

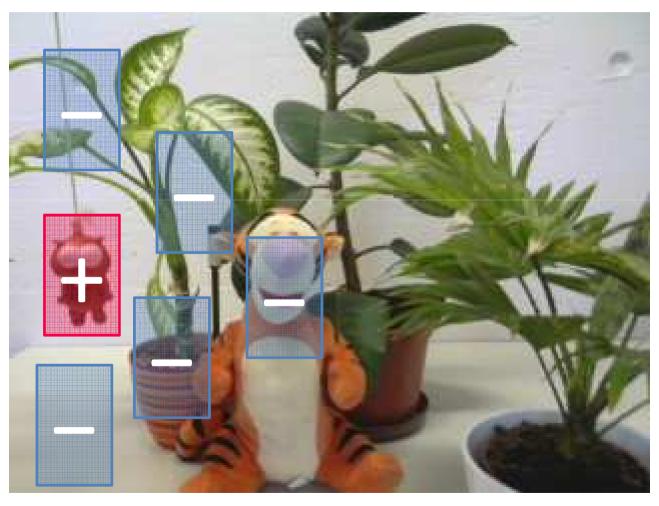
On-line Multi-view Forests for Tracking

C. Leistner, M. Godec, A. Saffari, and H. Bischof

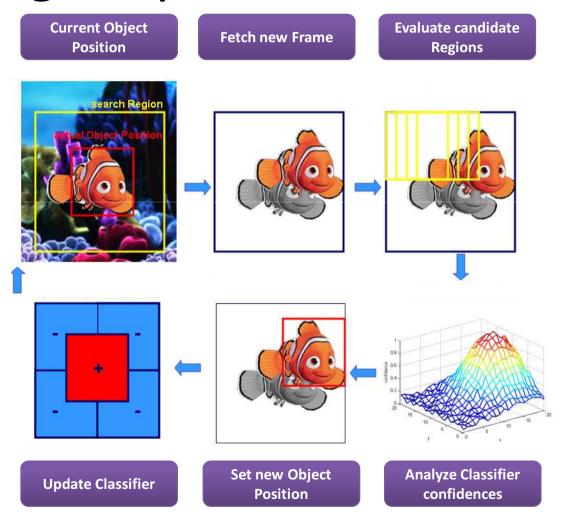
Institute for Computer Graphics and Vision Graz University of Technology

Goal: Tracking-by-Detection

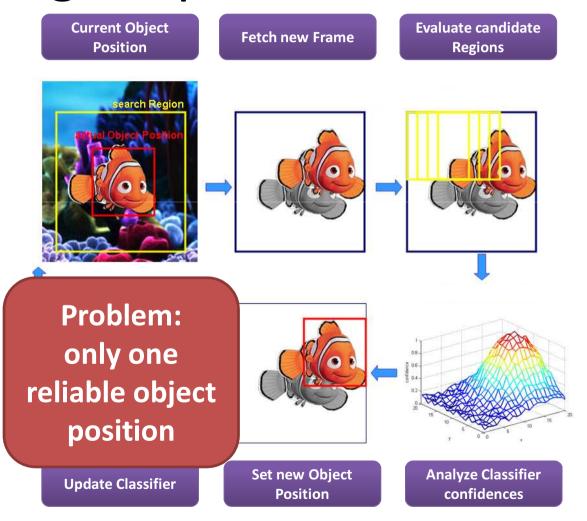
Goal: Tracking-by-Detection

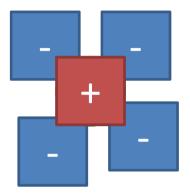


Tracking Loop



Tracking Loop

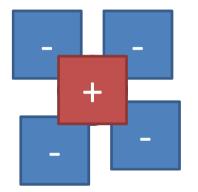




Direct Self-Training

Best detection is used to update the classifier

Grabner and Bischof: On-line boosting and vision. CVPR (2006)

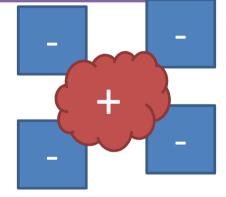


Direct Self-Training

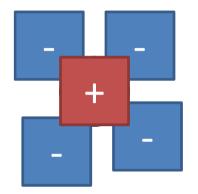
Best detection is used to update the classifier

Multiple Instance Learning

Shift sample selection problem to the learner



Babenko et. al.: Visual tracking with online multiple instance learning. CVPR (2009)

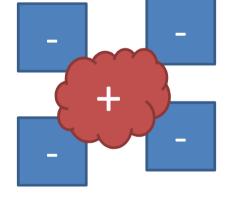


Direct Self-Training

Best detection is used to update the classifier

Multiple Instance Learning

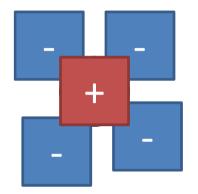
Shift sample selection problem to the learner



Semi-supervised Learning

Consider runtime-updates as unlabeled

Grabner et. al.: On-line semi-supervised boosting for robust tracking. ECCV (2008)

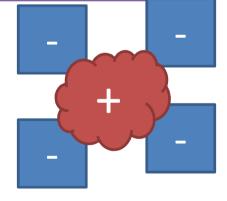


Direct Self-Training

Best detection is used to update the classifier

Multiple Instance Learning

Shift sample selection problem to the learner



Semi-supervised Learning

Consider runtime-updates as unlabeled

Semi-supervised Learning

- ...by utilizing different views
 - different features
 - camera views
 - •

Blum et. al.: Combining labeled and unlabeled data with co-training. COLT (1998)

Within this paper...

- ➤ Integrate more than 2 views
 - Multi-view Training

- Direct Integration Ensemble Learner
 - i.e. Random Forest

- Apply to Tracking-by-Detection
 - ➤On-line learning

Outline

- Motivation
- Introduction
 - Random Forests
 - Co-Training
- Multi-View Ensemble Learning
- Evaluation
- Conclusion

Random Forests

- Ensemble of Randomized Decision Trees
 - Bagging of many Trees

- Binary Tree-structure
 - Try to split classes within training data by simple recursive binary tests
 - Select splitting criterion for a specific node based on sample subset which ends up at this node

Breiman: Random forests. Machine Learning (2001)

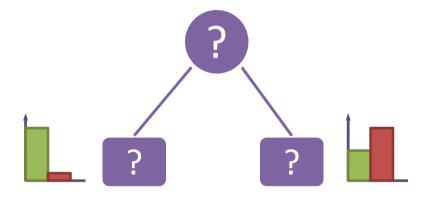
Let's go on-line!

- On-line Bagging
 - Oza 2001, PhD-Thesis
 - Set according to Poisson distribution

- On-line recursive splitting problem
 - Saffari 2009
 - Tree growing procedure

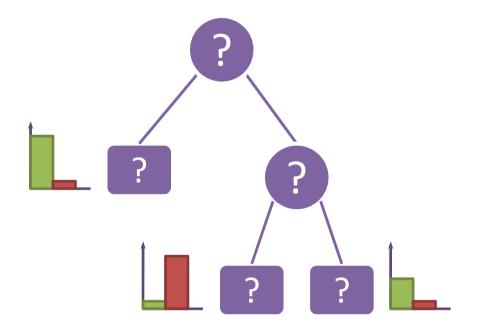
Oza: Online Ensemble Learning. PhD Thesis (2001) Saffari et. al.: On-line random forests. OLCV (2009)

On-line Recursive Tree Splitting



- Tree-growing scheme
- Fast in training and evaluation
- Converges to off-line version (empirically)

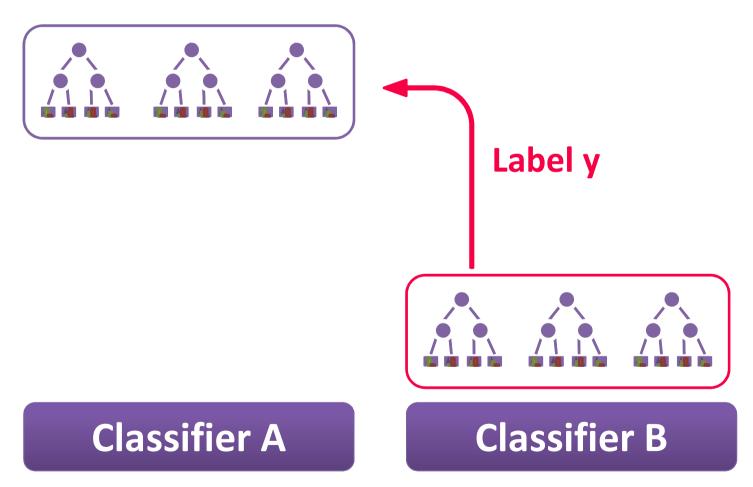
On-line Recursive Tree Splitting



- Tree-growing scheme
- Fast in training and evaluation
- Converges to off-line version

Co-Training

Co-Training



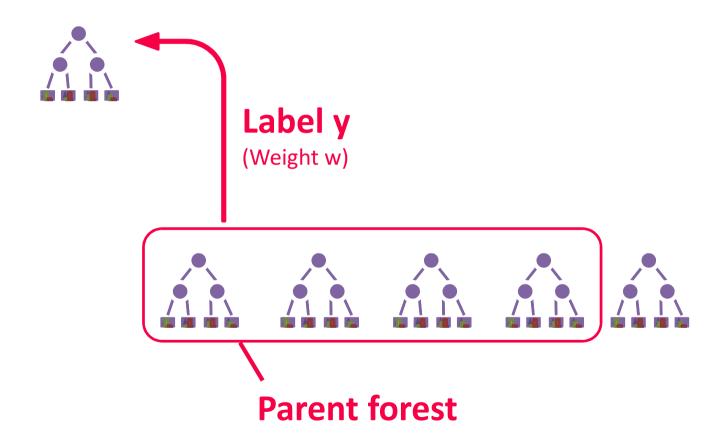
Outline

- Motivation
- Introduction
- Multi-View Ensemble Learning
 - Multi-view Forests
 - Sample labeling and weighting
- Evaluation
- Conclusion

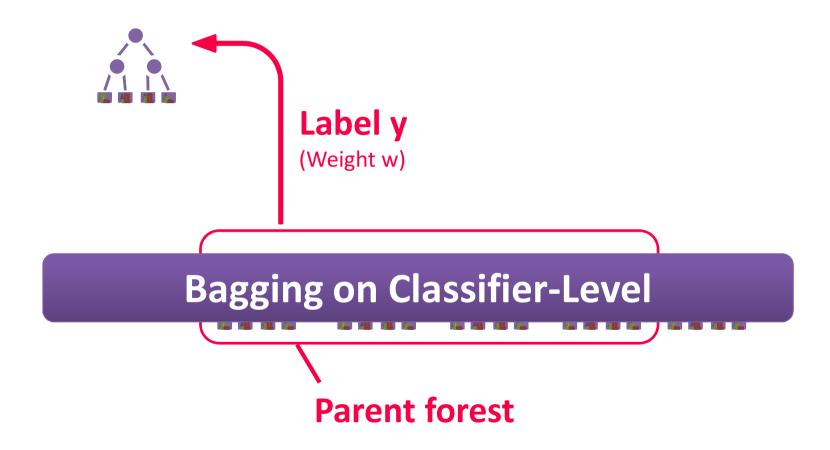
Our Approach: Multi-View Training



Our Approach: Multi-View Training



Our Approach: Multi-View Training



Multi-View Training

- Each tree represents a separate view
 - Real multi-view setup

- Emulated multi-view setup
 - Diverse training set (bagging)
 - Diverse feature set (randomized feature pool)
 - Diverse parent forest

Labeling and Weighting

- Combination of parent results
 - Majority voting
 - Averaging
 - Agreement
- Handling of unlabeled sample
 - Select or discard unlabeled sample
 - Select label for unlabeled sample
 - Select weight for unlabeled sample

Outline

- Motivation
- Introduction
- Multi-View Ensemble Lea
- Evaluation
- Conclusion

Tracking-by-Detection

- Challenges
 - Only one reliable object position
 - Unreliable tracking result for on-line updates
- Related Approaches
 - SemiBoost (Grabner et. al., ECCV 2008)
 - MILBoost (Babenko, et. al., CVPR 2009)
 - CoBoost (Liu et. al., ICCV 2009)
 - Random Forests (Lepetit et. al., CVPR 2006)
 - On-line Random Forests (Saffari et. al., OLCV 2009)

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost
Sylvester	0.54	0.53	0.53	0.50	0.60	0.46
David	0.71	0.52	<u>0.69</u>	0.32	0.57	0.31
Face Occlusion 2	<u>0.78</u>	0.79	0.72	0.79	0.65	0.63
Tiger1	0.51	0.41	0.38	0.34	<u>0.49</u>	0.17
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08
Coke	0.28	0.41	<u>0.35</u>	0.15	0.33	0.08
Face Occlusion 1	0.79	0.78	0.71	0.77	0.60	0.71
Girl	0.77	0.69	0.70	<u>0.74</u>	0.53	0.69

Average overlap measure (higher is better)
Sequences from Babenko (http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml)

Sequence	MVForest
Sylvester	0.54
David	0.71
Face Occlusion	<u>0.78</u>
Tiger1	0.51
Tiger2	<u>0.45</u>
Coke	0.28
Face Occlusion	1 0.79

e RF	MILBoost	SemiBoost
0	0.60	0.46
2	0.57	0.31
9	0.65	0.63
]-	<u>0.49</u>	0.17
) -	0.53	0.08
	0.33	0.08
	0.60	0.71

Girl

Such tables are boring!

0.69

Average overlap measure (higher is better)
Sequences from Babenko (http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml)

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost	
Sylvester	0.54	0.53	0.53	0.50	0.60	0.46	
David	0.71	0.52	<u>0.69</u>	0.32	0.57	0.31	
Face Occlusion 2	0.78	0.79	0.72	0.79	0.65	0.63	
Tiger1	0.51	0.41	0.38	0.34	0.49	0.17	
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08	
Coke	0.28	0.41	<u>0.35</u>	0.15	0.33	0.08	
Face Oc							
Girl	But why / when does						
the approach work?							

Average overlap measure (higher is better)

Sequences from Babenko (http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml)

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost
Sylvester	<u>0.54</u>	0.53	0.53	0.50	0.60	0.46
David	0.71	0.52	<u>0.69</u>	0.32	0.57	0.31
Face Occlusion 2	<u>0.78</u>	0.79	0.72	0.79	0.65	0.63
Tiger1	0.51	0.41	0.38	0.34	0.49	0.17
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08
Coke	0.28	0.41	0.35	0.15	0.33	0.08
Face Occlusion 1	0.79	0.78	0.71	0.77	0.60	0.71
Girl	0.77	0.69	0.70	<u>0.74</u>	0.53	0.69

low adaptivity

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost
Sylvester	0.54	0.53	0.53	0.50	0.60	0.46
David	0.71	0.52	<u>0.69</u>	0.32	0.57	0.31
Face Occlusion 2	0.78	0.79	0.72	0.79	0.65	0.63
Tiger1	0.51	0.41	0.38	0.34	<u>0.49</u>	0.17
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08
Coke	0.28	0.41	<u>0.35</u>	0.15	0.33	0.08
Face Occlusion 1	0.79	0.78	0.71	0.77	0.60	0.71
Girl	0.77	0.69	0.70	0.74	0.53	0.69

medium adaptivity

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost
Sylvester	0.54	0.53	0.53	0.50	0.60	0.46
David	0.71	0.52	<u>0.69</u>	0.32	0.57	0.31
Face Occlusion 2	0.78	0.79	0.72	0.79	0.65	0.63
Tiger1	0.51	0.41	0.38	0.34	<u>0.49</u>	0.17
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08
Coke	0.28	0.41	0.35	0.15	0.33	0.08
Face Occlusion 1	0.79	0.78	0.71	0.77	0.60	0.71
Girl	0.77	0.69	0.70	<u>0.74</u>	0.53	0.69

medium adaptivity

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost
Sylvester	<u>0.54</u>	0.53	0.53	0.50	0.60	0.46
David	0.71	0.52	<u>0.69</u>	0.32	0.57	0.31
Face Occlusion 2	0.78	0.79	0.72	0.79	0.65	0.63
Tiger1	0.51	0.41	0.38	0.34	0.49	0.17
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08
Coke	0.28	0.41	<u>0.35</u>	0.15	0.33	0.08
Face Occlusion 1	0.79	0.78	0.71	0.77	0.60	0.71
Girl	0.77	0.69	0.70	0.74	0.53	0.69

high adaptivity

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost
Sylvester	0.54	0.53	0.53	0.50	0.60	0.46
David	0.71	0.52	<u>0.69</u>	0.32	0.57	0.31
Face Occlusion 2	0.78	0.79	0.72	0.79	0.65	0.63
Tiger1	0.51	0.41	0.38	0.34	<u>0.49</u>	0.17
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08
Coke	0.28	0.41	<u>0.35</u>	0.15	0.33	0.08
Face Occlusion 1	0.79	<u>0.78</u>	0.71	0.77	0.60	0.71
Girl	0.77	0.69	0.70	0.74	0.53	0.69

high adaptivity

Sequence	MVForest	CoBoost	On-line RF	Off-line RF	MILBoost	SemiBoost
Sylvester	0.54	0.53	0.53	0.50	0.60	0.46
David	0.71	0.52	0.69	0.32	0.57	0.31
Face Occlusion 2	0.78	0.79	0.72	0.79	0.65	0.63
Tiger1	0.51	0.41	0.38	0.34	0.49	0.17
Tiger2	0.45	0.13	0.43	0.32	0.53	0.08
Coke	0.28	0.41	0.35	0.15	0.33	0.08
Face Occlusion 1	0.79	0.78	0.71	0.77	0.60	0.71
Girl	0.77	0.69	0.70	0.74	0.53	0.69

Outline

- Motivation
- Introduction
- Multi-View Ensemble
- Evaluation
- Conclusion

Key Benefit of MV-Training

- Sample labeling
 - Make use of unlabeled data (SSL)
 - Weakly supervised learning possible (e.g., MIL)

- Sample weighting
 - According to averaged decision,...
 - Eases sample selection for tracking

Conclusion

- MVForests
 - New on-line multi-view learning algorithm using random forests
- Key Idea
 - Use classifier-bagging to emulate multiple views inside the Random Forests
- Tracking
 - More robust update strategy

Conclusion

- Benefits
 - Generalization of Co-Training
 - Works with single or multiple views
 - > Easy to implement, fast, scalable
 - ➤ Not limited to Random Forests

Questions?

This work has been supported by the Austrian FFG project **MobiTrick** (825840) and **Outlier** (820923) under the FIT-IT program.

http://lrs.icg.tugraz.at