
The BrokerQueue: A Fast, Linearizable FIFOQueue for
Fine-Granular Work Distribution on the GPU

Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg, Markus Steinberger
{bernhard.kerbl | michael.kenzel | joerg.mueller | dieter.schmalstieg | markus.steinberger}@icg.tugraz.at

Graz University of Technology

ABSTRACT
Harnessing the power of massively parallel devices like the graphics
processing unit (GPU) is difficult for algorithms that show dynamic
or inhomogeneous workloads. To achieve high performance, such
advanced algorithms require scalable, concurrent queues to collect
and distribute work.We show that previous queuing approaches are
unfit for this task, as they either (1) do not work well in a massively
parallel environment, or (2) obstruct the use of individual threads
on top of single-instruction-multiple-data (SIMD) cores, or (3) block
during access, thus prohibiting multi-queue setups. With these
issues in mind, we present the Broker Queue, a highly efficient, fully
linearizable FIFO queue for fine-granular parallel work distribution
on the GPU. We evaluate its performance and usability on modern
GPUmodels against a wide range of existing algorithms. The Broker
Queue is up to three orders of magnitude faster than non-blocking
queues and can even outperform significantly simpler techniques
that lack desired properties for fine-granular work distribution.

CCS CONCEPTS
• Theory of computation→Massively parallel algorithms; •
Software and its engineering→ Scheduling;

KEYWORDS
GPU, queuing, concurrent, parallel, scheduling

ACM Reference Format:
Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg,
Markus Steinberger. 2018. The Broker Queue: A Fast, Linearizable FIFO
Queue for Fine-Granular Work Distribution on the GPU. In ICS ’18: 2018
International Conference on Supercomputing, June 12–15, 2018, Beijing, China.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3205289.3205291

1 INTRODUCTION
While the high processing power and programmability of the mod-
ern graphics processing unit (GPU) make it an ideal co-processor
for compute-intensive tasks, its massively parallel nature creates
difficulties not present on the CPU. To harness the power of the
throughput-oriented GPU architecture, an application has to fit
into a rigid execution model, which lacks task management and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205291

load balancing features. Without versatile task management, it is
inefficient or impossible to run many common algorithms on GPUs.

This lack of features has led many researchers to implement task
management for the GPU in software [4–6, 27, 28, 32]. At the core
of all task management strategies are concurrent queues, which col-
lect and distribute work, usually in a first-in-first-out (FIFO) manner.
The available literature on concurrent queues has a strong focus
on lock-freedom, which is often held as key to performance in con-
current systems. However, these algorithms are commonly geared
towards CPU architectures and do not cater to the peculiarities of
powerful and ubiquitous GPU hardware. The lock-free property is
often achieved by methods in the spirit of optimistic concurrency
control [16], e.g., through algorithms that assume a low incidence
of failed atomic compare-and-swap (CAS) operations from compet-
ing threads. However, as others [11, 13] have already noted, the
overhead that is actually caused by repeatedly failing code sections
can outweigh the benefits of true lock-freedom. As an alternative,
blocking queues have been proposed specifically for the GPU [25].
Unfortunately, conventional blocking queues substantially limit
options for load balancing, as they do not return the control to the
calling thread in underflow or overflow situations. Thus, they can-
not be used in multi-queue setups, which are common in advanced
work distribution strategies, e.g., work stealing [5].

In this paper, we present a new queue design, fit for work distri-
bution and general queuing on the GPU. First, we identify desired
properties for efficient work distribution on the GPU and assess
the fitness of previous algorithms in this respect (Section 3). Based
on these properties, we describe a scalable, linearizable queue, the
broker queue (BQ), which shows the performance of a blocking
queue, but can return control to the scheduler in case of underflow
or overflow (Section 4). Additionally, we present two variants of
the BQ, which can further improve performance at the expense of
linearizable FIFO behavior. All presented algorithms

• support all execution paradigms common on the GPU: indi-
vidual threads, wave fronts of single-instruction-multiple-
data (SIMD) width, and cooperative thread groups,
• store arbitrarily sized data in a ring-buffer and thus avoid
costly dynamic memory management,
• ensure that enqueue/dequeue are not fully-blocking if the
queue is full or empty, thus enabling multi-queue setups, and
• avoid optimistic concurrency control, assigning threads to a
unique spot in the queue after a fixed number of operations
if the queue is not close to underflow or overflow.

For the broker queue, we prove linearizability (Section 5) and de-
scribe specifics for implementing variants of the BQ in Section 6.
We compare our designs to the state-of-the-art in both synthetic
tests, as well as a realistic use case (Section 7).

https://doi.org/10.1145/3205289.3205291
https://doi.org/10.1145/3205289.3205291

ICS ’18, June 12–15, 2018, Beijing, China Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg, Markus Steinberger

2 RELATEDWORK
While a basic understanding of GPU execution is necessary to
address GPU queuing strategies, we avoid a lengthy summary here,
but refer the interested reader to the CUDA programming guide [23]
and the OpenCL specification [30]. In the following, we use the
terms common in the CUDA model: kernel for a GPU launch; block
for a group of threads executing on a multiprocessor ; and warp for
a group of threads that execute in lock-step on a GPU SIMD unit.

2.1 Massively parallel work distribution
The persistent threads model [1] copes with the lack of fine-grained
task scheduling mechanisms in the kernel-based execution model.
Persistent threads fill up the entire GPU and execute in an infinite
loop. In every iteration, each thread consumes a work item from
a queue, until the queue is empty. Cederman and Tsigas [4] were
the first to build a load balancing system based on this approach.
Although a single work queue is sufficient for simple work distribu-
tion, multiple queues are used for advanced schedulingmechanisms,
such as inserting tasks from the CPU [6], task donation [32], steal-
ing [5], or managing different task types [27, 28]. Obviously, the
use of multiple queues requires the interface to be non-blocking
and return control when a thread tries to dequeue from an already
empty queue (underflow). While alternative structures other than
queues have been effectively employed in work stealing schemes,
doing so usually implies the abandonment of FIFO ordering [2, 12].

2.2 FIFO queues and linearizability
Arguably, the FIFO queue design, which defines a head from which
items are drawn and a tail for appending items, is the most com-
mon choice in previous work. FIFO naturally lends itself to work
distribution, because it implicitly maintains tasks in the order in
which they were submitted. Since our focus lies with this type of
queue, we henceforth use the term queue interchangeably with
FIFO queue. In case of a single producer and single consumer sce-
nario, a strict FIFO ordering, as in Lamport’s original algorithm [17],
FastForward [8], or MCRingBuffer [18], is easy to achieve.

In a massively parallel scenario, however, queues must support
multiple producers and consumers. Under these circumstances,
FIFO in its original sense is not applicable, since many threads can
concurrently interact with the queue. This fact gives rise to the con-
cept of linearizability, which can be used to prove observable FIFO
behavior when operations overlap temporally. In short, linearizabil-
ity can be understood as the constraint that an external observer,
observing only the abstract data structure operations, gets the illu-
sion that each of these operations takes effect instantaneously at
some point between its invocation and its response [14].

2.3 Concurrent queue designs
One way of constructing a concurrent queue design is by using
a linked list. Valois [33] provided one of the first lock-free, link-
based queues using CAS instructions. Problems with the original
design were later corrected by Michael and Scott [20], although
the corrections greatly diminish its practical value. An alternative
is provided by the Michael-Scott queue [21] (MSQ), which is still
among the most popular lock-free concurrent queues. The authors
further present a blocking queue, that supports concurrent insertion

and removal using two locks, whichwe call dual mutex queue (2MQ).
The baskets queue (BAQ) by Hoffman et al. [15] presents a variation
on theMichael-Scott queue, exploiting the fact that no binding order
can be defined for elements that are concurrently inserted into the
queue, and thus any ordering is equally valid.

Array-based queues employ a continuous array of elements, com-
monly operated as a ring buffer. The early work by Gottlieb et al. [9]
introduced a first array-based queue (GQ), that scales linearly to
a large number of cores due to its fine-grained locking approach.
In addition to head and tail pointers, it uses two counters to track
concurrent enqueues and dequeues. However, due to its simple
design, GQ is not linearizable [3]. Orozco et al. [24] addressed this
issue by presenting the circular buffer queue (CBQ), which avoids
the additional counters, but acts fully blocking during enqueue and
dequeue. As an alternative, they propose the high throughput queue
(HTQ), which returns to the problematic two-counter approach. Val-
ois [33] proposed a lock-free, array-based queue. However, it relies
on CAS on non-aligned memory addresses, which is not supported
by common processor architecture and thus renders it impractical.
The ring buffer by Shann et al. [26] appears to be the first practical
lock-free, array-based queue (SHCQ). Also lock-free, Tsigas and
Zhang [31] present another queue (TZQ), which reduces contention
by updating parts of the queue only periodically. Recently, Morri-
son and Afek [22] proposed the lock-free linked concurrent ring
queue (LCRQ), which consists of multiple linked arrays (CRQs) and
avoids contention on CAS operations. Similarly, Yang and Mellor-
Crummey [34] presented a segmented, wait-free queue (WFQ) that
uses a fast-path/slow-path dynamic to avoid stalling threads. How-
ever, both techniques rely heavily on dynamic memory allocation,
cleanup routines and hazard pointers, which are slow and tedious
mechanisms to include in GPU implementations.

Recently, Scogland and Feng [25] proposed a blocking array-
queue, built on top of a ring buffer ticket system (SFQ), that can
also be used on the GPU. Their queue essentially extends CBQ with
a closing mechanism to jump out of the blocking waits. While their
approach offers high performance, it is blocking when the queue
is full or empty, and only a single thread in a warp is allowed to
interface with the queue. A non-blocking interface to the queue
(NSFQ) circumvents this, but also drastically reduces performance.

3 REQUIREMENTS OF GPU QUEUES
Queuing algorithms on the GPU not only have to handle thousands
of concurrent enqueue and dequeue operations correctly, but also
need to consider the specifics of the underlying hardware. This
includes confinement to a limited amount of memory, constraining
register usage, and operating on a SIMD device, where individual
lanes can diverge. Thus, the desired characteristics for a work queue
on the GPU differ significantly from those on the CPU. A listing for
availability of these properties in the queuing methods mentioned
above, as well as our technique, is given in Table 1.

Many recent non-blocking queuing algorithms rely on optimistic
concurrency control [16]. However, the high resource contention
on the GPU—when thousands of threads try to access the same
data element—can lead to a significant number of retries, e.g., hun-
dreds to thousands of repeated CAS operations for a single enqueue.

The Broker Queue ICS ’18, June 12–15, 2018, Beijing, China

Table 1: While many parallel queues have been proposed, most lack desired properties for efficient work distribution on the
GPU. General lock-free queues are commonly dependent on dynamic memory and therefore difficult to realize on the GPU.
Faster queuing approaches either lack linearizability, or their rigorous blocking behavior precludes multi-queue setups. Our
queue (BQ) fulfills all identified desired properties for massively parallel work distribution.

MSQ BAQ SHCQ TZQ GQ CBQ HTQ LCRQ SFQ NSFQ 2MQ WFQ BQ

highly scalable • • • • • • •

fair ordering • ◦ • ◦ •

linearizability • • • • • • • • • •

low resource footprint • • • • • • • • • • •

static memory only • • • • •

all execution paradigms • • • • • • • • • • •

multi-queue support • • • • • • • • • • •

multi-element dequeue • •

• . . . fulfills the requirement, ◦ . . . partially fulfills the requirement

Obviously, such behavior impacts performance negatively. In accor-
dance with other authors [11, 13], we argue that, in order to design
a work queue that is highly scalable, a potentially blocking algo-
rithm is preferable over using contended CAS operations. To avoid
retries on failed CAS operations, every thread has to be assigned
a unique spot in the queue. This requirement intuitively leads to
an array-based queue design, using atomic fetch-and-add (FAA)
instead of CAS. Although such a design also brings forth a single
point of contention, performance on the GPU can still be high, as
FAA operations are very efficient on recent GPU generations [10].

Using FAA on head and tail pointers, in combination with a per-
element ticketing system, can be further extended to enable fair
ordering: the algorithm does not constrain head and tail pointers
to the size of the ring buffer, but rather allows them to wrap around
to simulate an array of infinite length, so they can yield both a ring
buffer location and a ticket. As soon as a thread reaches the FAA on
a required pointer (head to dequeue, tail to enqueue), its position is
assigned. From that point on, there is no risk of that thread taking
significantly longer to complete an enqueue or dequeue due to
interference of queuing-related operations, e.g., due to failing CAS.
Our queue, CBQ and SFQ offer these guarantees; LCRQ and WFQ
use tickets that may be invalidated by contending threads.

An important property of a queue for work distribution is guar-
antee of predictable behavior. For example, the queue must not
sporadically report overflow or underflow, or appear to reorder
elements already in the queue. The accepted standard for proving
predictable behavior is linearizability, which applies to most re-
lated work, with the exception of GQ (shown by Blelloch et al. [3]),
HTQ (by design [24]), and TZQ (shown by Colvin and Groves [7]).

On the GPU, the degree of parallelism (or occupancy) that can
be achieved at runtime is dictated by the resource requirements
of a kernel. For example, exceeding a certain number of registers
may reduce the number of concurrently launched warps and thus
the ability of the GPU to effectively hide latency. Since the queuing
algorithm must be embedded in the kernel in order to use it for
work distribution, a low resource footprint is desirable to allow
for high occupancy of the routines built on top of it. Due to their
elaborate design, even bare-bone implementations of LCRQ and
WFQ reduce occupancy on current GPUs according to our tests.

Large numbers of dynamic memory management operations are
known to be a potential bottleneck for GPU execution [29]. Using
static memory only implicitly avoids these potential overheads.
Hence, a work queue on the GPU should avoid dynamic memory
allocation, which, in theory, puts array-based queues at an advan-
tage over link-based queues. However, array-based queues often
need to allocate memory for queued elements individually, as the
ring buffer is operated using CAS, and thus can only store pointers
to the actual elements. If elements are instead stored in the ring
buffer directly, access to the buffer needs to be secured, to avoid
read-before-write and write-before-read hazards.

The peculiarities of the GPU yield multiple programming and
execution paradigms. General queue designsmust be able to work
within all of them, including independent thread execution, warp-
synchronous execution, sub-block execution, and cooperative block
execution. This requires a queue design that does not transfer block-
ing states between threads in the same warp, i.e., halt ready-to-
execute threads because other threads are being stalled. Similarly,
multi-queue setups require threads to eventually return from de-
queue operations if a queue is already empty, so they can probe
other queues for available data. Essentially, both requirements boil
down to queues being non-blocking when a queue is full or empty.

Our proposed design, the broker queue—although forgoing the
non-blocking property of most recent queue designs—exhibits all
desired properties listed above. Furthermore, it enables a thread to
dequeue multiple elements at once, raising efficiency in coopera-
tive block execution scenarios. It shows all advantages of simpler,
conventional blocking queues, while also ensuring linearizability
and detecting overflow and underflow without blocking execution.

4 THE BROKER QUEUE
The core functionality of the broker queue is defined by its four
integral components: (1) a ring buffer for directly storing elements,
(2) a head and a tail pointer for ticketing, (3) a ticket buffer that
locks individual queue elements, and (4) an explicit counter to weigh
enqueue against dequeue operations. The configuration of these
buffers, as well as the interface to enqueue/dequeue, is given in
Algorithm 1. Note that⇚ indicates an atomic transaction, whereas
⇐ is a non-atomic transaction, and← a local variable assignment.

ICS ’18, June 12–15, 2018, Beijing, China Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg, Markus Steinberger

ALGORITHM 1: Broker Queue of size N

1 QueueElements RinдBuf f er [N] with N = 2n

2 unsiдned int T ickets[N] ← {0, 0, · · · , 0}
3 unsiдned int Head ← 0, Tail ← 0
4 int Count ← 0
5 enqueue (Element)
6 while not ensureEnqueue () do
7 (head, tail)⇚ (Head, Tail)
8 if N ≤ tail − head < N +MaxThreads/2 then
9 return Full

10 putData (Element)
11 return Success

12 ensureEnqueue ()
13 Num ⇚ Count
14 while true do
15 if Num ≥ N then
16 return false

17 if atomicFetch&Add (Count ,1) < N then
18 return true

19 Num← atomicSub (Count ,1) −1

20 putData (Element)
21 Pos ← atomicFetch&Add (Tail ,1)
22 P ← Pos % N
23 waitForTicket (P , 2 · (Pos/N))
24 RinдBuf f er [P] ⇐ Element
25 T ickets[P]⇚ 2 · (Pos/N) + 1

26 dequeue ()
27 while not ensureDequeue () do
28 (head, tail)⇚ (Head, Tail)
29 if N +MaxThreads/2 ≤ tail − head − 1 then
30 return Empty

31 return readData ()

32 ensureDequeue ()
33 Num ⇚ Count
34 while true do
35 if Num ≤ 0 then
36 return false

37 if atomicSub (Count ,1) > 0 then
38 return true

39 Num← atomicFetch&Add (Count ,1) +1

40 readData ()
41 Pos ← atomicFetch&Add (Head ,1)
42 P ← Pos % N
43 waitForTicket (P , 2 · (Pos/N) + 1))
44 Element ⇐ RinдBuf f er [P]
45 T ickets[P]⇚ 2 · ((Pos + N)/N)
46 return Element

47 waitForTicket (Pos , ExpectedT icket)
48 T icket ⇚ T ickets[Pos]
49 while T icket , ExpectedT icket do
50 backoff ()
51 T icket ⇚ T ickets[Pos]

4.1 Brokering
Usually, atomically operated head and tail pointers for ticketing
prohibit a non-blocking reaction to over- and underflow. For ex-
ample, if the queue holds a single element and multiple threads
increase the head pointer atomically, the head is moved past the
tail. Although threads could detect that the pointer was moved too
far, reverting the move is difficult, as it would require a coordinated
effort of all involved threads. Additionally, other threads could, in
the meantime, enqueue new elements, thereby validating some of
the dequeue operations that were already rolled back.

To avoid these issues, we introduce an additional counter vari-
able (Count). It ensures that only threads which are guaranteed to
eventually complete their enqueue or dequeue operation (and thus
validly move head or tail) are allowed to interact with those point-
ers. For enqueue, this assurance is provided by the ensureEnqueue
method, which returns true, iff there is either sufficient space in
the ring buffer to store an element, or a sufficient number of other
threads have already committed to dequeuing elements from the
queue. Similarly, ensureDequeue returns true, iff there is an ele-
ment in the ring buffer for the thread to dequeue, or at least one
other thread committed to enqueue an unclaimed element. Thus,
Count essentially models the relation between head and tail after
all operations of concurrently active threads have completed.

If Count is decreased below zero or increased above the ring
buffer size, a thread can perform a rollback by simply calling the
opposite atomic operation (lines 19 and 39), without the need of ex-
plicit coordination with other threads. Note that, due to the chance
of other threads modifying Count in the meantime, the result of the
rollback may suggest that the operation is now, in fact, possible. As
other threads may have picked up on this (previously invalid) as-
surance, the thread must try to verify this by atomically modifying
Count one more time. This retry behavior is realized by a loop over
the corresponding instructions (lines 13-19 and 33-39).

This part of the queue interface can be viewed as a broker, giving
rise to the name of our queue. The broker not only considers items
stored in the ring buffer of the queue, but also accepts assurances
to provide or consume items, before the actual transactions occur.

4.2 Data storage and exchange
The internal methods of the broker queue match the assurances
of the broker to actual ring buffer slots and create a connection
between enqueue and dequeue operations. A slot identifies the lo-
cation for writing/reading the centralized ring buffer of the broker
queue. The atomic operations on Head and Tail (line 21 and 41)
return a tally for computing the ticket number and, implicitly, a
ring buffer slot for reading or storing elements (line 22 and 42). The
ticketing itself assigns even-numbered tickets to enqueue opera-
tions and odd numbered tickets to dequeue operations. Since the
broker already confirmed at this point, that performing the assured
operations will yield a valid queue state and thus will eventually
succeed, putData and readData simply implement a blocking be-
havior. This is achieved by waiting on a spinlock in waitForTicket,
until the thread’s turn has come to interact with the ring buffer
location. To achieve favorable scheduling, threads back off after an
unsuccessful spin. Each successful operation increases the ticket
position by one. Consistency on integer wrap-around can be easily

The Broker Queue ICS ’18, June 12–15, 2018, Beijing, China

guaranteed by choosing a power of two as queue size and using
unsigned integers for pointers and tickets.

The methods ensureEnqueue and ensureDequeue are them-
selves called from a loop by the queue interface. The motivation
behind this design is linearizability. A broker state indicating that
there are no available slots does not necessarily guarantee that Full
or Empty must actually be observable in the linearized operation
of the queue. For example, a thread might reduce the Count variable
to zero through dequeue, but get suspended before changing the
Head. Another thread—just examining the Count variable—would
assume the queue to be empty, although the previously assured
dequeue might happen much later, and thus the queue never (ob-
servably) reached the Empty state. As Count might have changed
during the execution of putData or readData, threads are required
to continuously try to register their operation. Therefore, a thread
that detects a potential Full or Empty state waits until that state
can be definitely observed (loop from line 6 to 9 and 27 to 30).

4.3 Further remarks
Next to enabling simultaneous access by an arbitrary number of
threads, the biggest advantage of the BQ is that threads are only
stalled if the queue is close to running empty or full. If there is
sufficient time between adding an element and it being read, no
thread has to wait. Another advantage of the BQ is that the ticketing
system can grant threads access to queue elements for an extended
period. As read and write operations on the actual elements do not
need to be atomic, the queue can return a pointer to the acquired
slot, i.e., returning P instead of reading or writing (line 24 / 44).

To determine whether the queue is full or empty, we rely on
comparing Head and Tail. Thus, both variables need to be read in a
single atomic instruction, which is enabled on current GPU designs
by defining them as 32-bit wide offsets from the buffer address and
placing them together in a 64-bit word. Alternatively, actual 64-bit
pointers could be used on architectures that support the atomic
CAS2 operation. Note that, due to our assurance-based interaction
with the pointers, Head can overtake Tail, and the distance between
the pointers can grow beyond the queue size. Thus, special care
needs to be taken when comparing the pointers (line 8 and 29).

At first glance, it would appear that the Count variable presents
a central choke point for the queuing algorithm. Recent approaches,
such as LCRQ and WFQ, take special care to avoid singular, global
variables for communicating queue states across threads. This is
motivated by the fact that, on many conventional architectures
(e.g., x86), contended atomic operations incur a severe performance
penalty. However, due to their importance for massively parallel
applications, atomic operations are extremely efficient in GPU hard-
ware and handle contention well. Figure 1 shows the average time
required for FAA operations on a single global variable, relative to
uncontended memory access. While this ratio rises sharply for CPU
architectures with an increasing number of contending threads,
the GPU architecture is much more forgiving. Furthermore, the
contention on Count becomes significant only when the queue is
facing either underflow or overflow; i.e., when Count is changed
multiple times by a single thread. Hence, the usage of Count in the
algorithm comes at the consideration of the underlying hardware
and its low demand in balanced scenarios.

100 101 102 103 104

Threads

0 x

50 x

100 x

150 x

200 x

250 x

C
o
n
te

n
ti
o
n
 O

ve
rh

e
a
d Intel Xeon E5-2686 v3

Intel i7-6850K
Nvidia Titan X (Pascal)

Figure 1: Average time required for a contended FAA instruc-
tion, relative to a single, non-atomicmemory transaction on
the respective architecture. On the GPU, a 10 000× contended
FAA shows roughly the same overhead as 10× on the CPU.

5 LINEARIZABILITY
To prove linearizability [14], one can model access to the queue as
a history H. Every function call is represented by an invocation-
response pair of events in the history. Two events are said to be
ordered in H, if the response of one precedes the invocation of
the other. If such an ordering is not possible for any two events,
they are considered overlapping, and a linearizable data structure
is allowed to order them arbitrarily. Linearizability is given if the
partial ordering of event pairs can consolidate a total ordering such
that the specifications of the data structure are fulfilled.

The semantics of the broker queue are those of a concurrent
FIFO queue, which takes on three states: Success in case enqueue
or dequeue succeeded, Full if enqueue is not possible, as the queue
is full, andEmpty in case there is no element in the queue. There are
two relevant parts for showing linearizability of the broker queue:
the exchange of data through putData and readData, as well as
the brokering through ensureEnqueue and ensureDequeue.

5.1 Data storage and exchange
To show the linearizability of putData and readData, we consider
threads that never see Full or Empty (ignoring ensureEnqueue
and ensureDequeue for now). To this end, we use an auxiliary array
H of infinite length, storing event pairs observed for every enqueue
call Ei = (ei , ēi) and dequeue call Di = (di , d̄i). Each event shall be
associated with its position inH , i.e., ei < ej iff ei is recorded before
ej . An event shall be recorded during the atomic operations on Tail
(ei) and Head (di) (line 21 and 41) and after receiving a ticket (ēi , d̄i)
(line 23 and 43). For example, H = {e1, e2, ē2, ē1,d1, d̄1, . . . }. Every
event pair Ei and Di shall be associated with Pos = i obtained
by the calling thread, and Pos shall reflect the FIFO ordering of
elements in the queue (ignoring wrap-around of Pos for now). Thus,
for linearizability, the following ordering must hold:

Ei < Ej ∧ Di < D j ∧ Ei < Di ∧ Ei < D j ∀i < j

Obviously, Ei < Ej and Di < D j is trivial to observe, as the
atomic counter makes sure that ei < ej and di < dj . Thus, either
the respective calls are non-overlapping (ēi < ej , d̄i < dj) and no
reordering is necessary, or they do overlap and can be reordered to
fulfill the requirements. For a single pair of calls Ei and Di , it can be

ICS ’18, June 12–15, 2018, Beijing, China Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg, Markus Steinberger

shown that Ei < Di : given that tickets are unique, waitForTicket
during dequeuemust wait for enqueue to issue the dequeue ticket,
and ēi < d̄i . Thus, an ordering Ei < Di is certainly possible, as they
are either ordered correctly or overlapping. What remains to be
shown, is that all three requirements hold at the same time, i.e., one
reordering does not contradict another and Ei < D j ∀i < j. The
only possibility for an overall reordering to fail is if d̄j < ei , i.e.,
a dequeue finishes before an earlier enqueue starts, as this would
make the calls non-overlapping and prohibit a reordering. This is
not possible, due to the atomic on Tail, which yields ei < ej . In
combination with ēi < d̄i and ei < ēi , we find ei < ej < ēj < d̄j ,
and d̄j ≮ ei . Thus, all calls can be reordered according to Pos.

Since RingBuffer is of limited size, threads may potentially be
competing to access the same elements. If multiple enqueue and
dequeue operations are assigned to the same element, the ticket
system makes sure that the order is kept as intended. The ticket
for Ei is given by TEi = 2 · ⌊i/N⌋, for Di , TDi = 2 · ⌊i/N⌋ + 1.
After a wrap-around, TEi+N = 2 · ⌊(i + N)/N⌋ = 2 · ⌊i/N⌋ + 2 and
TDi+N = 2 · ⌊i/N⌋ + 3, i.e., every operation receives a unique ticket
which is monotonically increasing. In this way, the ordering at each
spot of the ring buffer is ensured, as long as the the tickets do not
wrap around. If Pos wraps around at 232, the tickets wrap around
at 232/N = 232−n . As long as the number of threads concurrently
interacting with the queue stays below this value, the same ticket
cannot be issued more than once at the same time. Hence, the order
of operations on individual elements follows Pos, and the queue in
general maintains the indented linearizable FIFO behavior.

5.2 Brokering
Brokering revolves around the ensure functions, which may return
Full or Empty. If ensureEnqueue/ensureDequeue returns true, a
thread is forwarded to putData/readData, which results in lineariz-
able behavior as outlined above. Thus, only the Full and Empty
cases require a more detailed analysis. Ignoring the wrap-around
of Head and Tail for now, we define two additional events ∞h,t
and �h,t . If the call returns Full or Empty, these events shall be
recorded during the combined head and tail reads (line 7 and 28),
with h = head and t = tail . Linearizability at underflow is given, if
calls can be reordered such that an Empty state is reached at �h,t :

Dt < �h,t < Et+1.

Ignoring wrap-around, Empty is returned for t − h ≤ 0, i.e., when
both pointers are the same or Head has overtaken Tail. Observing
such a pointer pair means that et and dt ,dt+1, . . . ,dh have been
recorded, and et+1 has not happened yet:

et ,dt < �h,t < et+1.

All Di with i > t are irrelevant for the Empty in question, all
ei and di for i ≤ t have already taken place (and thus Ei and Di
are either completed or overlapping), and et+1 has not occurred
yet. Thus, there is no E or D that prevents a reordering to achieve
Dt < �h,t < Et+1. Furthermore, there are no other Empty or Full
events that can interfere with creating such an Empty state:∞h,t
cannot take place at the same time (as the conditions for h and t are
different). Another event �h2,t2 with t2 = t and h2 = h may take
place at the same time—and can simply be inserted right before or
after �h,t . An Empty event with t2 = t and h2 , h is also possible,

which would be treated identically. If t2 < t , the event has already
been inserted into H earlier. Thus, the Empty state is linearizable.

Linearizability considering the Full state is exactly symmetrical
to the Empty state, with Eh+N < ∞h,t < Dh+1. For the sake of
brevity, we omit repeating the derivation here.

Finally, the wrap-around of the pointer after 232 must be con-
sidered. It is possible for Head to overtake Tail, with a factor equal
to half the maximum number of concurrently active threads—if all
threads are concurrently enqueuing and dequeuing, and all oper-
ations on the Head occur before the ones on Tail. Similarly, Tail
can advance by half the maximum number of concurrently active
threads further than N away from Head. These conditions can sim-
ply be included into the comparison as an additional margin (line 8
and 29). This condition obviously fails if N +MaxThreads/2 ≥ 232.

6 BROKER QUEUE VARIANTS
To ensure linearizability, our broker queue potentially waits until
suspected Full and Empty states are observable from Head and
Tail. Obviously, waiting comes at a cost. Hence, we also derive a
simplified version of BQ which avoids waiting by shedding lin-
earizability, yielding the broker work distributor (BWD). Dropping
linearizable FIFO behavior opens the door for potentially even more
efficient work distribution methods, e.g., work stealing [2, 12]. As
BQ is also applicable in these use cases, we additionally describe the
broker stealing queue (BSQ) for effective stealing of queued tasks.

6.1 The Broker Work Distributor
The conversion from broker queue to the broker work distrib-
utor is straightforward. Instead of waiting for ensureEnqueue
and ensureDequeue in a loop to ensure Full/Empty are actually
observable, these function are called only once by enqueue and
dequeue. The result of this call is taken at face value, returning
Full/Empty if the broker cannot find a slot/match immediately.

The downside of the BWD is its non-linearizability. Since Count
is only used as an assurance swap, it does not faithfully represent
the real queue state observable when the actual data is put into the
queue or taken out of the queue. While this behavior is undesir-
able when a queue needs to behave strictly like a concurrent FIFO
queue, it is generally not detrimental during work distribution. If
an ensureEnqueue yields false, it indicates that, according to all
threads that started interacting with the queue thus far, all elements
will be drained from the queue; i.e., unless another thread starts
enqueue, the queue will reach Empty. This behavior is arguably
sufficient for work distribution and, with regard to multi-queue
setups, provides a reasonable indicator for efficiently switching to
another queue that might already contain work.

6.2 The Broker Stealing Queue
The broker stealing queue (BSQ) provides a simple work stealing
implementation by abstracting multiple underlying queues through
one interface. Each executing block on the GPU is assigned its own,
default BQ for storing and reading queued elements. If a thread in
a block cannot find an item in its assigned default queue, it tries to
steal work from a different block. This is achieved by iterating over
all available queues and performing a standard dequeue on each,
until an element is found or all queues have been checked.

The Broker Queue ICS ’18, June 12–15, 2018, Beijing, China

0 10000 20000 30000 40000 50000 60000

Threads

0

1000

2000

3000

4000

5000

6000

T
im

e
 [

m
s]

BQ
GQ
LCRQ
WFQ
2MQ

MSQ
NSFQ
SHCQ
TZQ

(a) Runtime of all queues, with thread granularity

0 250 500 750 1000 1250 1500 1750

Warps

0

50

100

150

T
im

e
 [

m
s]

BQ
GQ
LCRQ
WFQ
SFQ

2MQ
MSQ
NSFQ
SHCQ
TZQ

(b) Runtime of all queues, with warp granularity

0 10000 20000 30000 40000 50000 60000

Threads

0.05

0.10

0.15

0.20

0.25

T
im

e
 [

m
s]

BQ
GQ
LCRQ
WFQ

(c) Details for fastest queues, with thread granularity

0 250 500 750 1000 1250 1500 1750

Warps

0.05

0.10

0.15

0.20

T
im

e
 [

m
s]

BQ
GQ
LCRQ
WFQ
SFQ

(d) Details for fastest queues, with warp granularity

Figure 2: Runtime performance results of all queues for 10 enqueue/dequeue operations, with detailed focus on fastest queues.

7 EVALUATION
To evaluate our techniques, we compare their aptitude for work
distribution with previous techniques. We implemented the queues
listed in Table 1 in CUDA—with the exception of BAQ (as it is
within 2× of MSQ), and CBQ and HTQ, which are similar to SFQ
and GQ, respectively. In order to offer an exhaustive, yet reasonably
concise evaluation of our algorithm against numerous previous
approaches, we first identify the most competitive techniques in a
microbenchmark. For the strongest contenders, we provide a more
detailed analysis under both lenient and strenuous conditions. All
tests were performed on an NVIDIA GTX Titan X (Pascal). Supple-
mental material documenting test results on NVIDIA Maxwell and
Kepler architectures (and confirming the trends presented here) is
available under https://bitbucket.org/brokering/broker-queue.

7.1 Initial runtime comparison
Our initial microbenchmark performs 10 alternating enqueue-de-
queue pairs over a varying number of concurrently running threads.
Due to this ideally balanced setup, we can include blocking queues
into the test, as neither Empty or Full states are reached. Figure 2a
shows the average runtimes. Due to their high register usage, LCRQ
and WFQ reach the maximum number of concurrently running
threads at 43 008 threads on the Titan X (Pascal), i.e., they achieve
37% less occupancy than the other approaches. Since SFQ can only
execute at a per-warp granularity, we repeat the above experiment
with only one thread in each warp accessing the queue (Figure 2b).

These initial experiments confirm that non-blocking strategies,
based around the concept of optimistic concurrency control, do not

work well with thousands of threads. All four non-blocking queues
built around optimistic CAS (TZQ, SHCQ, NSFQ, andMSQ) are trail-
ing significantly behind the others. Even a queue that allows only
two threads concurrent access (2MQ) can be significantly faster.
However, as the number of concurrent threads approaches maxi-
mum occupancy, all of the above techniques are more than 1000×
slower than the remaining algorithms with per-thread granularity,
and more than 100× slower with per-warp queuing interaction.
Fastest runtimes for these initial tests are obtained by our queues,
as well as GQ and the recently proposed SFQ, LCRQ and WFQ.
Note that we have omitted BWD and BSQ from the plots, since they
exhibit virtually identical behavior to BQ in this balanced scenario.

A closer look at the runtime performance of the faster contenders
is given in Figure 2c and 2d, which include lowest and highest
measured runtimes as overlay. Although GQ is non-linearizable,
it trails behind BQ with a slowdown of more than 2× for launch
configurations exceeding 45 056 threads (or 1504 warps), caused by
continuous modification of the two counters in addition to front
and back pointers. LCRQ and WFQ have a higher base cost than all
other techniques (3–6× compared to BQ) and quickly deteriorate
at per-thread granularity, but catch up with the non-linearizable
GQ per-warp. With an increasing number of threads accessing
the queue, LCRQ also shows the highest variance in runtime. Per-
warp, LCRQ slowly loses its advantage overWFQ’s higher base cost.
Although SFQ is conceptually much simpler and less versatile than
our queue, it is still narrowly outperformed by the BQ. For launch
configurations with >512 warps, we found a relative slowdown
between 1.4% and 9%. We ascribe this fact to BQ not having to poll
a closed state. Overall, BQ poses the fastest queue in this scenario.

https://bitbucket.org/brokering/broker-queue

ICS ’18, June 12–15, 2018, Beijing, China Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg, Markus Steinberger

BQ BWD BSQ GQ LCRQ WFQ

0 20000 40000 60000

Threads

0.05

0.10

0.15

0.20

0.25

T
im

e
 [

m
s]

(a) P(enq) = 50%, P(deq) = 25%, no pre-fill

0 20000 40000 60000

Threads

0.2

0.4

0.6

0.8

T
im

e
 [

m
s]

(b) P(enq) = 25%, P(deq) = 50%, no pre-fill

0 20000 40000 60000

Threads

0.1

0.2

0.3

0.4

0.5

T
im

e
 [

m
s]

(c) P(enq) = 25%, P(deq) = 50%, pre-filled

0 10000 20000 30000 40000

Threads

101

102

103

T
im

e
 [

m
s]

(d) Page rank for p2p-Gnutella31

0 10000 20000 30000 40000

Threads

102

103

T
im

e
 [

m
s]

(e) Page rank for web-NotreDame

Figure 3: We consider imbalanced test cases, both synthetic and realistic. We test enqueue with probability P(enq) and dequeue
with P(deq) on initially empty (a, b) and pre-filled queues (c). In (a), P(enq) > P(deq) and the queues never run empty. Using
a constant workload reduces the performance gap compared to the initial benchmark. In (b), queues quickly hit underflow,
which has a devastating effect on the performance of LCRQ and WFQ, and, to a much lesser extent, on BQ. With a pre-filled
queue (c), the performance drop is delayed by the time it takes to empty it. Testing queues in a real-world example to compute 8
iterations of page rank, we find that our algorithms (BQ, BWD and BSQ) are the fastest available techniques. For bothmedium-
sized networks (d, 60k nodes) and large ones (e, 300k nodes), our queues achieve lower runtimes than simpler alternatives (GQ).

7.2 Imbalanced and real-world scenarios
In order to be useful in actual work scheduling systems, queuing
algorithms must be able to efficiently handle cases where each task
produces a certain amount of work, the number of enqueues and
dequeues is not balanced, and queues can actually run empty.

Synthetic benchmark. To produce imbalanced scenarios, we first
extend our initial test case such that every thread randomly per-
forms between 1 and 10 enqueue/dequeue pairs. We call enqueue
and dequeue themselves with reduced probability. Consequently,
the number of enqueue and dequeue operations is no longer bal-
anced, which introduces the possibility of underflow. Furthermore,
we simulate aworkload for each task by executing 128 fusedmultiply-
add (FMA) instructions after each successful dequeue. Since these
scenarios require threads to recover from underflow in order to
finish the test, they cannot be evaluated for the fully-blocking SFQ.
Also note that we avoid overflow in this test by allocating sufficient
memory for all queues. LCRQ cannot handle underflow well, but
rather reacts to it by allocating and initializing new ringbuffers. In
order to mask this dependency on dynamic memory management,

we pre-allocate and initialize a memory chunk 32× the size of the
other queues to provide LCRQ with sufficient resources.

We show our results for imbalanced test cases in Figure 3. With
simulated workload added, the differences across techniques di-
minish for the default behavior. This can be observed in Figure
3a, where a 2× higher probability of enqueue than dequeue en-
sures that every thread can perform its task without delay, given
that overflow does not occur. In the opposite case—probability of
dequeue exceeds that of enqueue 2×—underflow occurs, and per-
formance figures change considerably (Figure 3b). Since there is
never a substantial amount of work to steal, BSQ keeps unsuccess-
fully checking other queues, and its overhead is never amortized.
The non-blocking techniques LCRQ and WFQ are at least 2.5×
slower than GQ, BQ and BWD. Note that both approaches behave
destructively, as queue slots can become unusable if a dequeue
arrives there before an enqueue. In contrast to LCRQ, WFQ coun-
teracts slot thrashing with its slow-path/fast-path dynamic, by
turning unsuccessful dequeue threads into enqueue helpers. This
is reflected by its runtime rising ∼6× slower than LCRQ at under-
flow. However, BQ significantly outperforms both approaches and

The Broker Queue ICS ’18, June 12–15, 2018, Beijing, China

0 20 40 60 80 100

Enqueue Probability [%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 [

m
s]

(a) Runtimes with no workload

BQ, 25 %
BQ, 50 %
BQ, 75 %
BQ, 100 %
BWD, 25 %
BWD, 50 %
BWD, 75 %
BWD, 100 %
BSQ, 25 %
BSQ, 50 %
BSQ, 75 %
BSQ, 100 %

0 20 40 60 80 100

Enqueue Probability [%]

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 [

m
s]

(b) Runtimes with 320 FMAs workload

Figure 4: Detailed performance comparison of BQ, BWD and BSQ at different enqueue/dequeue ratios shows that BSQ in
general reduces contention in ideal cases, but suffers frommassive overhead otherwise. (a) As BQ is hitting a potentially empty
queue, it waits until the the state is observable, which reduces its performance, especially if that state is likely to change again.
(b) This effect becomes less pronounced as the task workload (simulated by 320 FMAs after each dequeue operation) increases.

hence poses the fastest linearizable queue among those tested. The
simpler, non-linearizable GQ achieves up to 64% faster runtimes
than BQ, but is also prone to erroneously detecting empty states.
In a real-world scheduling scenario—where the workload is not
known beforehand—this may cause threads to quit prematurely,
compromising performance and correctness. The fastest runtimes
are reported for our non-linearizable version of BQ, the BWD (10%
faster than GQ at maximum occupancy). Compared to GQ, un-
derflow detection by the BWD is less problematic, since it makes
all interactions immediately visible via the Count variable. If the
queues are initially pre-filled (Figure 3c), these trends still hold, but
underflow and its effects on the queues are delayed accordingly:
LCRQ,WFQ and BQ are affected by underflow only >25 600 threads,
with similar performance for LCRQ and BQ at lower thread counts.

Page Rank. In order to provide a real-world example, we evaluate
all competitive queues that are capable of handling underflow on the
computation of page rank for two directed networks. Specifically,
we compute the first 8 iterations for the data sets p2p-Gnutella31 and
web-NotreDame, provided by the Stanford Large Network Dataset
Collection [19]. We pre-fill queues with one work item per node
and launch a megakernel that tries to dequeue elements, until all
threads agree that no more work is being generated. Active nodes
pass on their latest available page rank value to their neighbors. If
a node N finds that it is the last to contribute to the page rank of
another nodeM in iteration i ,M is enqueued for iteration i + 1. In
order for LCRQ and WFQ to run fairly stable without immediately
consuming all available memory, we had to shrink segments far
below the recommended size (<128 slots per segment). Furthermore,
we added traversal of previous Head pointers to LCRQ to reclaim
abandoned segments. Performance measurements for tested queues
are shown in Figures 3d and 3e. LCRQ/WFQ quickly fall behind,
with slowdown of at least 60/6× over GQ, BQ and its variants
in p2p-gnutella31, and 95/400× in web-NotreDame for more than
10 240 threads. In both networks, BQ outperforms GQ. This con-
firms our assumption that GQ’s erroneous underflow detection is
detrimental for tasks that only terminate when no more data is

produced, which holds for the page rank test (in contrast to our syn-
thetic tests). Consequently, BQ and BWD are consistently 10–15%
faster than GQ for configurations >10 240 threads. Furthermore, we
find that BSQ performs best for the large web-NotreDame network
at maximum occupancy (9% over BWD). This is due to new work
being generated in bursts when a neighborhood of nodes finish an
iteration simultaneously, allowing for work stealing to take effect.

7.3 Broker Queue variants comparison
To investigate differences in behavior between BQ, BWD and BSQ
in detail, we test various enqueue and dequeue probabilities under
maximum occupancy. Figure 4a shows that, if enqueue probabil-
ity is higher than dequeue, there is negligible difference in queue
performance among the three approaches (<10%, thus within usual
variance), with BSQ being marginally faster due to reduced con-
tentions. However, at lower enqueue rates, the performance of BSQ
suffers considerably (up to 30× slowdown). This is explained by its
modus operandi: at maximum occupancy, a high number of thread
blocks (and thus distributed queues) is employed. Hence, with few
work items being generated at all times, work stealing constantly
checks many queues, just to determine that they are all empty.

The largest difference between the BQ and BWD queues can be
observed when dequeue happens about twice as often as enqueue.
At this point, every other dequeue attempt observes a potential
Empty state (BQ up to 5× slower). It is unlikely to observe an actual
underflow of the queue, as there are still many enqueue operations
happening, leading to multiple check-and-retry attempts. For lower
enqueue probabilities, it is easier to observe Empty and thus the
performance increases. On the other hand, for higher enqueue
probabilities, it is more likely for a dequeue to immediately succeed,
also increasing performance. Hence, ensuring linearizability of BQ
can increase runtime by up to 20× if the queue is nearly empty/full
all the time. However, already a small simulated workload (320 FMA
operations) mitigates this effect (Figure 4b): under load, BSQ shows
lower relative slowdown (∼6×), andEmpty/Full are likelymatched
by the pointers, as fewer threads access the queue concurrently.
Hence, average performance of BQ and BWD is nearly identical.

ICS ’18, June 12–15, 2018, Beijing, China Bernhard Kerbl, Michael Kenzel, Joerg H. Mueller, Dieter Schmalstieg, Markus Steinberger

8 CONCLUSION
In this paper, we presented new queuing strategies geared towards
effective work distribution on the GPU: the broker queue, as well
as two simple, general-purpose variants. Previous work in this
field usually follows either of two strategies: relying on optimistic
concurrency control and thus being non-blocking, or showing strict
blocking behavior, even when the queue is full or empty. While the
former shows poor scalability in massively parallel environments
with thousands of threads, the latter prohibits effective scheduling
mechanisms for work distribution on the GPU. Instead of following
either strategy, we have combined the most desirable features of
both, keeping the scalability of blocking queues, while ensuring
versatility through non-blocking detection of under- or overflow.

Comparing to an extensive body of previous work, we found
that our techniques consistently rank among the most competitive
approaches. Since the broker queue was conceived with GPU hard-
ware in mind, it does not rely on exotic or impractical hardware
features, rendering its implementation straightforward. Our evalua-
tion showed the broker queue to be the fastest linearizable queue for
distributing work on the GPU in various scenarios. In balanced and
realistic setups, the broker queue outperformed all previous algo-
rithms. We also presented an even faster, non-linearizable variant of
the broker queue, for the purpose of general work distribution: the
broker work distributor. In terms of performance, the broker work
distributor surpassed all previous approaches, even in synthetic
imbalanced scenarios. Adding work stealing on top of our queue
can ideally increase efficiency even further under realistic load.
Although our proposed algorithms do not fulfill the non-blocking
property, they are resilient to under- and overflow scenarios, mak-
ing them prime candidates for work distribution on the GPU. In fact,
our queues can be effectively applied in any scenario where a fast,
concurrent queue is needed. Source code for our queues and evalu-
ation is available at https://bitbucket.org/brokering/broker-queue.
Finally, extending the idea used in the broker queue (i.e., making the
most relevant parts of an efficient blocking queue non-blocking),
the design of a complete non-blocking queue with a highly efficient
core appears to be a possible goal of future work.

ACKNOWLEDGMENTS
This research was supported by DFG grant STE 2565/1-1 and the
Austrian Science Fund (FWF) I3007. The GPU for this research was
donated by NVIDIA Corporation.

REFERENCES
[1] Timo Aila and Samuli Laine. 2009. Understanding the efficiency of ray traversal

on GPUs. In Proc. High Performance Graphics 2009 (HPG ’09). New York, NY, USA,
145–149.

[2] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. 1998. Thread Scheduling
for Multiprogrammed Multiprocessors. In Proc. ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’98). New York, NY, USA, 119–129.

[3] Guy E. Blelloch, Perry Cheng, Phillip B. Gibbons, and P. B. Gibbons. 2003. Theory
of Computing Systems Scalable Room Synchronizations.

[4] Daniel Cederman and Philippas Tsigas. 2008. On dynamic load balancing on
graphics processors. In Proc. ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware (GH ’08). Aire-la-Ville, Switzerland, Switzerland, 57–64.

[5] Sanjay Chatterjee, Max Grossman, Alina Sbirlea, and Vivek Sarkar. 2011. Dynamic
Task Parallelism with a GPU Work-Stealing Runtime System. In Proc. Workshop
on Languages and Compilers for Parallel Computing (LCPC ’11).

[6] Long Chen, O. Villa, S. Krishnamoorthy, and G.R. Gao. 2010. Dynamic load
balancing on single- and multi-GPU systems. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. 1–12.

[7] R. Colvin and L. Groves. 2005. Formal verification of an array-based nonblocking
queue. In 10th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS’05). 507–516.

[8] John Giacomoni, Tipp Moseley, and Manish Vachharajani. 2008. FastForward for
efficient pipeline parallelism: a cache-optimized concurrent lock-free queue. In
Proc. ACM SIGPLAN Symposium on Principles and practice of parallel programming
(PPoPP ’08). New York, NY, USA, 43–52.

[9] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. 1983. Basic Techniques
for the Efficient Coordination of Very Large Numbers of Cooperating Sequential
Processors. ACM Trans. Program. Lang. Syst. 5, 2 (April 1983), 164–189.

[10] Mark Harris. 2014. Maxwell: The most advanced CUDA GPU ever made. (2014).
[11] DannyHendler, Itai Incze, Nir Shavit, andMoran Tzafrir. 2010. Flat combining and

the synchronization-parallelism tradeoff. In Proc. ACM symposium on Parallelism
in algorithms and architectures (SPAA ’10). New York, NY, USA, 355–364.

[12] Danny Hendler, Yossi Lev, Mark Moir, and Nir Shavit. 2006. A Dynamic-sized
Nonblocking Work Stealing Deque. Distrib. Comput. 18, 3 (Feb. 2006), 189–207.

[13] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2003. Obstruction-Free
Synchronization: Double-Ended Queues as an Example. In Proc. International
Conference on Distributed Computing Systems (ICDCS ’03). Washington, DC, USA.

[14] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (July
1990), 463–492.

[15] Moshe Hoffman, Ori Shalev, and Nir Shavit. 2007. The baskets queue. In Proc.
international conference on Principles of distributed systems (OPODIS’07). Berlin,
Heidelberg, 401–414.

[16] H. T. Kung and John T. Robinson. 1981. On optimistic methods for concurrency
control. ACM Trans. Database Syst. 6, 2 (June 1981), 213–226.

[17] Leslie Lamport. 1983. Specifying Concurrent Program Modules. ACM Trans.
Program. Lang. Syst. 5, 2 (April 1983), 190–222.

[18] Patrick P. C. Lee, Tian Bu, and Girish Chandranmenon. 2009. A lock-free, cache-
efficient shared ring buffer for multi-core architectures. In Proc. ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems (ANCS ’09).
New York, NY, USA, 78–79.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[20] MagedM.Michael andMichael L. Scott. 1995. Correction of aMemoryManagement
Method for Lock-Free Data Structures. Technical Report. Rochester, NY, USA.

[21] Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proc. ACM symposium on
Principles of distributed computing (PODC ’96). New York, NY, USA, 267–275.

[22] Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for x86 Proces-
sors. SIGPLAN Not. 48, 8 (Feb. 2013), 103–112.

[23] Nvidia. 2017. CUDA Programming guide. (2017).
[24] Daniel Orozco, Elkin Garcia, Rishi Khan, Kelly Livingston, and Guang R. Gao.

2012. Toward High-throughput Algorithms on Many-core Architectures. ACM
Trans. Archit. Code Optim. 8, 4, Article 49 (Jan. 2012), 21 pages.

[25] Thomas R.W. Scogland and Wu-chun Feng. 2015. Design and Evaluation of
Scalable Concurrent Queues for Many-Core Architectures. In Proc. ACM/SPEC
International Conference on Performance Engineering (ICPE ’15). New York, NY,
USA, 63–74.

[26] Chien-Hua Shann, T.-L. Huang, and Cheng Chen. 2000. A practical nonblocking
queue algorithm using compare-and-swap. In Parallel and Distributed Systems,
2000. Proceedings. Seventh International Conference on. 470–475.

[27] Markus Steinberger, Bernhard Kainz, Bernhard Kerbl, Stefan Hauswiesner,
Michael Kenzel, and Dieter Schmalstieg. 2012. Softshell: dynamic scheduling on
GPUs. ACM Trans. Graph. 31, 6, Article 161 (Nov. 2012), 11 pages.

[28] Markus Steinberger,Michael Kenzel, Pedro Boechat, Bernhard Kerbl, MarkDokter,
and Dieter Schmalstieg. 2014. Whippletree: Task-based Scheduling of Dynamic
Workloads on the GPU. ACMTrans. Graph. 33, 6, Article 228 (Nov. 2014), 11 pages.

[29] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter Schmalstieg.
2012. ScatterAlloc: Massively parallel dynamic memory allocation for the GPU.
In Innovative Parallel Computing (InPar), 2012. 1–10.

[30] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems. Computing in science
& engineering 12, 3 (2010), 66–73.

[31] Philippas Tsigas and Yi Zhang. 2001. A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems. In Proc. ACM
symposium on Parallel algorithms and architectures (SPAA ’01). New York, NY,
USA, 134–143.

[32] Stanley Tzeng, Anjul Patney, and John D. Owens. 2010. Task management for
irregular-parallel workloads on the GPU. In Proc. High Performance Graphics
(HPG ’10). Aire-la-Ville, Switzerland, Switzerland, 29–37.

[33] John D. Valois. 1994. Implementing Lock-Free Queues. In Proc. International
Conference on Parallel and Distributed Computing Systems. 64–69.

[34] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-free Queue As Fast As
Fetch-and-add. In Proc. ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’16). New York, NY, USA, Article 16, 13 pages.

https://bitbucket.org/brokering/broker-queue
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Related work
	2.1 Massively parallel work distribution
	2.2 FIFO queues and linearizability
	2.3 Concurrent queue designs

	3 Requirements of GPU queues
	4 The Broker Queue
	4.1 Brokering
	4.2 Data storage and exchange
	4.3 Further remarks

	5 Linearizability
	5.1 Data storage and exchange
	5.2 Brokering

	6 Broker Queue Variants
	6.1 The Broker Work Distributor
	6.2 The Broker Stealing Queue

	7 Evaluation
	7.1 Initial runtime comparison
	7.2 Imbalanced and real-world scenarios
	7.3 Broker Queue variants comparison

	8 Conclusion
	Acknowledgments
	References

