
- Intuitive and fast to annotate (45s per frame)
- Robust to annotation noise
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Accuracy of full pipeline for 10% reference frames

Accuracy vs. annotation effort

Accurate 3D locations for reference frames
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Efficient reference frame selection

Goal: Accurate 3D training data for single view 
         depth sequences from sparse 2D annotations

Reduce time spent on annotations by a factor of 10

More details can be found in the paper.

Automatic reference frame selection

We provide a new dataset for egocentric 
  3D hand pose estimation

SOTA hand pose estimation methods are data-driven, 
  but how do we get accurate data?
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Annotation

- Select subset of frames that require user annotation
- Compared to regular sampling: 50% less user intervention, 15% higher accuracy
- Submodular optimization:
  - Select minimal set of reference frames 
    that optimally cover pose space
  - Each frame increases cover
- Exact solution is NP-hard
- Greedy and fast algorithm often 
  provides exact solution [5]

ICVL [3] dataset MSRA [2] dataset Our annotation

Used annotations Visible joints: Avg. / median All joints: Avg. / median

2D locations
2D & visibility
2D & vis & z-order

All + 2D noise 3.70±0.71 / 2.59±0.21mm 4.29±0.63 / 2.56±0.23mm

2.97 / 2.93mm 3.65 / 2.98mm
3.94 / 3.18mm

12.86 / 8.96mm 19.98 / 13.29mm
6.20 / 3.41mm

Method Avg. / median error

Closest reference
Aligned with SIFTFlow
Frame optimization

Global optimization

11.50 / 5.58mm
11.40 / 5.40mm
5.76 / 4.34mm

5.53 / 4.23mm

- User provides: 2D locations, joint visibility, and depth order constraints
- Optimize for 3D locations such that:
  - Reprojection of 3D locations close to 2D user annotations
  - Visible joints in range of observed depth values
  - Hidden joints not in front of observed depth values
  - Depth order constraints of parent joints fulfilled
  - Skeleton constrained by bone length

Training SOTA pose estimator [1] with better annotations
Using our annotations Using annotations of [2]

Closest SIFTFlow Optimized
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- Select closest pair of initialized frame 
    and not initialized frame
- Initialize 3D locations with closest 
    and align with SIFTFlow [4]

Reference frames

Code and dataset are available online

Our selection method:
- Frames closer to reference in 3D
  → easier propagation to other frames
- Close to exact solution
- Fast runtime
- Scales well to large datasets

- Best results when annotating all 
- Only minor decrease in accuracy 
  for a fraction of annotations

- Maximize similarity of joint appearance in depth map
  between reference and non-reference frame
- Enforce temporal smoothness
- Ensure consistency with 2D user annotations
- Skeleton constrained by bone length

- Optimize for 3D locations:
  - Maximize similarity of joint appearance in depth map
    between initialized and not initialized frame
  - Skeleton constrained by bone length

- 3D locations of closest reference are not accurate enough
- Gain of SIFTFlow small, but useful for joint appearance term

Method Overview

Automatic inference of remaining frames

3D locations for reference frames

Global optimization for all 3D locations


