Efficiently Creating 3D Training Data for Fine Hand Pose Estimation

Markus Oberweger, Gernot Riegler, Paul Wohlhart and Vincent Lepetit

Graz University of Technology, Institute for Computer Vision and Graphics, cvarlab.icg.tugraz.at

Motivation

- SOTA hand pose estimation methods are data-driven, but how do we get accurate data?
- ICVL [3] dataset
- MSRA [2] dataset

Method

- **Automatic reference frame selection**
 - Select subset of frames that require user annotation
 - Compared to regular sampling: 50% less user intervention, 15% higher accuracy
 - Submodular optimization:
 - Select minimal set of reference frames that optimally cover pose space
 - Each frame increases cover
 - Exact solution is NP-hard
 - Greedy and fast algorithm often provides exact solution [5]

- **3D locations for reference frames**
 - User provides: 2D locations, joint visibility, and depth order constraints
 - Optimize for 3D locations such that:
 - Reprojection of 3D locations close to 2D user annotations
 - Visible joints in range of observed depth values
 - Hidden joints not in front of observed depth values
 - Depth order constraints of parent joints fulfilled
 - Skeleton constrained by bone length

- **Automatic inference of remaining frames**
 - Select closest pair of initialized frame and not initialized frame
 - Initialize 3D locations with closest and align with SIFTFlow [4]
 - Optimize for 3D locations:
 - Maximize similarity of joint appearance in depth map between initialized and not initialized frame
 - Skeleton constrained by bone length

- **Global optimization for all 3D locations**
 - Maximize similarity of joint appearance in depth map between reference and non-reference frame
 - Enforce temporal smoothness
 - Ensure consistency with 2D user annotations
 - Skeleton constrained by bone length

Code and dataset are available online

Results

- **Efficient reference frame selection**
 - Frames closer to reference in 3D → easier propagation to other frames
 - Close to exact solution
 - Fast runtime
 - Scales well to large datasets

- **Accurate 3D locations for reference frames**
 - Intuitive and fast to annotate (45s per frame)
 - Robust to annotation noise
 - Only minor decrease in accuracy for a fraction of annotations

- **Accuracy of full pipeline for 10% reference frames**
 - 3D locations of closest reference frames
 - Gain of SIFTFlow small, but useful for joint appearance term

Method Overview

- Training SOTA pose estimator [1] with better annotations
 - Using our annotations

Goal: Accurate 3D training data for single view

- Reduce time spent on annotations by a factor of 10
- We provide a new dataset for egocentric 3D hand pose estimation

Code and dataset are available online

Using our annotations

Using annotations of [2]

Using annotations of [2]

Using our annotations

- ICVL [3] dataset
- MSRA [2] dataset

Our annotation

Results

- Gain of SIFTFlow small, but useful for joint appearance term
- 3D locations of closest reference frames
- Gain of SIFTFlow small, but useful for joint appearance term

More details can be found in the paper.