOLZ J., SCHRÖDER P.: Rapid Evaluation of Catmull-Clark Sub-
division Surfaces. In Proceedings of the Seventh International Conference
on 3D Web Technology (New York, NY, USA, 2002), Web3D ’02, ACM,
pp. 11–17. 2

[BS03] BOLZ J., SCHRÖDER P.: Evaluation of Subdivision Surfaces on
Programmable Graphics Hardware. 2

[CC78] CATMULL E., CLARK J.: Recursively generated B-spline surfaces
on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978),
350 – 355. 2, 3

[Cha74] CHAIKIN G. M.: An algorithm for high speed curve generation.
Computer Graphics and Image Processing 3 (1974), 346–349. 2, 8

[CKS98] CAMPAGNA S., KOBBELT L., SEIDEL H.-P.: Directed edges-A
scalable representation for triangle meshes. Journal of Graphics tools 3,
4 (1998), 1–11. 2

[Coo84] COOK R. L.: Shade Trees. SIGGRAPH Comput. Graph. 18, 3
(Jan. 1984), 223–231. 3

[CRW05] CASTILLO P., RIEBEN R., WHITE D.: FEMSTER: An Object-
oriented Class Library of High-order Discrete Differential Forms. ACM
Trans. Math. Softw. 31, 4 (Dec. 2005), 425–457. 3

[Dee95] DEERING M.: Geometry Compression. In Proceedings of the
22Nd Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1995), SIGGRAPH ’95, ACM, pp. 13–20.
2

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision Surfaces in
Character Animation. In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY, USA,
1998), SIGGRAPH ’98, ACM, pp. 85–94. 2, 3, 8

[Doo78] DOO D.: A subdivision algorithm for smoothing down irregularly
shaped polyhedrons. In Proced. Int’l Conf. Ineractive Techniques in
Computer Aided Design (1978), pp. 157–165. Bologna, Italy, IEEE
Computer Soc. 2

[Dri14] DRISCOLL M.: Subdivision Surface Evaluation as Sparse Matrix-
Vector Multiplication. Master’s thesis, EECS Department, University of
California, Berkeley, Dec 2014. 3

[DS78] DOO D., SABIN M.: Behaviour of Recursive Division Surfaces
Near Extraordinary Points. Computer-Aided Design 10 (Sept. 1978),
356–360. 2

[GS85] GUIBAS L., STOLFI J.: Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi. ACM Trans. Graph. 4, 2
(Apr. 1985), 74–123. 2

[Hop99] HOPPE H.: Optimization of Mesh Locality for Transparent Ver-
tex Caching. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 1999), SIG-
GRAPH ’99, ACM Press/Addison-Wesley Publishing Co., pp. 269–276.
2

[Kob00] KOBBELT L.:
√

3-subdivision. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques (New
York, NY, USA, 2000), SIGGRAPH ’00, ACM Press/Addison-Wesley
Publishing Co., pp. 103–112. 14

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/GPUPeople/SLAK

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

[Lie94] LIENHARDT P.: N-dimensional generalized combinatorial maps
and cellular quasi-manifolds. International Journal of Computational
Geometry & Applications 4, 03 (1994), 275–324. 2

[Loo87] LOOP C.: Smooth subdivision surfaces based on triangles. 15

[LS08] LOOP C., SCHAEFER S.: Approximating Catmull-Clark Subdi-
vision Surfaces with Bicubic Patches. ACM Trans. Graph. 27, 1 (Mar.
2008), 8:1–8:11. 2

[MRAS17] MUELLER-ROEMER J. S., ALTENHOFEN C., STORK A.:
Ternary Sparse Matrix Representation for Volumetric Mesh Subdivision
and Processing on GPUs. Computer Graphics Forum 36, 5 (2017), 59–69.
3

[Nas87] NASRI A. H.: Polyhedral Subdivision Methods for Free-form
Surfaces. ACM Trans. Graph. 6, 1 (Jan. 1987), 29–73. 3

[NL13] NIESSNER M., LOOP C.: Analytic Displacement Mapping Using
Hardware Tessellation. ACM Trans. Graph. 32, 3 (July 2013), 26:1–26:9.
3

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.: Feature-
adaptive GPU Rendering of Catmull-Clark Subdivision Surfaces. ACM
Trans. Graph. 31, 1 (Feb. 2012), 6:1–6:11. 2, 3, 8, 10, 11

[PEO09] PATNEY A., EBEIDA M. S., OWENS J. D.: Parallel View-
dependent Tessellation of Catmull-Clark Subdivision Surfaces. In Proc.
HPG ’09 (2009), ACM, pp. 99–108. 2, 10

[Pet00] PETERS J.: Patching Catmull-Clark Meshes. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 2000), SIGGRAPH ’00, ACM
Press/Addison-Wesley Publishing Co., pp. 255–258. 2

[Pix19] PIXAR G. T.: OpenSubdiv, 2019. 1, 2, 8

[PS96] PULLI K., SEGAL M.: Fast Rendering of Subdivision Surfaces. In
Rendering Techniques ’96 (Vienna, 1996), Pueyo X., Schröder P., (Eds.),
Springer Vienna, pp. 61–70. 2

[Saa94] SAAD Y.: SPARSKIT: A Basic Tool Kit for Sparse Matrix Com-
putations. Tech. rep., Computer Science Department, University of Min-
nesota, Minneapolis, MN 55455, June 1994. 5

[SJP05] SHIUE L.-J., JONES I., PETERS J.: A Realtime GPU Subdivision
Kernel. In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),
SIGGRAPH ’05, ACM, pp. 1010–1015. 2

[SRK∗15] SCHÄFER H., RAAB J., KEINERT B., MEYER M., STAM-
MINGER M., NIESSNER M.: Dynamic Feature-adaptive Subdivision. In
Proc. i3D ’15 (2015), pp. 31–38. 3

[Sta98] STAM J.: Exact Evaluation of Catmull-Clark Subdivision Surfaces
at Arbitrary Parameter Values. In Proc. SIGGRAPH ’98 (1998), ACM,
pp. 395–404. 2

[TPO] TZENG S., PATNEY A., OWENS J. D.: Task Management for
Irregular-parallel Workloads on the GPU. In Proc. HPG ’10, year = 2010,
pages = 29–37, numpages = 9,. 2

[ZHR∗09] ZHOU K., HOU Q., REN Z., GONG M., SUN X., GUO B.:
RenderAnts: Interactive Reyes Rendering on GPUs. In ACM SIGGRAPH
Asia 2009 Papers (New York, NY, USA, 2009), SIGGRAPH Asia ’09,
ACM, pp. 155:1–155:11. 2

[ZSS17] ZAYER R., STEINBERGER M., SEIDEL H.-P.: A GPU-Adapted
Structure for Unstructured Grids. Computer Graphics Forum 36, 2 (May
2017), 495–507. 2, 3, 5

Appendix A:
√

3-Subdivision

The
√

3-subdivision scheme is specialized for triangle meshes and
is based on a uniform split operator which introduces a new vertex
for every triangle of the input mesh [Kob00]. It defines a natural
stationary subdivision scheme with stencils of minimum size and
maximum symmetry.

The subdivision process involves two major steps. The first one

inserts a new vertex fi at the center of every triangle i. Each new
vertex is then connected to the vertices of its triangle and an edge
flip is applied to the original edges, see Figure 11. In the second
step, the positions of the old vertices are updated according to the
smoothing rule

S(pi) = (1−αi)pi +
αi

ni

ni

∑
1

p j, (24)

where ni is the valence of vertex pi and p j are vertices in its 1-ring
neighborhood. The valency dependent factor αn is obtained from
the eigenstructure of the local subdivision matrix:

αi =
1
9
(4−2cos(2π/ni)) . (25)

Similar to other subdivision schemes, the topological operations
involved in the

√
3-algorithm anticipate an edge-based mesh rep-

resentation. All the implementations we are aware of rely on the
half-edge data structure.

Figure 11: Description of the
√

3-subdivision scheme. First a new
vertex is inserted at every face of the given mesh. Second, an edge
flip applied to the original mesh edges yields the final result, which
is a 30 degree rotated regular mesh. Applying this scheme twice
leads to a 1-to-9 refinement of each input triangle. Original image
from [Kob00], copyright ACM.

In order to adapt this subdivision scheme to our matrix algebra
framework, we reinterpret the whole process in a slightly different
manner. By reasoning only on triangles as detailed in Figure 12, the
topological operations get simplified and the subdivision scheme can
be abstracted using sparse matrix algebra. In fact, we need only a
good bookkeeping of triangle-triangle adjacency to obtain new trian-
gulations and update vertex positions. Please note that the boundary
can be treated by adequate smoothing [Kob00] using similar ideas
to the outline given earlier for the Catmull-Clark scheme, but we
omit it here to keep the presentation succinct.

Figure 12: After inserting the new vertices (blue), each triangle
contributes three new triangles to the refined mesh by connecting its
vertices to their left and right neighboring new vertices.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Mlakar et al. / Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh Connectivity on the GPU

New vertex points A new vertex is added to each triangle’s
barycenter. The average of triangle vertices can be calculated using
the mapped SpMV

f = MT P
(1,2,3)→ 1

3

(26)

Required adjacency information The
√

3 scheme adds a vertex
to each triangle and connects it to the new vertices on the three
neighboring triangles. To find these neighbors efficiently, we can
again use the oriented graph adjacency matrix to store the index of
the adjacent face to any given edge, as in Equations 6 and 7.

Vertex update The first term in 24 can be done in parallel in
custamary ways. The second term can be efficiently computed in
parallel by the mapped SpMV

FP
vali→ αi

ni

, (27)

which, for each vertex, computes a linear combination of the vertex
data in its 1-ring neighborhood.

Topology refinement For a mesh with |v| vertices, each vertex
(k, l,m) of a given triangle with index i contributes a new triangle
to the refined mesh. For instance, vertex k contributes the triangle
consisting of k itself, the barycenter on an adjacent triangle, which
takes index F(l,k)+ |v| and the face-point on triangle i which can
be conveniently indexed by i+ |v|. The topology refinement can
be performed efficiently in parallel with one thread per non-zero
element inM, each assembling one of the refined faces.

Appendix B: Loop Subdivision

This scheme is a triangle mesh subdivision method which was in-
troduced by Charles Loop [Loo87]. It refines a mesh by inserting
a new vertex on every edge as illustrated in Figure 13 (left). These
edge-points are used to perform a 1-to-4 split of each input triangle.
The original vertex positions are then smoothed by local weighted
averaging as shown in Figure 13 (right). The weighted average in
the vertex update step is defined as

S(pi) = (1−niβi)pi +βi

ni

∑
1

p j, (28)

where ni is the valence of vertex pi and p j are its incident vertices.
The factor βi depends on the vertex valence and is computed by

βi =
1
ni
·

(
5
8
−
(

3
8
+

1
4
· cos

(
2π

ni

))2
)

. (29)

In the following, we briefly describe the algebraic machinery we
use to capture the topological modifications intrinsic to this scheme.

New vertex points To compute an edge-point on a given edge,
the vertex insertion requires the edge end-points and the two ver-
tices opposite to the edge in adjacent triangles. We can encode this
information in the sparse adjacency matrix of the directed graph
of the mesh. For each (directed) edge, we store the index of the
remaining triangle vertex as a non-zero value. This computations

β

β β

β

β

1-kβ

Figure 13: For each edge, the Loop scheme inserts a new vertex,
computed by a weighted sum of the vertices of the adjacent tri-
angles (left). Original positions are updated using a β-weighted
combination of the 1-ring neighborhood (right).

can be encoded as a mapped SpGEMM augmented with a lambda
function:

G =MMT

{Q3}[λ]
λ(i, j) =

{
k i f Q3 = 1
0 else

(30)

where k is the vertex opposite to edge (i, j). Before the compu-
tation of edge-points can be completed, a unique index needs to
be assigned to each edge. These can be obtained by summing G
with its transpose GT , which yields a matrix with the same sparsity
pattern as the undirected adjacency matrix of the mesh. Incremen-
tally assigning indices to the non-zeros of the lower triangular part
of G+GT enumerates the edge-points, similarly to how it is done
in the context of Catmull-Clark subdivision. The new vertex loca-
tions can then be obtained by looking up the edge-point indices and
for each edge (i, j), determine the opposite vertices as G(i, j) and
G(j, i) and performing the summation as given in Figure 13 (left).

Vertex update The first term in Equation 28 can be parallelized
efficiently in a per element-fashion. The second term can be encoded
and computed using the mapped SpMV

GP
vali→βi

, (31)

where the action map substitutes values in row i by βi.

Topology refinement For a triangle with vertex indices (k, l,m) in
the control mesh, three new triangles of the refined mesh are simple
arrangements of an original vertex and two new edge-points. The
fourth triangle is only composed of the three new edge-points. The
original vertices’ indices are k, l, m and unique edge indices can
be obtained from the lower triangular part of G+GT . With this
information, the refined mesh matrix can be constructed efficiently
in parallel. Each thread is assigned to a non-zero ofM and three
threads collaborate to write the four new triangle for each input face.
For that, every thread determines the assigned vertex index and the
index of the edge-point on the outgoing edge. Each of the three outer
triangles is then constructed by two of the three threads. To build the
center triangle each thread contributes the determined edge-point
index.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

