

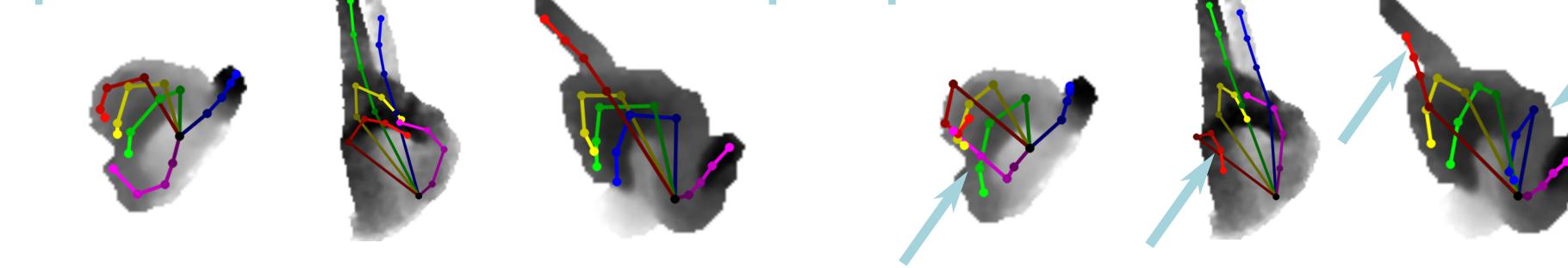
Motivation



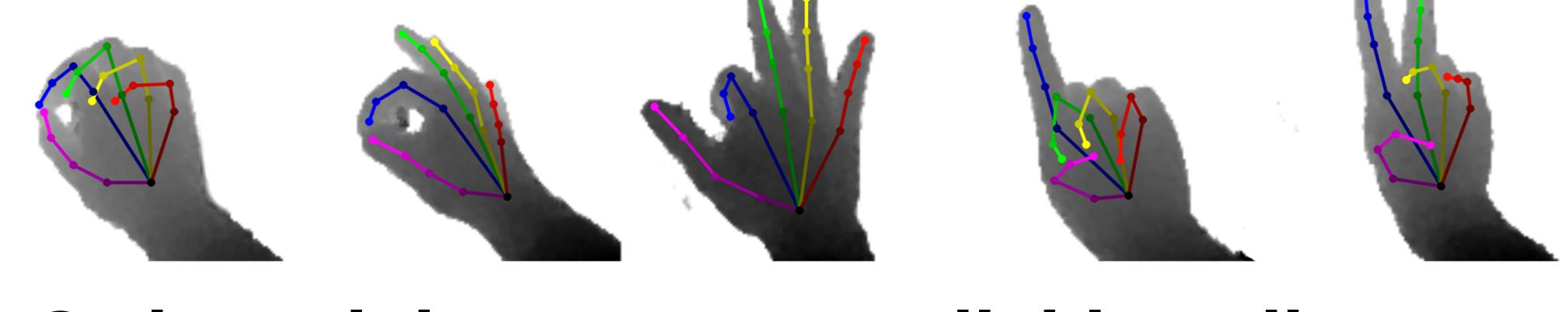
MSRA [2] dataset ICVL [3] dataset

Our annotation

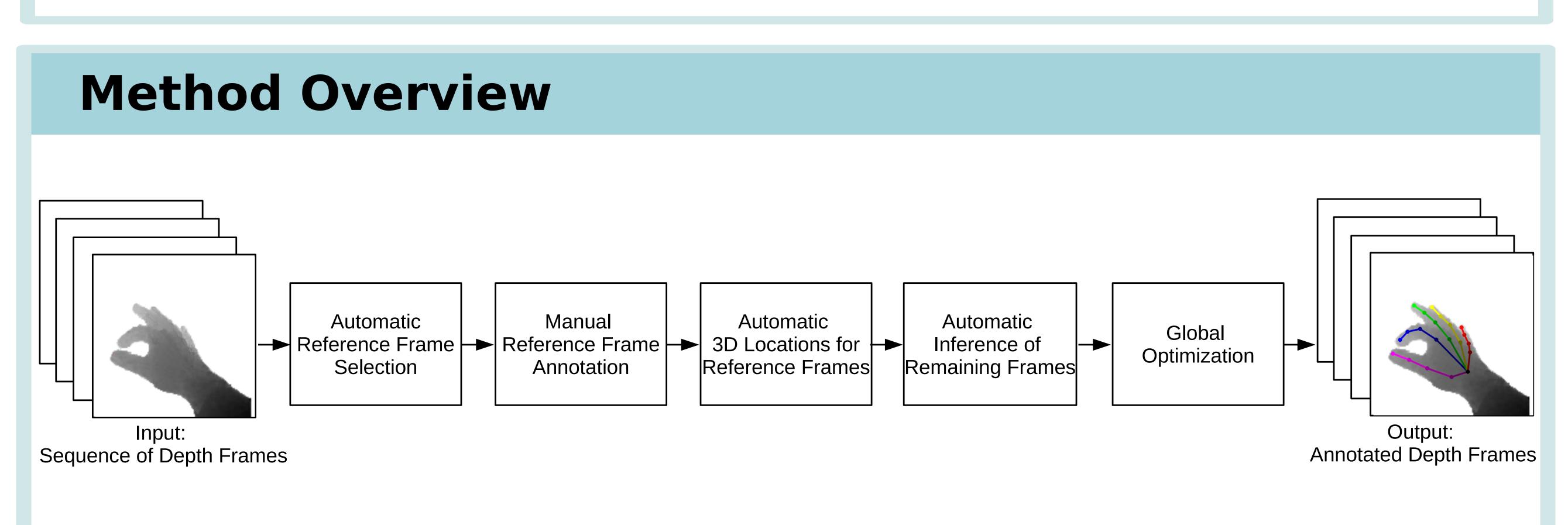
Training SOTA pose estimator [1] with *better* annotations Using annotations of [2] Using our annotations



- Goal: Accurate 3D training data for single view depth sequences from sparse 2D annotations
- Reduce time spent on annotations by a factor of 10
- We provide a new dataset for egocentric 3D hand pose estimation



Code and dataset are available online



Efficiently Creating 3D Training Data for Fine Hand Pose Estimation

Markus Oberweger, Gernot Riegler, Paul Wohlhart and Vincent Lepetit Graz University of Technology, Institute for Computer Vision and Graphics, cvarlab.icg.tugraz.at

Method

- Automatic reference frame selection
- Select subset of frames that require user annotation
- Submodular optimization:
- Select minimal set of reference frames that optimally cover pose space
- Each frame increases cover
- Exact solution is NP-hard
- Greedy and fast algorithm often provides exact solution [5]

 $\max_{\mathcal{R}} f(\mathcal{R}) \quad \text{s.t.} \quad |\mathcal{R}| < M \qquad f(\mathcal{R}) = |\{i \in [1; N] \quad \min_{i \in \mathcal{P}} d(\mathcal{D}_i, \mathcal{D}_j) < \delta\}|$

- 3D locations for reference frames
- User provides: 2D locations, joint visibility, and depth order constraints
- Optimize for 3D locations such that:
- Reprojection of 3D locations close to 2D user annotations
- Visible joints in range of observed depth values
- Hidden joints not in front of observed depth values
- Skeleton constrained by bone length

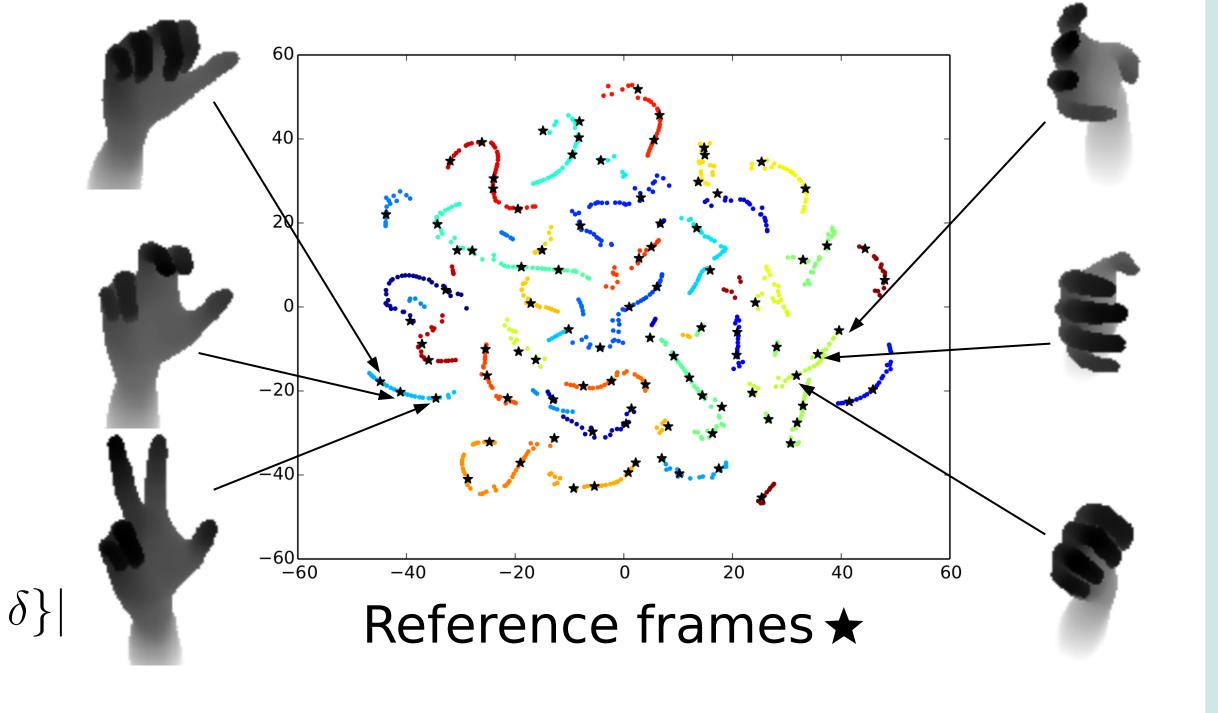
Automatic inference of remaining frames

- Select closest pair of initialized frame and not initialized frame
- Initialize 3D locations with closest and align with SIFTFlow [4]
- Optimize for 3D locations:
- Maximize similarity of joint appearance in depth map between initialized and not initialized frame
- Skeleton constrained by bone length

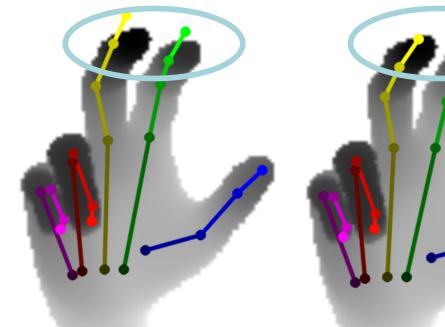
Global optimization for all 3D locations

- Maximize similarity of joint appearance in depth map between reference and non-reference frame
- Enforce temporal smoothness
- Ensure consistency with 2D user annotations
- Skeleton constrained by bone length

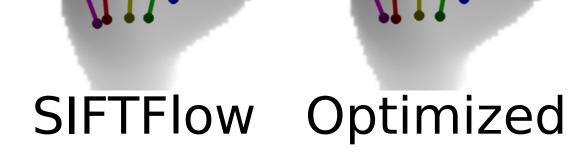
- Compared to regular sampling: 50% less user intervention, 15% higher accuracy



- Depth order constraints of parent joints fulfilled $\arg \min \sum vis_k \|\operatorname{proj}(L_k) - l_k\|_2^2$ s.t. $\forall k \| L_k - L_{p(k)} \|_2^2 = d_{k,p(k)}^2$ $\forall k \ vis_k = 1 \Rightarrow \mathcal{D}[l_k] < z(L_k) < \mathcal{D}[l_k] + \epsilon$ $\forall k \ vis_k = 1 \Rightarrow (L_k - L_{p(k)})^\top \cdot c_k > 0$ $\forall k \ vis_k = 0 \Rightarrow z(L_k) > \mathcal{D}[l_k]$



Closest



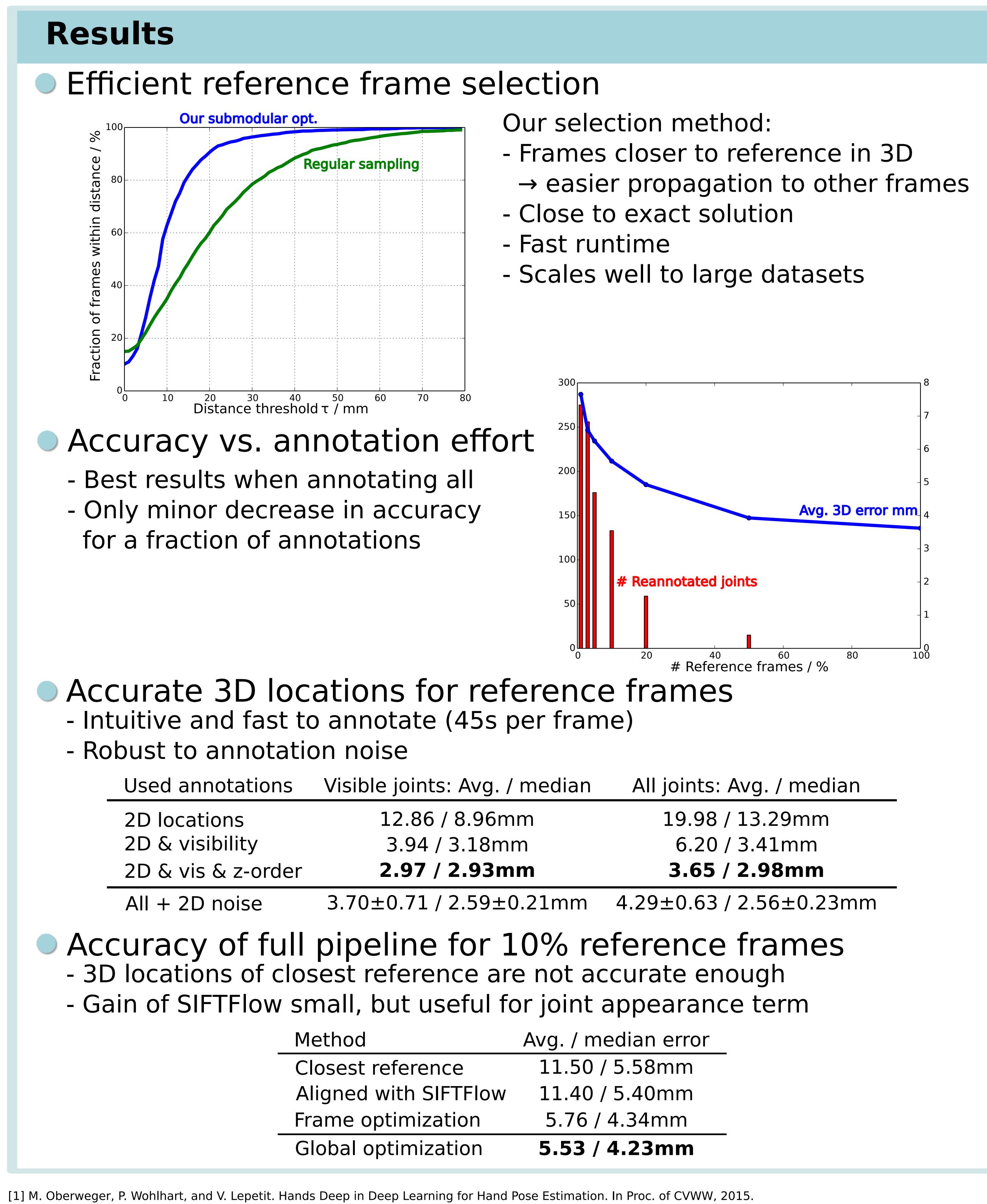
 $\sum \operatorname{dissim}(\mathcal{D}_i, \operatorname{proj}(L_{i,k}); \mathcal{D}_{\hat{i}}, l_{\hat{i},k})^2 +$

 $\arg\min\sum \operatorname{dissim}(\mathcal{D}_{\hat{c}}, \operatorname{proj}(L_{\hat{c},k}); \mathcal{D}_{\hat{a}}, l_{\hat{a},k})^2$ s.t. $\forall k \| \|L_{\hat{c},k} - L_{\hat{c},p(k)}\|_2^2 = d_{k,p(k)}^2$

s.t. $\forall i, k \quad ||L_{i,k} - L_{i,p(k)}||_2^2 = d_{k,p(k)}^2$ More details can be found in the paper.

 $\lambda_P \sum \sum vis_{r,k} \| \operatorname{proj}(L_{r,k}) - l_{r,k} \|_2^2$

 $\lambda_M \sum \sum \|L_{i,k} - L_{i+1,k}\|_2^2 +$



ations	Visible joints: Avg. / median	All joints: Avg. / median
5	12.86 / 8.96mm	19.98 / 13.29mm
ty	3.94 / 3.18mm	6.20 / 3.41mm
z-order	2.97 / 2.93mm	3.65 / 2.98mm

Method	Avg. / median error
Closest reference	11.50 / 5.58mm
Aligned with SIFTFlow	11.40 / 5.40mm
Frame optimization	5.76 / 4.34mm
Global optimization	5.53 / 4.23mm

[2] X. Sun, Y. Wei, S. Liang, X. Tang, and J. Sun. Cascaded Hand Pose Regression. In CVPR, 2015.

[3] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture. In CVPR, 2014.

[4] C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense Correspondence Across Scenes and Its Applications. PAMI, 33(5), 2011.

[5] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of Approximations for Maximizing Submodular Set Functions - I. Mathematical Programming, 14(1), 1978.