
Retargeting Technical Documentation to Augmented Reality

Peter Mohr, Bernhard Kerbl, Michael Donoser, Dieter Schmalstieg, and Denis Kalkofen
Graz University of Technology

{ mohr | kerbl | donoser | schmalstieg | kalkofen }@icg.tugraz.at

(a) (c) (d)
Figure 1. Retargeted 2D documentation. (a) The input documentation consists of an annotated explosion diagram and a sequence of images presenting disassem-
bly instructions. (b) From analyzing the 2D explosion diagram, our system is able to generate a 3D explosion diagram presented in AR. Moreover, our system
generates 3D annotations in AR based on the input 2D documentation. (c) In addition, our system is able to analyze image sequences in order to create 3D
animations from it. This allows to present animated 3D documentations in AR. Here we show six key-frames from the resulting AR animation.

ABSTRACT
We present a system which automatically transfers printed
technical documentation, such as handbooks, to three-
dimensional Augmented Reality. Our system identifies the
most frequent forms of instructions found in printed docu-
mentation, such as image sequences, explosion diagrams, tex-
tual annotations and arrows indicating motion. The analysis
of the printed documentation works automatically, with min-
imal user input. The system only requires the documentation
itself and a CAD model or 3D scan of the object described
in the documentation. The output is a fully interactive Aug-
mented Reality application, presenting the information from
the printed documentation in 3D, registered to the real object.

Author Keywords
Augmented reality; virtual reality; retargeting

ACM Classification Keywords
H.5.1 Information Interfaces and Presentation: Multimedia
Information Systems-Artificial, augmented and virtual reali-
ties

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2015, April 18 - 23, 2015, Seoul, Republic of Korea
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3145-6/15/04$15.00
http://dx.doi.org/10.1145/2702123.2702490

INTRODUCTION
Printed technical documentation is an essential requirement
for understanding and using technical products and many
other artifacts found in our daily life. We use handbooks to
understand how things work and manuals to learn how to as-
semble or maintain them. Most documentation still exists on
paper and relies on graphical illustrations and accompanying
textual explanations to convey the relevant information to the
reader. However, the use of printed manuals arguably intro-
duces a cognitive seam, since users have to match the images
in the manual with the physical object. In addition, inferring
actions from a sequence of 2D images can be a mentally de-
manding task.

Augmented Reality (AR) overcomes this seam by present-
ing the documentation directly registered to the object in the
3D space surrounding the user. It has been shown that this
can actually reduce the cognitive load when using technical
documentation [8]. However, authoring AR documentation
is a complex and time-consuming process. It requires skills
with 3D modeling and animation tools and additional exper-
tise with AR requirements such as registration and tracking.
Meanwhile, a large amount of traditional documentation ex-
ists on paper (or in two-dimensional digital form), but re-
mains unused for AR applications. To close this gap, we
propose a system capable of automatically transferring tradi-
tional printed documentation to AR. We demonstrate our ap-
proach on several graphical elements commonly found in tra-
ditional documentations. Specifically, we present the transfer

1

of annotations labeling parts of the object, arrows indicating
motions, explosion diagrams revealing an object’s internal
structure, and structural diagrams conveying the assembly or
disassembly, translation and rotation of parts. Together, these
illustrative elements cover the most frequent documentation
styles.

We demonstrate that the conventions kept by illustrators al-
low to automatically interpret the images with only minimal
help from the user. Thus, it becomes feasible to produce AR
experiences from existing documentation at only a fraction of
the effort it would take with conventional 3D modeling and
animation software.

RELATED WORK
Documentations exhibit a variety of graphical elements, but
usually follow established conventions. We identified the
most frequent elements – in the following called diagrams –
from books [18], online databases of popular products12 and
scientific publications [1, 7, 12].

A number of different strategies has been proposed to au-
thor Augmented Reality manuals. The two most common
methods define behavior either directly by using commer-
cially available modeling tools, such as Maya or 3DS MAX,
or by scripting all actions and transitions between actions us-
ing specialized script languages [11, 3]. In both approaches,
the user must define the manual from scratch. However, this
requires excessive knowledge of both the modeling tool or
the scripting language and the functionality of the object for
which the manual was generated. In addition, manual author-
ing, either by programming or by using animation tools, is
usually a very time consuming task.

An alternative approach is to build AR manuals from
recorded videos [20]. This allows to author complicated man-
uals without additional knowledge about any programming
language or animation tool. However, if the video is viewed
from a different point of view than the one it was recorded
from, it has to be warped to the new point of view, which is
prone to rendering artifacts.

Zauner et al. [27] as well as Gupta et al. [6] proposed to gener-
ate instructions from 3D recordings of actions. However, both
2D and 3D recordings require the user to record all steps of an
instruction, ignoring any existing documentation material. In
contrast, our approach makes use of existing documentation
material without any adjustment required. We achieve this by
computing animations from 2D documentation material.

Our approach is inspired by the work of Li et al. [13], who
generate an animated 2D explosion diagram from a single
image. Their system requires the user to manually define all
parts and all animations in the diagram. This is not practical
for complex structures or multiple images in a sequence.

Recently, Shao et al. [24] presented a system which derives
simple animations from interpreting 2D sketches. This re-
duces the effort required to generate animations between two
1http://service.lego.com/en-us/buildinginstructions
2http://www.ikea.com/ms/en US/customer service/
assembly instructions.html

images. However, this approach only works for simple struc-
tures. Since the user has to generate proxy geometry for every
single part of the object, this system can handle only objects
which consist of a small number of parts. Furthermore, the
user has to re-create the 3D model for every image. There-
fore, this approach does not scale easily to image sequences
and large product databases.

Bergig et al. [2] present a system which is able to automat-
ically generate 3D reconstructions of simple 2D sketches.
Even though this system does not require any interaction to
derive 3D geometry, it is limited by the capabilities of the
sketch reconstruction approach. Their approach can handle
only a few simple shapes. In contrast, we aim at the trans-
fer of 2D documentations of complex structures, which may
even be presented in multiple different configurations.

OVERVIEW
Our system generates interactive AR presentations from 2D
documentation, given as a collection of images, and a 3D
CAD model of the target object. The CAD model must be
structured such that individually movable parts of the target
object can be distinguished. If no CAD model exists, we
use an RGB-D sensor (Microsoft Kinect) to obtain a 3D scan
which can only be used for annotation transfer. However, of-
tentimes a 3D CAD model will already be available from the
manufacturer of the target object, and the RGB-D sensor is
only required for registering the CAD model with the real-
world target object.

In the following, we outline our approach to analyze every
major type of diagram. The result of our analysis is a 3D
scene description including 3D animations representing in-
structions. Our results can be presented on a desktop PC us-
ing a Virtual Reality (VR) viewer or in the user’s real world
environment through an Augmented Reality display. The
modules required to implement our approach are illustrated
in Figure 3.

Annotated diagrams
A typical illustration is an annotated diagram, which allows
to identify parts of an object by external labels, connected
with leader lines to the referred parts (Figure 2(a)). The la-
bels are often cross-referenced with more extensive textual
descriptions.

The first step for interpreting annotations (and any other dia-
gram considered in this paper) is to determine camera param-
eters that were used to create the image, with respect to the
coordinate systems used in the corresponding CAD model.
Rendering the CAD model with the obtained parameters al-
lows us to determine which part of the target object is covered
by a given pixel in the image. Around the target object, we
detect leader lines, identify the part of the target object from
which the leader line originates and decode the text labels at-
tached to the leader line.

Action diagrams
Action diagrams use auxiliary diagrammatic elements to
present instructions within a single image. A common form
uses arrows to encode the transformations which have to be
applied to a part to perform the presented action (Figure 2(b)).

2

(a) (b)

Figure 2. Diagrams used in traditional 2D documentations. (a) Explosion
diagrams are commonly used to present the structure of an object. In addi-
tion, annotations identify parts. (b) Sequences of images are often used to
represent an action. The images show the object in key poses. Occasionally,
arrows are presented to demonstrate the necessary transformations of parts
to perform the action. Images adapted from [18].

Like annotations, arrows are complementary graphical ele-
ments that cannot be derived from a CAD model. However,
their special shape allows detecting them in the image and in-
terpreting the intended motion and direction. The intention of
the arrow can be interpreted by comparing its pointing direc-
tion to valid displacement directions of parts nearby.

Explosion diagrams
Another popular form of technical reference is the explosion
diagram, which reveals the internal structure of an object in
a single image. Explosions reposition each part of the object
along one or more explosion axes. The position of parts is
determined based on the structure of the assembly, i. e., parts
are arranged on each explosion axis according to the order in
which they can be removed (Figure 2(a)). The resulting dia-
gram avoids occlusions and simultaneously encodes blocking
relationships between the individual parts.

Detecting which parts are shown in which displaced position
is an essential problem considered in this paper. To retar-
get explosion diagrams, we use disassembly planning [26] to
determine the order in which parts may be removed and gen-
erate valid displacements for candidate parts. The candidate
parts are then rendered with these displacements, and the re-
sulting image is compared to the input image using robust
image matching techniques.

Structural diagrams
Complex instructions are most commonly represented by im-
age sequences, where each image represents one step of the
procedure [7]. The most basic form is the structural diagram,
where each consecutive image adds, removes or reconfigures
one or multiple parts. Since each image portrays the object at
a single point in time only, the procedure has to be interpreted
by comparing one image to the next and identifying their dif-
ferences. Note that structural diagrams change the structure
of the object from one image to next, while explosion dia-
grams offset parts to present the structure of an object.

To retarget structural diagrams, we must thus determine
which parts are added, removed, translated or rotated in each
consecutive image. By using motion planning, we obtain a set
of candidate configurations of the CAD model, which we can

 Output

Camera pose estimation

Object masking

Motion planning

CAD

Image(s)
Arrow

detection

Difference image

Annotation
detection

Image matching

 Presentation Virtual Reality Viewer Augmented Reality Viewer

 Input 2D combined
diagram

2D structural
diagram

2D annotated
diagram

2D action
diagram

2D explosion
diagram

3D combined
diagram

3D structural
diagram

3D annotated
diagram

3D action
diagram

3D explosion
diagram

Figure 3. System Overview. Given an input image of a 2D diagram and a 3D
CAD model of the object of interest, our system is able to generate interactive
3D diagrams, which it can display in an Augmented Reality environment.
Our system consists of several modules. This overview shows which of these
modules are used to retarget a specific type of input diagram. Once a 3D
diagram is created, we present it either in Virtual Reality or within the user’s
real world environment by using an AR display.

use to search for the one depicted in the diagram. To reduce
the search space, we can use robust image differencing to de-
termine the area of change. For each image pair, we use the
area of change to discard motions occurring outside of these
regions.

Combined Diagrams
Documentation often combines multiple types of diagrams.
For example, labels may be used in an image sequence to
name the relevant parts of the presented instruction (Fig-
ure 2(a)). Also, partially exploded objects or sequences of
action diagrams (Figure 2(b)) are commonly used in image
sequences to present both an action and the object configu-
ration after applying it to the object. Our system is able to
analyze and retarget all these combinations.

Augmented Reality interface
The analyzed diagrams are transformed into 3D overlays and
presented in AR, registered to the physical object. The user
can interactively step through the instruction sequence and
explore the individual elements of the documentation.

ANNOTATED DIAGRAMS
We transfer 2D image data to 3D space by projecting a 3D
model of the object of interest to 2D image space. If this ren-
dering of the object fits to its input image, we can relate im-
age elements to 3D structure. We segment all labels and their
corresponding leader lines in image space. Subsequently, we
generate 3D annotations relative to the 3D model by using
the relations we found between image elements and 3D struc-
tures. This process is illustrated in Figure 4.

Estimating camera parameters
The 3D model needs to be rendered using the same camera
parameters as the input image. Since the original camera is
unknown, we need to approximate the intrinsic and extrinsic
parameters. In principle, these parameters can be found auto-
matically [28]. In practice, automatic extraction of reliable
2D-to-3D point correspondences from a single, highly styl-
ized image is not robust in many cases. Thus, we opted for a

3

(a) (b)

(c) (d) (e)

Figure 4. Retargeting annotations. (a) To estimate the camera pose, the user
interactively defines corresponding points between the 3D model and the
input image. (b) With the estimated camera pose, the rendering of the 3D
model fits the 2D input image. This is illustrated by adding the rendering
as semi-transparent blue layer on top of the input image. (c) Searching for
MSER with an eccentricity close to 1 allows to identify leader lines. The
mask defined by the rendering enables to detect their starting and ending
points. (d) Running an OCR tool around the end point decodes text labels
(e), which allows to add 3D annotations to the 3D model.

manual definition of point correspondences and field of view
by providing a basic user interface (UI). The UI is a side-
by-side arrangement of a 2D image viewer and a 3D viewer,
wherein the user selects four or more points both in the in-
put image and on the freely rotatable 3D model (Figure 4a).
The camera pose is then determined using POSIT [5]. This
procedure needs to be done only once for a set of instruction
images that use the same camera parameters, which covers
the majority of examples we have analyzed.

Annotation detection
By computing maximally stable extremal regions
(MSER) [17], we search the 2D documentation for leader
lines and labels. MSER provides an efficient means for
segmenting connected components in an image. For every
connected component, we calculate its eccentricity. If the
eccentricity value is close to 1, we assume that the region
contains a leader line. We then determine the end points of
the line by fitting an ellipse to the region. Rendering the
CAD model using the camera parameters estimated in the
previous step yields a mask for looking up whether a pixel
is occupied by the model. The pixel coincident with the
end point inside the mask is used to look up the annotated
part and defines the 3D anchor point, where the leader line
is attached to the 3D object. The region around the other
end point is automatically scanned with a standard optical
character recognition (OCR) tool to decode a text label.

ACTION DIAGRAMS
Action diagrams encode instructions within a single image,
mostly by using arrows. Therefore, to retarget action dia-
grams, we need to identify and interpret arrows and the parts
of the target object they are referring to. We start by detecting

(a) (b)

(c) (d) (e)

Figure 5. Retargeting action diagrams. (a) The input image with a semi-
transparent overlay of the 3D CAD model. (b) We detect the arrow and its
direction in 2D image space. (c) We analyze the 3D CAD model to find all re-
movable parts and their directions. (d) By comparing the assembly directions
to the direction of the arrow, we reduce the set of possible part motions. The
part which is closest to the shaft of the arrow is selected. (e) The animation
is defined by the path which was derived during motion planing.

and analyzing each arrow in 2D space (Figure 5(b)). Subse-
quently, we use motion planning to identify the set of geomet-
rically feasible motions of each part (Figure 5(c)). We then
identify a set of parts the arrow might refer to by selecting
those which can be moved similarly to the motion encoded
in the arrow. To present the action in 3D, we animate the se-
lected part using the corresponding movement, as suggested
by the motion planner (Figure 5(e)).

Motion planning
We assume that input images show only geometrically fea-
sible configurations, which have been generated by moving
parts without penetrating other parts of the object. To find
such valid motions for each part in the CAD model, we
need to test whether or not a motion causes collisions. Us-
ing Minkowski differences of polyhedra [16], we detect for a
given direction of motion how far each part can be displaced.
By default, we test for the principal axes in local and global
coordinates of the part.

Arrow interpretation
In order to identify an arrow, we begin by computing MSER
regions outside the target object. Among all candidates with
connected components, we select the ones with exactly two
concavities along the boundary, and we determine the main
axis by ellipse fitting (Figure 5(b)). The tip of the arrow is
the extremal point on this axis closer to the concavities. To
identify candidate actions, we search for parts which could
be removed in the direction indicated by the arrow. There-
fore, we project the motion vectors that have been computed
during motion planning to image space using the camera pa-
rameters we have estimated before (Figure 5(c)). We compare
the projected directions to the direction of the arrow. We se-
lect part motions as candidates if the angle between their pro-
jected motion vector and the arrow vector is below a given
threshold. If there is more than one candidate, the part which
is closest to the shaft of the arrow is chosen (Figure 5(d)).

4

(a) (b) (c) (d)

Figure 6. Retargeting explosion diagrams. (a) The 2D input image and the object rendered semi-transparently using the estimated camera parameters. The motion
planner generates candidate places for the lid (red part) first. (b) Our matching compares renderings of the lid within its bounding rectangle Ū at geometrically
possible locations V̄ . The orientation of the local gradient, as used during image matching, has been color coded from red (horizontal) to green (vertical). The
chamfer distance between V̄i and Ūi has been plotted in the line chart. The red star in the line chart highlights the minimal chamfer distance Ū22 → V̄22.
(c) The lid is placed corresponding to the analysis. (d) To replicate the entire 2D explosion diagram, we search for the optimal placement of each part. We
generate animations by consecutively applying the motions that were identified by our candidate evaluation algorithm. This example shows output key frames of
a generated 2D animation for collapsing the input explosion diagram. Note that occlusions are correctly resolved with the 3D model.

EXPLOSION DIAGRAMS
In order to retarget explosion diagrams, we need to find a se-
quence of unblocked motions of parts such that the resulting
3D scene setup visually matches the input 2D explosion di-
agram. The problem of detecting such sequences has been
considered in assembly planning [1, 26, 21]. Thus, we in-
corporate our motion planning system into a sequencing ap-
proach similar to Srinivasan et al. [25]. This generates a
set of feasible candidate explosions in 3D space. We find the
candidate that matches the input image best by comparing the
it with rendered images of each candidate setup (Figure 6).

By using only motions which we identified as geometrically
feasible, we generate candidate displacements of each part in
discrete locations. The CAD model is rendered to a texture
with its parts displaced according to feasible motions. The
resulting image U is compared to the input image V using
a variation of directional chamfer matching (DCM), as given
in Equation 1 [15]. To emphasize relevant edge features of
the CAD model for DCM, we assign a random color to each
part and add contour lines to the scene before rendering. We
then apply a Canny edge detector [4] and store the normalized
vector of the locally detected 2D gradient in Û(u) and V̂ (v),
respectively. Our notation employs the zero norm || · ||0 to
count the non-zero pixel values in an image. With a small
constant ε, we obtain a continuous distance function dDCM

for comparing images U and V :

dDCM (U, V) =
1

||Û ||0

∑
ui∈U

min
vj∈V

|vj − ui|
|(Û(ui) · V̂ (vj))|+ ε

(1)

Reducing the size of the test area
Calculating the DCM over the entire image for each candi-
date explosion is computationally demanding. However, if a
part is visible in the explosion diagram, we search specifically
for this part at valid candidate locations. We generate a new
image template Ū ⊂ U for each candidate motion by project-
ing the displaced 3D part into 2D image space and calculating

its bounding rectangle. The search space in V is restricted to
the matching bounding coordinates V̄ ⊂ V . We refer to the
procedure of finding the place of the template Ū in V as local
template fitting (see Figure 6(b)).

Reducing number of tests
While restricting the image matching to the bounding rectan-
gles of displaced parts helps to increase system performance,
the amount of possible combinations of part displacement
easily becomes very large. Even with the restriction to ge-
ometrically feasible motions, the search space grows quickly
with the number of parts and candidate displacements. Thus,
we accelerate the system with a greedy search approach. In-
stead of generating all possible configurations in advance, we
combine candidate generation and evaluation to progressively
find the best fit for a given input image. In each iteration, each
movable part is offset according to its geometrically feasible
candidate motions without modifying the others. The dis-
placement that produced the smallest local distance value ac-
cording to dDCM (Ū , V̄) is applied to the corresponding part.
The search continues as long as at least one tested part dis-
placement yields a distance that is significantly smaller than
the currently stored minimum. If multiple choices are avail-
able, the motion that introduces the largest improvement is
chosen and applied. If no such motion exists, the algorithm
terminates. Note that exploding a part may unblock others,
which results in additional feasible motions of the formerly
blocked parts. Thus, blocking information of the remaining
parts needs to be continuously updated.

STRUCTURAL DIAGRAMS
Structural diagrams appear in 2D documentations as se-
quences of at least two images. Every two consecutive input
images differ with regard to changes in configuration that are
applied to one or multiple parts. Given a pair of input im-
ages, we can restrict candidate motions to those which fall in
the image region where visual changes are observed. This al-
lows us to reject candidate motion based on where parts have

5

been moved, rather than on their matching score with the tar-
get image. Early rejection of candidate motion based on the
region of change is essential to increase system performance.
Therefore, we must ensure reliable identification of these re-
gions.

Difference images
In order to evaluate the relevance of a candidate motion with
regard to the visible region of change, we need to compute
the difference image diff(U1, U2) of the rendering of the
object before and after applying the candidate motion, and
the difference between the two consecutive input images,
diff(V1, V2). Computing the percentage of overlap of the
two regions (Equation 2) allows us to discard motions that
are not related to the observed differences in the input im-
ages, i.e., where the coverage falls below a given threshold.

coverage =
||diff(V1, V2) ∩ diff(U1, U2)||0

||diff(V1, V2)||0
(2)

We generate diff(U1, U2) by rendering all parts in the ob-
ject except for the current candidate to the depth buffer in
the first pass. In a second pass, we enable the color buffer
and render the part before and after applying candidate mo-
tion. The resulting pixels in the color buffer correspond to the
region of change diff(U1, U2) (Figure 7(b)). The method
used for obtaining diff(V1, V2) differs based on the type
of input images. Difference images from input with clear
distinct colors, such as LEGO assembly manuals, can be
directly computed by subtraction and thresholding. How-
ever, a reasonable amount of assembly instructions are simple
black-and-white closed-line drawings, as known from do-it-
yourself furniture 3. For such line drawings, we apply a sil-
houette check to identify the background area in both images
and reject motions that exhibit a low foreground coverage.
A flood-fill from the four image corners (which are assumed
to be empty) creates enhanced versions of the input images,
where background and foreground pixels have a unique color.
By conjoining the foreground regions of V1 and V2, we re-
ceive a generous enclosure for the area of visible change.
Change detection in photographic material is most challeng-
ing. Simple image differencing is defeated by lighting, reflec-
tion, shadows and surface texture. For robust determination
of the region of change, we employ SIFT flow [14], which
densely relates pixels from the source image to the most sim-
ilar pixel in the destination image.

Global bi-directional chamfer distance matching
Local template fitting works well for detecting detached and
isolated parts, as they appear in explosion diagrams. How-
ever, this approach performs poorly when trying to verify sub-
tle structural changes, which include reconfiguring, removing
or attaching parts. The possibility to compare between im-
ages in a sequence obviates the necessity to depict each ac-
tion individually. Involved parts may be partially obscured
or simply disappear from one image to the next, thus mak-
ing local fitting inapplicable. Consequently, a more thorough

3www.ikea.com

(a) Input images (b) Difference mask

(c) Candidate configurations

(d) Resulting animation

Figure 7. Retargeting structural diagrams. (a) Input images. (b) We generate
a difference image, which reveals changes between the images. Our sys-
tem creates a set candidate configurations by moving and rotating all parts
of the machine which are identified by the difference image. (d) From all
candidate configurations, the one which fits the target image best is selected.
The motion which had to be applied to transform the object in the selected
configuration is used to create the 3D animation. In this case, a rotation is
generated to open the service door, and the brewing unit is removed.

analysis of the entire image domain is required. For a full
analysis and comparison of two images U and V , we com-
pute the DCM over the entire image area in both direction
U → V and V → U . We refer to this global image matching
of U and V as the bi-directional chamfer distance (BCM):

dBCM (U, V) = dDCM (U, V) + dDCM (V,U) (3)

Finding a candidate rendering U that minimizes
dBCM (U, V) ensures a strong visual similarity between
U and target image V . For a scene with n parts and up to
c feasible configurations per part, evaluating all possible
setups requires O(cn) comparisons. Since this quickly
becomes infeasible even for moderately complex objects, we
use the greedy algorithm mentioned before to progressively
select the best structural improvement based on individual
part motions. However, greedy global matching may at
early stages favor part configurations that approximately
resemble multiple unmatched parts in the target image. To
suppress this effect, we put an additional emphasis on local
consistency to penalize discrepancies in the subimage regions
Ū and V̄ enclosing the projection of the currently tested part.
Thus, the distance function uses a weighted bidirectional
chamfer matching (WBC):

dWBC(U, V) = dBCM (U, V)︸ ︷︷ ︸
global matching

+λ dDCM (Ū , V̄)︸ ︷︷ ︸
local fitting

(4)

6

The additional weighting of local consistency for Ū and V̄
is controlled by the parameter λ. In practice, we found that
choosing λ ≈ 0.25 yields satisfactory results for all examined
sequences.

Candidate generation
Similar to explosion diagrams, we generate candidate config-
urations by iteratively moving and testing parts based on ge-
ometrically feasible motions. In addition, we allow to move
parts outside the visible area in order to handle instructions
which require to append or to remove parts. The instructions
shown in Figure 7(a) present multiple consecutive actions. To
access the brewing unit from the coffee machine, the hatch
has to be opened before the unit can be removed. Since we
iteratively change candidate configurations, our system suc-
ceeds in correctly recreating the depicted motions. This ex-
ample demonstrates that our algorithm is robust to hidden or
incomplete input data. Although the brewing unit is com-
pletely obscured by the closed hatch, its removal was suc-
cessfully detected by our system (Figure 7(d)).

Since structural diagrams may also encode actions requiring
to rotate a part, we additionally generate candidates that in-
volve part rotations. Candidate rotation axes are generated
by combining principal axes with the origin of either the lo-
cal coordinate system or the center of gravity of a part. The
testing of rotations starts with the part in default configura-
tion, and proceeds by increasing the angle of rotation in dis-
creet steps. Testing rotations around an axis terminates after
reaching 360◦ or if a collision with another part occurs. For
example, to analyze the input images in Figure 7, our system
generates and evaluates candidate configurations by rotating
the service door of the coffee machine around its hinge.

COMBINED DIAGRAMS
Traditional 2D documentation often consists of diagrams
which combine aspects of annotated, structural, explosion
and action diagrams. A typical example is to use annotations
in any of the other diagrams (Figure 2(a)). Another very com-
mon combination is to show one or multiple parts in displaced
positions (explosion diagram), before showing their final po-
sition on the object in the next image of a sequence (structural
diagram). Displaced parts may further be highlighted with
diagrammatic elements such as arrows or leader lines. Con-
sider the example in Figure 8(a), which shows two images in
a sequence of a LEGO assembly manual. Instructions to add
bricks are given by showing the brick and leader line connect-
ing the brick to the intended location on the object (as used in
action diagrams). In addition, some bricks just appear in the
second image.

The system we present is able to handle all kinds of combi-
nations. Interpreting the mixed sequence displayed in Fig-
ure 8(a) can be achieved by employing the approach that is
used for analyzing structural diagrams. Since WBC consid-
ers both global and local features, it is applicable to partial
explosions as well. The additional visual information that is
conveyed by arrows in sequences can be processed by the es-
tablished methods for arrow diagrams and may be used to
complement candidate selection. However, we found that for

(a) (b)

(c)

Figure 8. Retargeting combined diagrams. (a) Two input images illustrate
multiple assembly steps. (b) We derive a difference image from the inputs,
which indicates where changes occurred. (c) Our analysis yields a set of
motions and corresponding parts, in this example indicated by red arrows.
The key frames show the animation generated from the computed motions.
c©2014 The LEGO Group, used with permission.

all assessed sequences, our algorithm for retargeting struc-
tural diagrams was able to reproduce the portrayed instruc-
tions without interpreting the arrows. Moreover, since we ap-
proximate any displayed object configurations by accumulat-
ing several part motions, our system is able to retarget image
pairs which convey multiple instructions at once. This in-
cludes manipulations of multiple parts between two images
as well as multiple consecutive actions. For example, Fig-
ure 8(a) shows two images taken from a LEGO instruction
which adds six bricks from one image to the next. Since our
system correctly identifies the configurations in both images
it is able to generate the correct motion to animation.

Our approach to generate 3D annotations is independent of
other elements present in the diagram. Therefore, we can han-
dle annotations, which appear in any of the other diagrams.
Only the current configuration of the parts depicted in the im-
age is required to render a mask which matches the input im-
age. Since DCM is robust against image noise and smaller
artifacts, additional graphical elements do not influence the
candidate matching. Figure 1 shows an example of an an-
notated explosion diagram, which we successfully analyzed
before retargeting to AR.

AUGMENTED REALITY INTERFACE
Our analysis of 2D documentations reveals any combination
of an annotated 3D model and a set of consecutive 3D mo-
tions. Our final goal is to easily relate the information to real
world objects using an AR interface. Therefore, we register
the 3D model to its real world counterpart and track the user’s
display to make the augmentation visible. Since we present
the documentation in a dynamic and often visually complex
environment, we also provide interactive visualization tools
as part of the AR interface.

7

(a)

(b)

(c)
Figure 9. Interaction. (a) The relation between 2D image elements and 3D
structure allows us to manipulate the 3D visualization with 2D interactions.
Selection of the brewing unit triggers highlighting of the corresponding 3D
object. If the selected object in the real world is occluded, we provide the
user with a ghosted view x-ray visualization. (b) We allow to replicate an op-
timized object overview configuration in a 2D image by computing the steps
for transforming the real world object into the one depicted in the 2D docu-
mentation (e.g., opening the service door). (c) The optimized object configu-
ration is most effective from the point of view used in the 2D documentation.
We extract the point of view from which the 2D image was generated and
present it to the user by showing an avatar. This example shows the user
navigating to the extracted point of view.

Registration and tracking
The registration of the 3D model to its physical counterpart
uses an RGB-D sensor and PCL-Kinfu, which is an imple-
mentation of KinectFusion [19] using the Point Cloud Library
(PCL) [23]. Our system registers the 3D model automatically
to the point cloud received from the RGB-D sensor using
an implementation of Sample Consensus Initial Alignment
(SAC-IA) [22]. Camera tracking is realized using PCL-Kinfu
and initialized with SAC-IA.

Visualization
The registered 3D model allows to present the 2D documen-
tation within the real world environment of the user. How-
ever, in AR, we usually have to cope with a visually complex
background and dynamic camera motion. Therefore, AR doc-
umentations demand special techniques to provide effective
visualizations. To reduce the visual complexity of our AR
visualizations, we allow animations to be presented as video
phantoms [9]. This resembles a real-time photomontage (Fig-

ure 1, Figure 9(b)) and thus reduces the visual complexity by
decreasing the amount of virtual objects in AR.

Interaction
Traditional diagrams have been optimized to present their in-
formation from a carefully chosen vantage point. However,
interactive diagrams can become confusing, if many parts are
animated, or the user chooses a poor point of view. Thus,
we let the user interactively control the progress of an ani-
mation by influencing the displacement of all or individual
parts at runtime. Furthermore, the relation between 2D image
data and 3D objects allows us to connect interactions in image
space to 3D visualizations in AR. For example, we allow to
quickly find 3D parts in AR by interactively selecting 2D el-
ements in image space. Consider the example in Figure 9(a).
The 2D illustration is taken from a traditional handbook. It is
showing the object of interest in a configuration, which was
optimized for visibility. Note the open door, which reveals
the parts inside the machine. While optimized 2D graph-
ics support selection tasks, our system adds support to iden-
tify the selected elements within the real world environment.
Thus, selecting an element in image space activates highlight-
ing of the related 3D structure in AR. If the selected element
is hidden in the real world, we provide the user with ghosted
view visualization [10] (Figure 9(a)). Notice the transparency
modulation, which creates the impression of seeing through
the closed real world door.

While ghosted views enable effective exploration of hidden
objects, they fail to create effective visualizations for visually
complex structures. However, since our 2D input graphics
provide optimized visualization, we furthermore provide the
user with a replicate of the 2D configuration in 3D AR. We
implement this by computing the object configuration shown
in the optimized 2D image. To provide a smooth animation
from the object configuration in reality to the one depicted in
2D, we furthermore derive the configuration of the real world
object in front of the user. Therefore, we run our diagram
analysis using a screenshot of the live video and the optimized
2D graphics. Figure 9(b) shows the resulting animation from
using the images seen in Figure 9(a) as input. The selected
brewing unit is clearly shown after replicating the object con-
figuration used in the traditional documentation material.

Replicating the object configuration from an optimized 2D
illustration works best from a point of view which is close
to the one used in 2D. During camera estimation, we derive
this point in space, and, thus, we can guide the user to these
optimized points of view. As demonstrated in Figure 9(c)
we provide this information to the user by adding an avatar
looking at the object to the scene. The avatar indicates the
point of view the image was taken from, and thus for which
the configuration of the object is optimized.

PERFORMANCE
To evaluate the performance of our system, we choose a set
of objects, which have been illustrated in different styles. The
results are listed in Table 1. The table shows the number of
parts the object consist of (#Parts), the number of images in
the sequence (#Images) and the time used to retarget the input

8

Figure 10. Various examples. c©IKEA Chair Herman and Table Lack, used with permission. LEGO Boat, c©2014 The LEGO Group, used with permission.

Table 1. Assessed test cases. We list the number of parts involved, as well as
the length of the input documentation material and runtimes for retargeting.

Testcase #Parts #Images Runtime

Valve (Fig. 1) 4 3 8s
Coffee Machine (Fig. 4) 6 4 9s
Mixer (Fig. 6) 6 ∗1 45s
LEGO Boat (Fig. 10) 18 8 1m 27s
LEGO Landspeeder (Fig. 8) 39 14 4m 10s
IKEA Chair Herman (Fig. 10) 10 8 5m 58s
IKEA Table Lack (Fig. 10) 42 5 16m 29s
LEGO Tower 42 7 2m 21s
LEGO House 88 13 10m 25s
∗ Explosion diagram, single image only

data to a 3D diagram (Runtime). The runtimes were recorded
on a personal computer with an i7-4771 CPU @ 3.50 Ghz,
16 GB RAM and an NVidia GeForce GTX 780 Ti with 3
GB graphics memory. Input diagrams and resulting anima-
tions for test cases that are not shown elsewhere are depicted
in Figure 10 and in the supplementary video. Although the
LEGO Landspeeder and the IKEA Table Lack have a similar
part count, the manual of the latter takes significantly longer
to retarget. This results from the different illustration styles
used and the number of parts involved in each step of the
manuals. Photos and renderings allow us to apply image dif-
ferencing to obtain tight areas of change for early rejection
of unrelated candidate motions. However, this is not possible
for line drawings. Furthermore, the manual of the IKEA Ta-
ble depicts a larger number of instructions in each individual
diagram. This is possible, because many parts of the object
have no sequential dependency (e.g., wheels and screws can
be added in parallel). Consequently, a high number of mov-
able parts has to be considered at each point in time. The
performance of our approach thus depends strongly on the
employed illustrating style and the overall structure of the ex-
amined object.

LIMITATIONS
Our current implementation has several limitations. The pose
estimation is the basis for the data extraction in our approach.

Therefore, an erroneous estimation will propagate through
the entire pipeline. If the error is exceeds a certain thresh-
old, the system will fail to associate image regions with 3D
objects. In addition, invisible elements in an image cannot be
extracted with our current implementation. For example, if
several screws have to be removed from an assembly within
a single step often only a few representatives are shown in
an image, while others remain occluded. Since our system
can only detect visible elements it will fail to retarget such
cases. A similar problem occurs when parts are small and
those barely visible in the image. We provide visual exam-
ples for the described limitations in the accompanying video
material.

CONCLUSIONS AND FUTURE WORK
We presented a system to generate interactive 3D documen-
tations from 2D image data. The resulting 3D scene can be
presented on a regular desktop or tablet computer, or can be
displayed directly within the user’s real world environment.
Thus, our system enables to reuse existing 2D documentation
material to create 3D documentations. Therefore, we believe
that our approach will become a key enabling technology to
move from traditional 2D to modern interactive 3D documen-
tation.

The central idea for transfer of 2D documentation to 3D is to
replicate the 2D image by rendering a 3D model of the object
of interest. This relates 2D image elements to 3D objects. We
have demonstrated how this relation can be used to interact in
2D image space in order to control the corresponding 3D vi-
sualization. Thus, we believe that applications of our system
will not substitute 2D documentations entirely. Instead, they
will combine 2D and 3D data to provide the user with best of
both presentation and interaction spaces.

While our system is able to handle images present in existing
2D documentation, it is not limited to documentation mate-
rial. Our system can generate 3D animations from any image
or photo sequence which shows an object in different config-
urations. Therefore, our system furthermore provides a new
tool to control 3D animations by images.

9

Several direction for future work exist. For example, some
documentations present instructions by visualizing both the
cause and the effect of an action within a single image. This
is usually done by adding commonly known glyphs to ab-
stract the depicted effect. To retarget cause and effect visu-
alizations, we need to extend our system to be able to iden-
tify such glyphs and to subsequently derive the class of pos-
sible motion from it. Another direction of future work is con-
cerned with retargeting documentations which depict interac-
tions with soft tissue or deformable objects. Generating can-
didate configurations of 3D deformable objects presents ad-
ditional challenges such as a large amount of candidate con-
figurations and complex models describing the deformations.

ACKNOWLEDGMENTS
This work was funded by a grant from the Competence Cen-
ters for Excellent Technologies (COMET) 843272 with sup-
port from AVL List GmbH and the Austrian Science Fund
(FWF) under contract P-24021.

REFERENCES
1. Agrawala, M., Phan, D., Heiser, J., Haymaker, J.,

Klingner, J., Hanrahan, P., and Tversky, B. Designing
effective step-by-step assembly instructions. ACM
Trans. Graph. 22, 3 (2003), 828–837.

2. Bergig, O., Hagbi, N., El-Sana, J., and Billinghurst, M.
In-place 3d sketching for authoring and augmenting
mechanical systems. In Proc. of ISMAR (2009), 87–94.

3. Butz, A. Betty: Planning and generating animations for
the visualization of movements and spatial relations. In
Proc. of Advanced Visual Interfaces (1994), 53–58.

4. Canny, J. A computational approach to edge detection.
IEEE Trans. Pattern Anal. Mach. Intell. 8, 6 (June
1986), 679–698.

5. Dementhon, D. F., and Davis, L. S. Model-based object
pose in 25 lines of code. Int. J. Comput. Vision 15, 1-2
(June 1995), 123–141.

6. Gupta, A., Fox, D., Curless, B., and Cohen, M. F.
Duplotrack a real-time system for authoring and guiding
duplo block assembly. In UIST (2012), 389–402.

7. Heiser, J., Phan, D., Agrawala, M., Tversky, B., and
Hanrahan, P. Identification and validation of cognitive
design principles for automated generation of assembly
instructions. In Proc. of AVI (2004), 311–319.

8. Henderson, S., and Feiner, S. Exploring the benefits of
augmented reality documentation for maintenance and
repair. IEEE TVCG 17, 10 (2011), 1355–1368.

9. Kalkofen, D., Tatzgern, M., and Schmalstieg, D.
Explosion diagrams in augmented reality. In Proc of
IEEE VR (2009), 71–78.

10. Kalkofen, D., Veas, E. E., Zollmann, S., Steinberger, M.,
and Schmalstieg, D. Adaptive ghosted views for
augmented reality. In IEEE ISMAR (2013), 1–9.

11. Ledermann, F., and Schmalstieg, D. April: A high-level
framework for creating augmented reality presentations.
In Proc. of IEEE VR (2005), 187–194.

12. Li, W., Agrawala, M., Curless, B., and Salesin, D.
Automated generation of interactive 3d exploded view
diagrams. ACM Trans. Graph. 27, 3 (2008).

13. Li, W., Agrawala, M., and Salesin, D. Interactive
image-based exploded view diagrams. In Prof of
Graphics Interface (2004), 203–212.

14. Liu, C., Yuen, J., Torralba, A., Sivic, J., and Freeman,
W. T. Sift flow: Dense correspondence across different
scenes. In Proc. of ECCV (2008), 28–42.

15. Liu, M.-Y., Tuzel, O., Veeraraghavan, A., and
Chellappa, R. Fast directional chamfer matching. In
Proc. of CVPR (2010), 1696–1703.

16. Lozano-Perez, T. Spatial planning: A configuration
space approach. IEEE Trans. Comput. 32, 2 (1983),
108–120.

17. Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust
wide baseline stereo from maximally stable extremal
regions. In Proc. of BMVC (2002).

18. Mijksenaar, P., and Westendorp, P. Open Here: The Art
of Instructional Design. Thames & Hudson, 1999.

19. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux,
D., Kim, D., Davison, A. J., Kohli, P., Shotton, J.,
Hodges, S., and Fitzgibbon, A. W. Kinectfusion:
Real-time dense surface mapping and tracking. In
ISMAR, IEEE (2011), 127–136.

20. Petersen, N., and Stricker, D. Learning task structure
from video examples for workflow tracking and
authoring. In Proc of ISMAR (2012), 237–246.

21. Romney, B., Godard, C., Goldwasser, M., and
Ramkumar, G. An efficient system for geometric
assembly sequence generation and evaluation. In Proc.
of Computers in Engineering (1995), 699–712.

22. Rusu, R. B., Blodow, N., and Beetz, M. Fast point
feature histograms (fpfh) for 3d registration. In ICRA,
IEEE (2009), 3212–3217.

23. Rusu, R. B., and Cousins, S. 3D is here: Point Cloud
Library (PCL). Proc. of ICRA (2011).

24. Shao, T., Li, W., Zhou, K., Xu, W., Guo, B., and Mitra,
N. J. Interpreting concept sketches. TOG 32, 4 (2013).

25. Srinivasan, H., and Gadh, R. Efficient geometric
disassembly of multiple components from an assembly
using wave propagation. Mech. Design 122 (2000), 179.

26. Wilson, R. H., and Latombe, J.-C. Geometric reasoning
about mechanical assembly. In Proc. Algorithmic
Foundations of Robotics (1995), 203–220.

27. Zauner, J., Haller, M., Brandl, A., and Hartmann, W.
Authoring of a mixed reality assembly instructor for
hierarchical structures. In ISMAR (2003), 237–246.

28. Zheng, Y., Kuang, Y., Sugimoto, S., strm, K., and
Okutomi, M. Revisiting the pnp problem: A fast, general
and optimal solution. In ICCV (2013), 2344–2351.

10

	Introduction
	Related work
	Overview
	Annotated diagrams
	Action diagrams
	Explosion diagrams
	Structural diagrams
	Combined Diagrams
	Augmented Reality interface

	Annotated diagrams
	Estimating camera parameters
	Annotation detection

	Action diagrams
	Motion planning
	Arrow interpretation

	Explosion diagrams
	Reducing the size of the test area
	Reducing number of tests

	Structural diagrams
	Difference images
	Global bi-directional chamfer distance matching
	Candidate generation

	Combined diagrams
	Augmented Reality interface
	Registration and tracking
	Visualization
	Interaction

	Performance
	Limitations
	Conclusions and Future work
	Acknowledgments
	REFERENCES

