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Figure 1: Three simple vector graphics constructed from curved patches (CPatches). All CPatches are indicated with their bounding box in
blue. For efficient rasterization, auxiliary curve are added during patch cutting. Patch outlines and auxiliary curves are shown in blue and
green. CPatches are rendered by our hierarchical rasterizer completely in parallel on the GPU, leading to superior performance and flexibility
compared to previous work.

Abstract

In this paper, we introduce the CPatch, a curved primitive that can be used to construct arbitrary vector graphics. A CPatch is a
generalization of a 2D polygon: Any number of curves up to a cubic degree bound a primitive. We show that a CPatch can be
rasterized efficiently in a hierarchical manner on the GPU, locally discarding irrelevant portions of the curves. Our rasterizer is
fast and scalable, works on all patches in parallel, and does not require any approximations. We show a parallel implementation
of our rasterizer, which naturally supports all kinds of color spaces, blending and super-sampling. Additionally, we show how
vector graphics input can efficiently be converted to a CPatch representation, solving challenges like patch self-intersections and
false inside-outside classification. Results indicate that our approach is faster than the state-of-the-art, more flexible and could
potentially be implemented in hardware.

CCS Concepts
• Computing methodologies → Rasterization; • Theory of computation → Massively parallel algorithms;

1. Introduction

Vector graphics precede raster graphics as a representation of digital
content, yet, remain relevant today, since a resolution-independent
representation allows artifact-free display on everything from a
tiny smartwatch to a huge wall-size display. Consequently, vector
graphics are ubiquitous in all kinds of data visualization, including
font rendering, user interfaces, web pages, diagrams, charts, maps,
games, and artistic illustrations.

However, vector graphics representations have not radically de-
parted from the seminal work of Warnock and Wyatt [WW82].
Vector graphics are typically defined as a collection of paths, where
each path is defined by a number of curves. Curves are commonly
defined as straight lines, quadratic or cubic Bezier curves, or circu-
lar segments. A closed path separates an interior and exterior; the
interior and the path itself can be filled using a variety of styles and
patterns.
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Unfortunately, efficient rendering of vector graphics at high res-
olutions still forms a challenging task for computer graphics. Ren-
dering on the CPU does not scale well to high resolutions and
super-sampling. Consequently, parallel vector graphics rendering
has been actively researched over the last decades [LB05, KB12,
GLdFN14, BKKL15, LHZ16]. However, there is still no parallel
approach for vector graphics rendering which comes close to the
elegance and efficiency of triangle rasterization.

Recent approaches typically use two steps: stencil, then
cover [LB05, KB12, LHZ16]. A first step determines which
(sub-)pixels are inside a patch. A second step evaluates the actual
shading of the marked pixels. The stencil generation is the costly step
of the two, either involving a large number of overlapping triangles
to modify the stencil [LB05, KB12] or scanline-curve intersections
to generate bit masks [LHZ16].

In this paper, we propose a novel approach for vector graphics
rendering in a single parallel rendering pass. Inspired by polygon
rasterization, we propose a new primitive, the curved patch (CPatch),
which is limited by a number of curves, each dividing the space
into a positive and a negative half-space. The union of all positive
half-spaces defines the inside of a CPatch, similar to the use of edge
equations in polygon rasterization. Consequently, a CPatch can be
seen as a generalization of a polygon. Even though representing the
interior of a path might require multiple CPatches (Figure 1), all
CPatches can be processed in parallel, leading to a very efficient
algorithm. Hence, we make the following contributions:

• We introduce CPatches and their mathematical description.
• We derive a parallel, hierarchical rasterization approach that is

efficient to evaluate and very fast on current GPU hardware.
• We show how CPatches can efficiently be constructed and how

arbitrary vector graphics can be translated into a collection of
CPatches.

An evaluation of our approach on modern GPU hardware indicates
that it outperforms previous GPU solutions by a factor of 1.17× to
1.80× on average.

2. Related work

Previous curve rasterization techniques can be roughly classified into
three categories: (1) scanline filling methods, (2) ‘stencil, then cover’
approaches, and (3) alternative vector graphics representations, such
as data structures supporting spatial queries.

2.1. Scanline methods

Early scanline algorithms focus on rendering triangles [WREE67]
and construct spans limited by pairs of edge-scanline intersections.
To increase the efficiency of scanline algorithms, the intersections
of a scanline with all edges can be computed before sorting and
filling [NS79, AW81].

CPU scanline algorithms for vector graphic rendering are found
in contemporary curve rendering packages such as Skia [Goo18] or
Cairo [PWE18], which are used if no appropriate GPU accelerated
alternative is available. Manson and Schaefer [MS13] used pixel-
sized scanlines to implement analytic shading and anti-aliasing

filters. To increase performance, spans can be merged and clipped
for hidden surface removal, as shown by Whitington [Whi15].

While scanline approaches are usually designed for the CPU, Li
et al. [LHZ16] recently showed that a GPU scanline algorithm can
also be efficient. Their approach first builds an acceleration data
structure of potential scanline-curve intersections and then evaluates
them in parallel with simplified geometry. A final step rendered the
generated spans using traditional OpenGL. The efficiency of this
algorithm comes from the fact that not every filled pixel must be
tested against the path. CPatch has the same advantageous property,
while requiring only a single pass.

2.2. Stencil, then cover

Many GPU curve rendering approaches follow a ‘stencil, then cover’
approach, where a mask is first generated for a path (stencil) before
filling, while blending happens in a second step (cover). Stencil
generation goes back to the work of Loop and Blinn [LB05], which
allows to efficiently determine on which side of a curve a sample lies.
In combination with Jordan’s theorem [FSF97], fill rules can be com-
puted in a discrete manner, which allows complex path stencils to be
generated by rendering multiple overlapping triangles with implicit
curve descriptions [KSST06,KB12]. While hardware support makes
this method fast, it still requires a per-path multi-pass algorithm that
potentially touches many samples which are not part of the final
stencil. Note that the scanline approach by Li et al. [LHZ16] can be
classified as "stencil, then cover" as well.

Several extensions exist: For example, the ‘stencil, then cover’
method used in Adobe Illustrator [BKKL15] extends color schemes
and blending modes. Tile-based rendering of stencils [YLK∗15]
runs efficiently on mobile devices.

Like these approaches, our method classifies half-spaces, but it
directly renders paths from CPatches, rather than using a separate
cover pass. In that sense, our approach is closer to the original
method of Loop and Blinn [LB05]. However, their method only
supported a single curve per primitive, which makes it prohibitively
complicated to construct complex shapes, like thin parallel curves.
Our approach supports multiple curves and draws further efficiency
from hierarchical rasterization.

2.3. Alternative representations

Various alternative representations of vector graphics have been
proposed. Motivated by rendering vector graphics on top of surfaces,
vector texture methods try to encode sharp features in regularly sam-
pled textures. Feature curves [PZ08] encode distances to quadratic
Bezier curves and can thus render a limited number of sharp curves
intersecting at one location. Precise vector textures [QMK08] en-
code the distances to monotonic curve segments in the texture. As
long as the distance to the evaluated curves is not larger than the
curve’s curvature, the method delivers error-free results. Vector solid
textures [WZYG10] use radial basis functions as primitive to con-
struct sharp features. All the above representations allow highly
flexible display transformation and are efficient to render using
texture hardware. However, they cannot represent arbitrary vector
graphics due to their limitation to the sample grid of the underlying
texture or curves.
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(a) Triangle (b) CPatch

Figure 2: (a) Rasterization of a triangle classifies samples as inside
a triangle, if all edge equations classify them as inside (green).
(b) CPatches are constructed in the same spirit, with implicit curve
equations classifying parts as inside.

Nehab and Hoppe [NH08] use an adaptive lattice structure to
describe vector graphics with appropriate detail where needed. They
support distance evaluation in the lattice cells to linear, radial and
quadratic curves. Cubic curves are not supported. While their lattice
generation is carried out on the CPU, the rendering is performed on
the GPU. Their lattice structure reduces the number of curves that
need to be tested for each fragment, but still requires that all pixels
within a potentially large cell be tested against all curves of that cell.

Shortcut trees [GLdFN14] allow efficient indexing into vector
graphics. They can be built on the GPU and support cubic curves
by monotonizing curve segments. While their tree representation is
elegant and relatively fast to build, the resulting rendering perfor-
mance can compete with hardware-supported ‘stencil, then cover’
strategies only at very high resolutions.

Diffusion curves [OBW∗08, FSH11, STZ14] let a designer con-
struct path outlines that implicitly control the color of the interior
through a simulated diffusion process. This approach lends itself
to parallel solving, but remains very computationally demanding
overall. Our method does not build an auxiliary data structure, but
converts the vector graphics data entirely into a set of new primitives
supporting an object-order approach, rather than being constrained
to image-order.

3. CPatch: A novel curved primitive

Our approach is based on CPatches—primitives limited by cubic
curves (see Figure 1 for examples). In principle, a primitive with
curved boundaries can be treated in the same way as a polygon
(Figure 2b). For a polygon, inserting into all line equations lets
one determine whether a sample is inside (as shown in Figure 2a).
Salmon [Sal79] as well as Loop and Blinn [LB05] show how to
translate quadratic and cubic Bézier curves into implicit form to
determine on which side of a curve a sample lies: Depending on
the type of the curve, three parameters k, l, m are computed for
each control point. A linear interpolation of these parameters and
evaluation of a simple cubic function

fc(x,y) = k3(x,y)− l(x,y) ·m(x,y)

yields positive values for one side of the curve and negatives for
the other. As the factors only need to be interpolated linearly, the

(a) Quadratic (b) Cubic

Figure 3: (a) The implicit form for a quadratic Bézier curve shows
a sharp edge (white dashed line) outside the control polygon, which
inverts the function (arrows). (b) The implicit form of a cubic follows
the curve extension (black).

approach is well suited for GPU execution. For the classification of
curves into ‘serpentine’, ‘cusp’, and ‘loop’ and the complete table
of interpolation factors, see Loop and Blinn [LB05].

However, the implicit function can only be used for this half-
space classification within the convex hull of the curve’s control
points. When extending a curve to ±∞, it may reach inside the
CPatch and lead to an incorrect classification of sample points. One
could avoid this problem by limiting patches to the convex hull of
all curves, but at the cost of limiting the supported patch types to the
single-curve approach of Loop and Blinn [LB05]. Representing thin
curved objects, such as font characters, would lead to an excessive
number of patches. Instead, we split a patch into two when a curve
extension reaches into the patch.

Figure 3a shows how, outside the convex bounds for a quadratic
curve, one side of the implicit function continues along the extension
of the curve (black extension to the right), while the other one
changes abruptly (inverting at the white dashed line). In contrast,
the extension of an implicit function for a cubic curve essentially
follows the curve’s extension when running through the parameter
from −∞ to∞, as shown in Figure 3b. This behavior is preferable,
as it is more predictable, and the locations of the sign change in the
implicit form can be reconstructed from the explicit formulation.
Therefore, we elevate all quadratic curves to cubics [Far88] and
limit our discussions to the cubic case in the remainder of this paper.

Note that, similar to triangles, CPatches only describe the interior
of a primitive and not the shading of the boundaries. Thus, similar
to previous work, we do not consider line shading as part of our
approach. However, lines can be described by CPatches. For solid
strokes, CPatches are easy to derive as two ‘parallel’ curves in
combination with two end curves, which are easy and efficient to
rasterize.

4. Hierarchical rasterization of CPatches

Constructing vector graphics from a collection of primitives has
multiple advantages: First, all primitives can be treated completely
in parallel without any constraints imposed by a multi-pass approach,
such as stencil, then cover. Second, rendering can be implemented as
a streaming pipeline, which keeps resource requirements low. Third,
we can establish primitive order to address issues like a correct
blending order.

c© 2019 The Author(s)
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Figure 4: (left) Our hierarchical tiling starts by choosing the most fitting hierarchy level for the CPatch. (right) We process the patch down to
the lowest hierarchy level. Sub-tiles are classified as completely outside (red overlay) or completely inside (green overlay), if the patch does
not require any more testing. For tiles that are classified completely inside, the enclosing curve can be removed from further sub-tile testing
(blue numbers indicate the number of actives curves).

4.1. CPatch representation

Before detailing our hierarchical rasterization approach, we need to
give an exact definition of a CPatch. We limit CPatches to consist of
a predefined maximum number of curves (four to eight curves have
proven to work well in our experiments) inside a given bounding
box (represented as four lines). We allow curves to be either straight
lines or cubics; quadratic curves are elevated to cubics. For straight
lines, we encode the line equations in k, l, m form, such that l
is the signed normal distance to the line, while k = 0 and m = 1
everywhere. While this approach slightly increases the evaluations
for straight lines, it offers the advantage of a uniform treatment with
only slightly increased computations. Note that we treat circular
segments separate, as discussed at the end of the section.

To represent curves, we interpolate k, l, and m over the entire
space of the patch using homogeneous rasterization [OG97]. We
can define k, l, and m for three arbitrary points in space—any three
control points are good choices—and store them in vector form:

k = [k0,k1,k2]
T , l = [l0, l1, l2]

T , m = [m0,m1,m2]
T .

Furthermore, we store the transformation matrix M that captures
the location of the interpolation points in space, at which [x0,y0]

T is
the location where k = k0, l = l0, and m = m0:

M =

x0 x1 x2
y0 y1 y2
1 1 1

−1

.

For any sample point s = [x,y,1]T , we can interpolate k, l,m:

u = M · s, ks = kT ·u, ls = lT ·u, ms = mT ·u.

Transformations can be applied by multiplying M with any 3× 3
transformation matrix. While we only consider 2D operations here,
it is straight forward to extend our homogeneous rasterization to
3D, as long as patches remain planar. Similarly to the interpolation
of k, l, and m, other parameters, like texture coordinates or color
gradients, can be stored along a patch.

Commonly, a curve will be shared by multiple CPatches, e.g., to
construct a larger complex shape. Therefore, we propose an indirect
storage format, similar to indexed triangle meshes. We store each

curve separately (k, l, m, M), and represent a CPatch as a constant-
size array of references to curves, padded with null pointers if
necessary. Moreover, the CPatch stores a primitive id to look up
additional shading parameters.

4.2. Tiled rasterization

A naive rasterization of CPatches would evaluate all curve equations
for all pixels and fill those that lie in the intersection of all half-
spaces. The main cost of such an approach is in the curve equation
evaluation, which we would like to reduce as much as possible.
Large homogeneous regions, which have the same classification,
should be determined without visiting individual pixels. This con-
sideration suggests a divide-and-conquer approach. We would like
to concentrate on the regions close to curve boundaries, while the
interior area can be filled in a single step.

Hierarchy Our hierarchical tiling approach is illustrated in Fig-
ure 4): Starting from the bounding rectangle of the patch, we deter-
mine the first level in the hierarchy where a patch should be tested.
From there, the hierarchical rasterization removes irrelevant curves,
while proceeding through the levels. All tiles of a level are processed
in parallel. When the lowest level is reached, a fine rasterization
determines the pixel fill state.

In the inner loop of this algorithm, we must determine whether
a curve equation is uniformly positive or negative with respect to
a given tile. Unfortunately, this test is complicated by the fact that
boundaries are not lines, but implicit curves. Hence, testing the
corners of a tile is not sufficient, as there is no guarantee that the
curve does not change orientation between sample locations, as
shown in Figure 5c. Furthermore, there is no efficient closed form
solution to determine whether an entire tile is on one side of the
curve, as this would require inserting two bounded linear functions
into a cubic equation, leading to a higher order polynomial.

Tile evaluation For an efficient alternative solution to the problem,
we rely on two facts. Since straight lines and cubic curves extend to
infinity, it suffices to ensure that the implicit curves do not change
sign along any tile boundary (Figure 5).

c© 2019 The Author(s)
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(a) Inside tile (b) Intersections (c) Double crossing

Figure 5: Our tile rasterizer relies on the fact that curves reach to
infinity and thus determining sign changes along the tile boundary
is sufficient to identify sign changes within a tile.

For this purpose, we rely on the intermediate value theorem. By
determining the extremal values of a curve equation on the tile
boundary, we determine whether there is a sign change.

We evaluate the curve equations at the tile corners and then look
for the location of extrema in-between by constructing the interpo-
lation factors along an edge: Let c0 and c1 be two corners of the
tile edge. We compute the interpolation factors of k, l, m in a 3×2
matrix I:

I =

kT

lT

mT

 ·M ·
c0,x c1,x− c0,x

c0,y c1,y− c0,y
1 0

 .
Using I, we can evaluate the curve equation anywhere on the edge by
multiplying with

[
1 i

]T , where i is the relative location between
c0 and c1. The general equation for evaluating the curve,

fklm(i) = I ·
[
1 i

]T
fc(i) = fk(i)

3− fl(i) · fm(i)

= (Ik0 + i · Ik1)
3− (Il0 + i · Il1) · (Im0 + i · Im1),

has the derivative

f ′c(i) = 3 · (Ik0 + i · Ik1)
2 · Ik1− Il0 fm1− Im0Il1−2i fl1Im1.

We set f ′c(i) = 0 and directly solve the quadratic equation in i. If
the found extrema lie within the tile border bounds (0 < i < 1), we
evaluate the curve equation at these locations, again using I, and
determine the minimum and maximum along each tile border.

Parallel evaluation Performing the above steps individually for
all tiles would be inefficient, as the same computations would be
repeated many times. Thus, we perform the evaluation on a subgrid
of tiles at once. Multiple threads can be employed for this evaluation,
as shown in Figure 6 and Algorithm 1: We determine I for all rows
of the grid using one thread per row. In step (1) (line 3–4), each
thread evaluates the curve equation for all corners in its row. In step
(2) (line 5), it applies the result to the surrounding tiles, updating
their min/max. In step (3) (line 6–8), we determine the extrema for
each row and update the min/max only for the touched tiles. Finally,
we switch to columns and perform the min/max updates as well
(line 9–13). This scheme reuses I for both the corner evaluation and
the extrema computation, performing all computations only once
for multiple tiles.

1 for all curves ∈ CPatch do
2 for all grid rows r in parallel do
3 compute cr,0, cr,n and I to get fcr (i) for the curve
4 for i ∈ [0,1] with increase 1/(n−1) do
5 evalute fcr (i) and MinMax to surrounding tiles

6 compute ei from f ′cr (i) = 0
7 for all 0 < ei < 1 do
8 evalute fcr (ei) and MinMax to surrounding tiles

9 for all grid columns c in parallel do
10 compute cc,0, cc,n and I to get fcc(i)
11 compute ei from f ′cc(i) = 0
12 for all 0 < ei < 1 do
13 evalute fcc(ei) and MinMax to surrounding tiles

14 for all tiles in parallel do
15 if Max < 0 then
16 discard tile
17 else if Min≤ 0 and Max≥ 0 then
18 add curve to tile

19 for all non-discarded tiles in parallel do
20 if tile has no curves or final level is reached then
21 forward to fine raster
22 else
23 forward with curves to next level rasterization

Algorithm 1: Parallel Tile Rasterization

While iterating over all curves that define a patch, we only add
those to the tiles that can still influence it (line 18). In particular,
if a curve completely marks a tile as outside, we discard the tile
(line 16). After completing the step for one patch, we have created a
per-tile curve list, i.e., a new CPatch structure for each tile to pass
down the hierarchy (line 23). A tile with an empty curve list that
is not marked as outside can be passed on to the fine rasterization
stage immediately (line 21).

Fine rasterizer The final rasterization stage (the fine rasterizer) is
called for a final tile and only needs to evaluate the remaining curve
equations for all (sub-)pixels. The fine rasterizer operates in parallel
over all pixels and can make use of efficient on-chip memory on the
GPU. If multi-sampling is desired, a coverage bitmask is forwarded
to the final shading stage.

Circular curves Half-space classification for circular curves only
requires the center and the radius; tile-circle intersection is simply
derived from line-circle tests. The only difference to the infinitely
extending curves discussed above is that a circle can be completely
inside a tile, a situation that is trivial to detect. Taking all this into
account, we employ the same parallel tile test as for curves.

4.3. GPU software rasterizer

To show the benefits of our proposed scheme, we discuss an imple-
mentation operating on the GPU in compute mode. To take advan-
tage of the manycore architecture of the GPU, we want to perform
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Figure 6: Operating on an entire tile sub-grid with eight threads, we reduce the overall number of operations. Example for the strong blue
curve: (1) parallel corner evaluation, (2) min/max update, shown as circles, (3) row extrema computations and update. After column extrema
computation (not shown), most tiles can be classified as either inside the curve (green glow) or outside (red glow), while only eight tiles still
need to test for the curve (blue glow). Note that the center tile is only classified correctly due to the extrema.

as many operations in parallel as possible. This problem is compli-
cated by different entry points into the tile hierarchy, the varying
number of hierarchy levels to traverse, and the varying amount of
parallelism per patch, mainly owed to its size. Moreover, blending
needs to respect the depth order of patches.

To take best advantage of the parallelism of the problem, we
rely on Whippletree [SKB∗14], a task-scheduling framework based
on CUDA. We use two task types: the tile rasterizer and the fine
rasterizer. For the tile rasterizer, we generate multiple instances
supporting a range of sub-grids, from which we choose the one most
fitting the CPatch. We use grids sizes of 1×7, 7×1 and 7×7, each
using eight threads, which allows Whippletree to fill up a warp (32
threads executing on a SIMD core) with four tasks.

The input data to the tile rasterizer includes the level, and the id of
the tile to be rasterized. As the execution of tile rasterizer on different
levels is identical, Whippletree can combine tasks for different
levels for efficient computation. For example, four tiles of size 1×7
taken from different levels can be combined for one warp. The fine
rasterizer uses a grid of 8×4 threads, each responsible for a single
pixel. For sub-pixel coverage, we use a bitmask for multi-sampling,
while super-sampling treats all sub pixels individually. Using one
thread for all sub-pixel samples achieves better performance than
using one thread per sub-pixel sample.

Tile store Finally, we need to resolve blend order. For order inde-
pendent transparency in conventional polygon rendering, a common
approach is constructing per-fragment linked lists [YHGT10]. We
could employ a similar approach for CPatch blending, storing sam-
ples that lie inside patches in dynamically constructed linked lists.
This approach would require many lists and all samples would need
to be generated and stored, before consuming any of the data.

Thus, instead of storing lists for each fragment, our tile-based
rasterizer can be extended to create lists for the final tiles. This
strategy allows to delay the execution of the fine rasterizer to a
second pass operating on sorted tile lists. Each list entry needs to
store the CPatch data, i.e., the remaining curve references and the

primitive id. This design implies a trade-off: While the number of
lists is reduced significantly in comparison to per-pixel lists, the
amount of data stored per entry is larger. Nonetheless, the resulting
memory requirement is usually lower. Moreover, sorting becomes
less expensive, as its cost is proportional to the number of lists.

Upon closer inspection, this approach closely resembles triangle
rasterization on NVIDIA hardware: The hardware pipeline assigns
primitives to tiles for final rasterization [KKSS17]; processing is car-
ried out with a parallel sorting step before final rasterization [Pur10].
However, our approach can still not be classified as a full streaming
solution, since it temporarily stores all output data and performs a
complete sort. A full streaming approach could reduce sorting cost
further, but would require a more complex implementation.

Note that we evaluate shading only in the final pass, which inherits
properties of deferred shading. We operate on the sorted lists from
front to back and stop list traversal as soon as full opacity is reached.
This not only reduces the shading and blending cost, but also the
rasterization cost. In case advanced blend modes are needed that do
not support front-to-back processing, the process can be reversed.

5. Converting vector graphics to CPatches

In the last section, we have described a hierarchical rasterizer for
CPatches. For a complete pipeline, it is left to show that general
vector graphics can be represented as CPatches. To this end, we
present a simple conversion pipeline. Our current implementation
takes an SVG image as input, and converts all its path elements to a
CPatch representation. Strokes must be converted to filled paths in a
preprocessing step. The converter supports lines, quadratic Bézier
curves, cubic Bézier curves and circular arcs, with non-zero and
even-odd fill rules. The six stages of our pipeline are outlined in
Figure 7, including examples of each stage.

Graph flattening SVG paths can have arbitrary cycles and over-
laps; intersections of curves are not explicitly captured in the SVG.
To simplify later processing, we build a flattened graph for each
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(a) Graph Flatten (b) Fill Scoring (c) Cycle Extraction (d) Patch Cutting (e) Self-intersections (f) Extension Correction

Figure 7: Our six-stage conversion pipeline for arbitrary vector graphics to a CPatch representation: (a) A flat graph is constructed by
computing all curve intersections. (b) By shooting two rays for each edge, the fill score is determined. (c) After removing edges with identical
fill score on both sides, complete cycles are extracted. (d) Cycles with many curves are cut down to smaller patches. (e) Self-intersecting curves
are handled by splitting patches along the self-intersections. (f) Additional straight lines are added to cut away wrongly filled outside areas.

path: We iteratively add curves to the existing path representation,
until the complete path is captured by the graph. When adding a
new curve, we determine matching nodes in the graph (end points
of curves) and perform curve-curve intersection testing with all
existing curves via Bézier clipping [SN90]. For each intersection,
we add a new node to the graph and break open the curves at the
intersection. This process results in a flattened graph for each path,
where nodes capture all intersections of curves, and edges represent
segments of the original curves connecting to the nodes.

Fill scoring For each flattened graph, we determine where the path
should be filled. While fill scores are typically defined for each
sample in the drawing, we only determine the fill score for each
graph edge to either side of the curve. To this end, we shoot a ray
normal to the edge at the half-way point of the curve. For each
ray, we determine the fill score by computing the intersections with
all curves and applying the fill score rule accordingly (non-zero
or even-odd). The result of the fill score test is stored with each
edge. If both sides of the edge yield the same fill score, we simply
remove the edge, as it is not relevant for the drawing. Note that this
computation is very light-weight, as we only determine the fill score
twice per edge and not per sample in the drawing.

Cycle extraction As CPatches should represent primitives, we ex-
tract cycles in the graph at an early point. In this way, we can later
ignore interaction between loosely connected sub-patches. To per-
form the extraction, we start with a random edge and walk along
the graph. At each node, we choose the curve with the smallest
outgoing angle to the incoming edge, considering which side of the
edge should be filled. For this angle computation, we compute the
derivative of the involved curves at the node. When we encounter
the starting edge again, we have extracted a full cycle.

In this way, we separate each path into multiple independent
cycles. The outlined approach works well even if cycles are touching.
However, nested cycles need additional treatment, as both the outer
and the inner cycle are required to construct a CPatch representation.
From each inner cycle we shoot a ray to find the first outer cycle
and split ring-like paths into two separate touching cycles, as shown
in Figure 7c. Note that there could be multiple inner cycles. In this
case, we first connect the inner cycles and then make the connection
to the outermost cycle to avoid ‘cutting’ inner cycles.

(a) (b)

Figure 8: Self-intersections of patches arise, when a curve reaches
back into the patch and wrongly classifies parts as outside the
patch, which can happen when a curve (light green) extension points
inward the patch (a), or comes back (b). Cutting the patch in two
resolves the problem.

Patch cutting While cycles, per definition, already form a patch,
they might consist of a large number of curves. As we limit the
number of curves for efficient rendering, we cut cycles that exceed
the limit, using an algorithm inspired by ear clipping [Mei75]:

1 while Patch has more than MaxCurves curves do
2 for N←MaxCurves−1 to 1 do
3 for all edges in patch do
4 mark edge and next N-1 edges
5 connect end-points of marked edges with line
6 if line does not intersect any edge then
7 split off marked edges and make new patch
8 add line to original patch
9 break

10 if Patch still has more than MaxCurves curves then
11 split longest edge in the middle and add new node

Although this heuristic is rather simple, it worked for all drawings
we tested. In some cases, a large number of additional nodes are
inserted when straight lines cannot be placed in the interior. Curved
cuts could be an option to avoid these additional nodes.
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(a) (b)

(c) (d)

Figure 9: (a) Extension correction is necessary when curve exten-
sions cross outside the patch and thus wrongly classify regions as
inside. (b) Such errors are also common for cusps, where they hap-
pen directly next to the patch. (c) We fit an additional line to cut
these regions. (d) Sometimes a straight curve cannot successfully
perform the cut, in which case we split the patch in two.

Self-intersection cutting Self-intersecting curves are one of the
major challenges for CPatch generation, since they lead to incorrect
half-space classifications, as shown in Figure 8. We distinguish two
cases, a curve which extends into a patch from its starting node (8a)
and a curves that returns into the patch after leaving it (8b).

We handle self-intersections by cutting the patch in two. We
iterate over all curves of the patch and test the derivative at the
end nodes to determine whether the curve points inward. Then, we
compute all intersections of the curve extension with the patch. We
simply extent the curve to a large multiple of the original length
using the De Casteljau algorithm [DC86] and again perform Bézier
clipping to check for intersection. According to our experiments,
the alternative of solving for intersections using the implicit curve
is more time consuming and less accurate.

After finding all intersections, we sort them and split the patch in
two (Figure 8). After creating the two new patches, we continue the
process for both newly generated patches. For efficiency reasons,
we retain the information about which curves of the new patch have
already been tested. Curves that have loops need special treatment,
if a complete loop is formed by the extension. In this case, an
additional patch only consisting of the loop might be needed.

Extension correction One final issue concerns curves that cross
outside of the patch, but within the bounding box. This might create
wrongly filled areas, as shown in Figure 9. Again, this issue might
arise directly at the end of the curve, e.g., with cusps (Figure 9a),
or from an intersection of two curve extensions (Figure 9b). These
unwanted regions can be handled by locating them and pruning the
offending crossings by inserting an additional curve to the patch.

Input CPatch Tile Raster
Data Pth. C. Ptc. C./Ptc. Ptc. Ptc./Tile C./Ptc.

drops 204 1k 1k 3.58 18k 2.24 1.09
embrace 225 5k 4k 3.20 43k 5.35 1.37

tiger 240 2k 3k 3.38 22k 2.74 1.81
car 420 12k 7k 3.33 38k 4.75 1.95

sample_v2 691 7k 7k 3.29 34k 4.21 2.28
hawaii 1137 53k 41k 2.83 102k 12.48 2.21
boston 1922 28k 14k 3.23 46k 5.71 1.85

paris-70k 45k 545k 303k 3.36 531k 64.91 2.88
contour 53k 188k 57k 3.42 115k 14.06 2.81

Table 1: Statistics of the test data sets and processing results. The
input SVG datasets range from 200 to 53k paths (Pth) with up to
545k curves (C). Our preprocessing generates up to 303k patches
(Ptc) with an average of about 3.3 curves per patch. After tile ras-
terization (1k resolution), lists capture up to half a million patches.

To locate such offending crossings, we consider all intersections
of curve extension (which are guaranteed to be outside of the patch
after the execution of the previous stage) as well as all intersections
of curve extensions with the bounding box. For each of those points,
we evaluate all implicit curve equations and keep only those that
yield a wrong result. From the offending crossings, we construct
connected cycles (there might be multiple).

Then, we find the point that is closest to the original patch—for
cusps, this could even be a node of the patch. We use this point
as anchor and place a line to cut the wrong region, which we add
as a curve to the patch. There are infinitely many line directions
to consider. We optimize by starting with a random direction and
rotate it depending on where we hit the falsely positive region (or
the patch), as shown in Figure 9c. We iterate with a reduced rotation
angle, until we find a fitting direction or end up with no movement.
In case no solution is found, we cut the patch in two (Figure 9d).

Remarks Even though the preprocessing sounds complex, our non-
optimized, single-threaded CPU code runs efficiently. For example,
it loads and processes the Tiger image (Figure 1, right), in less
than a second. Given our simple implementation, there is a large
optimization potential. Furthermore, a CPatch representation only
needs to be constructed once; it could easily be stored as additional
information alongside the vector drawing. Especially when using our
technique in a graphics editor, such as Adobe Illustrator, only one
path is edited at a time, and thus only a single CPatch representation
needs to be computed, which can easily be done at interactive rates.

6. Results

To evaluate the performance of our approach, we tested a variety of
common vector graphics benchmark drawings, as outlined in Table 1
and Figure 1 and 10. All tests were run on an NVIDIA GeForce GTX
1080Ti (3584 CUDA cores, 11GB of global memory) hosted by an
Intel Core i7-6850K CPU 3.60GHz with 64GB of system memory.
As comparison methods, we use NVIDIA path rendering [KB12]
(NV) and Li et al.’s GPU scanline rasterizer [LHZ16] (SL). We use
their original published implementation.
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(a) embrace (b) tiger (c) car (d) sample_v2

(e) hawaii (f) boston (g) paris-70k (h) contour

Figure 10: The test data set spans simple (≈ 200 paths a,b), medium sized (1000–2000 paths e,f), and large graphics (> 40 000 paths g,h).

Our approach uses a tile size of 8× 4, a maximum number of
four curves per patch, and every element in the tile list can hold
32 elements. For sorting, we use per-block radix sort and choose
the best fitting block size among 32, 64 and 128, depending on the
average guessed number of patches per tile. While these choices put
slightly more pressure on the preprocessing and increase memory
requirements, they favor speed.

Preprocessing As can be seen in Table 1, our preprocessing usually
cuts each input path into 5–40 CPatches on average, creating up to
300 000 CPatches for the largest input. Drawings with smaller and
more complex curved structures, e.g., hawaii or boston, are cut into
more patches than rather simple drawings, like drops. As contour
mostly consists of triangular and rectangular data, it is already very
close to a usable CPatch representation and thus hardly needs any
processing.

After tile rasterization, the overall number of patch references
throughout all lists ranges from 18 000 to 530 000 (1k resolution).
List lengths are relatively short on average for most simple draw-
ings with 2–14 entries. paris-70k forms an exception with its large
number of small patches. The number of referenced curves after tile
rasterization is strongly reduced to 1.9–2.9 on average, indicating
the success of the hierarchical approach.

Timing Performance numbers are shown in Table 2. When mul-
tisampling is disabled, our approach shows the best performance
in eight out of nine cases for 1k resolution and four out of nine
cases for 2k resolution. NV takes the lead in two and four cases,
respectively. SL is always the slowest approach. For 16× multisam-
pling, the situation slightly shifts, with our approach winning in
four and three cases, NV in four and two cases, and SL in one and
three cases, respectively. Overall, we achieve a mean (harmonic)

res 1×Multisampling 16×Multisampling
Our NV SL Our NV SL

drops
1k 0.51 0.61 1.62 0.72 0.71 1.75
2k 1.31 0.61 1.72 2.12 1.44 2.10

embrace
1k 0.75 0.63 1.95 0.93 0.84 2.08
2k 0.92 0.62 2.01 1.81 1.75 2.39

tiger
1k 0.66 0.66 1.63 0.87 0.81 1.73
2k 0.79 0.66 1.69 1.72 1.75 2.04

car
1k 0.82 1.17 2.16 1.38 1.12 2.35
2k 1.07 1.17 2.21 1.91 2.22 2.54

sample_v2
1k 0.47 2.57 1.37 0.83 2.57 1.52
2k 0.88 2.53 1.39 1.66 2.56 1.72

hawaii
1k 0.88 2.07 2.49 1.90 2.10 2.97
2k 2.31 2.06 5.53 4.45 5.44 9.96

boston
1k 0.64 3.42 1.30 1.04 3.41 1.44
2k 1.26 3.43 1.33 2.14 3.41 1.73

paris-70k
1k 1.96 74.6 2.43 3.13 74.1 2.58
2k 3.52 72.5 2.52 4.81 73.5 2.99

contour
1k 0.63 90.9 1.48 1.53 90.9 1.57
2k 0.85 90.1 1.55 3.24 90.9 1.89

Table 2: Runtime performance of our approach in milliseconds
compared to NV path rendering and GPU scanline rasterization.

speed up of 1.48× and 1.80× without multisampling and 1.43×
and 1.17× for 16× multisampling over NV and SL, respectively.
Our approach shows the most balanced performance, keeping up
with NV for smaller drawings (drops, tiger, car) and showing very
competitive performance for large drawings with complex struc-
tures (paris-70k, contour), which are typically vastly in favor of
alternative approaches.
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Figure 11: Relative run time of the three major steps of our ap-
proach. Multisampling influences fine raster time only.

It should be noted that NV, in many cases, is not limited by the
compute power of the GPU, but rather suffers from synchronization
delays due to the ‘stencil, then cover’ approach, which reduces the
amount of parallel workload. Thus, increasing the resolution or mul-
tisampling has hardly any influence for NV. While SL also follows
a ‘stencil, then cover’ approach, they first generate strides that are
then rendered in parallel by OpenGL. SL uses an approximation
for stride boundaries and thus multisampling is less costly in their
approach. Therefore, SL results may slightly differ visually. Our
approach scales with the workload, reducing performance when the
resolution is increased or multisampling is activated.

The relative performance of the three steps of our approach is
shown in Figure 11. If multisampling is disabled, tile rasterization is
usually the most time consuming step. Fine rasterization is slightly
more costly than sorting. When multisampling is enabled, fine raster
takes over the majority of the workload for most tests, which is not
surprising, as the number of tested samples is increased 16×.

Quality Figure 12 shows quality examples for 8× multisampling
of the tested approaches in comparison to a 256× supersampled
ground truth (16×16 downsampled image). Our approach clearly
achieves the best result for this challenging case (even 4× multisam-
pling is superior in image quality). We can only speculate about the
errors of the other approaches which both rely on hardware multi-
sampling. Both NV and SL render geometry for the fine structures,
which is subject to subpixel snapping for fixed point rasterization,
which may influence the evaluated equations and generated sten-
cils. Additionally, SL represents both scanline ends with simplified
geometry, which leads to additional errors. As our approach does
not perform any boundary simplifications and fully evaluates curve
equations for all sub-pixels, we achieve a higher quality.

Discussion While CPatches are usable for all vector graphics, some
drawings, like contour, are already close to a CPatch represen-
tation and thus more efficient. Paths with many curves, like the
butterfly in Figure 1, will typically get cut into many patches, which
explains the high expansion factor of some drawings. However,
while the number of CPatches increases, memory requirements only
increase marginally when using references to the original curves.

(a) Original (b) Ground truth (c) 4×MS ours

(d) 8×MS ours (e) 8×MS NV (f) 8×MS SL

Figure 12: Quality example for 12×14 pixels large renderings of the
feather image compared to 256× super-sampled ground truth of the
feather image. SL and NV show higher errors due to their treatment
of subpixels. Even our 4×MS image achieves high accuracy in
comparison to the 8×MS renderings of NV and SL.

Our approach is most efficient when rendering patches that fill
out their bounding box well, e.g., rectangular CPatches result in
most efficient rendering. However, also thin and slanted patches
can be rasterized efficiently, as empty regions are discarded early in
the hierarchical rasterizer, whereas traditional ‘stencil, then cover’
methods would test all curves for all pixels in the bounding polygon.
Thus, our approach is also well suited for boundary rasterization
which naturally consist of many thin segments.

Due to the nature of our approach, all types of fill types and blend-
ing can easily be integrated. As the fine rasterizer is executed in
compute mode, not only color gradient or textures are naturally sup-
ported as fill types, but any type of computations can be performed,
e.g., noise evaluations, complex sampling, or involved lighting are
possible. Similarly, as blending is performed in software, we can
use any combination of color spaces and blend functions.

7. Conclusions

We have presented a novel approach for representing and rendering
vector graphics using curved primitives, CPatches, which enable
parallel rendering, similar to how triangle rasterization is performed
in real-time rendering. A CPatch representation allows the construc-
tion of a complete parallel hierarchical rasterizer on the GPU. Our
software prototype, running in GPU compute mode, shows competi-
tive performance when compared to the hardware supported NVPR
for small vector graphics. It performs on the same level as previous
state-of-the-art methods for complex drawings, while completely
avoiding all approximations. Thus, our approach not only achieves
speedups of 17% to 80% over the previous state-of-the-art, but also
achieves higher quality for multi sampling. Our approach shows the
best performance, when the input vector graphics is already close to
a CPatch representation.
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To show the applicability of our approach, we have also presented
a preprocessing pipeline to convert arbitrary vector graphics to a
CPatch representation. We see high potential for better preprocessing
in the future, which would not only increase preprocessing speed,
but also generate CPatches that can be rendered more efficiently.

To increase rendering speed, we see two further potential di-
rections. First, building a complete streaming rendering pipeline
could reduce memory traffic and thus increase speed, similar to
recent work on software real-time rendering [KKSS18]. Second, our
approach could be hardware-accelerated, expanding the hardware
rasterizer to not only support straight edge equations for triangle
rasterization, but also implicit curve equations.
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