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A B S T R A C T

To make Robotics and Augmented Reality applications robust to illumination changes, the current trend is to
train a Deep Network with training images captured under many different lighting conditions. Unfortunately,
creating such a training set is a very unwieldy and complex task. We therefore propose a novel illumination
normalization method that can easily be used for different problems with challenging illumination conditions.
Our preliminary experiments show that among current normalization methods, the Difference-of-Gaussians
method remains a very good baseline, and we introduce a novel illumination normalization model that
generalizes it. Our key insight is then that the normalization parameters should depend on the input image,
and we aim to train a Convolutional Neural Network to predict these parameters from the input image. This,
however, cannot be done in a supervised manner, as the optimal parameters are not known a priori. We thus
designed a method to train this network jointly with another network that aims to recognize objects under
different illuminations: The latter network performs well when the former network predicts good values for the
normalization parameters. We show that our method significantly outperforms standard normalization methods
and would also be appear to be universal since it does not have to be re-trained for each new application. Our
method improves the robustness to light changes of state-of-the-art 3D object detection and face recognition
methods.

1. Introduction

Over the last years, Deep Networks (LeCun et al., 1998; Krizhevsky
et al., 2012; Simonyan and Zisserman, 2015) have spectacularly im-
proved the performance of computer vision applications. Development
efforts to date, however, have mainly been focused on tasks where large
quantities of training data are available. To be robust to illumination
conditions for example, one can train a Deep Network with many
samples captured under various illumination conditions.

While for some general categories such as faces, cars, or pedestrians,
training data can be exploited from other data, or the capturing of
many images under different conditions is also possible, these processes
become very unwieldy and complex tasks for others. For example,
as illustrated in Fig. 1, we want to estimate the 3D pose of specific
objects without having to vary the illumination when capturing train-
ing images. To achieve this, we could use a contrast normalization
technique such as Local Contrast Normalization (Jarrett et al., 2009),
Difference-of-Gaussians or histogram normalization. Our experiments
show, however, that existing methods often fail when dealing with
large magnitudes of illumination changes.
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Among the various existing normalization methods, Difference-of-
Gaussians still performs best in our experiments, which inspired us
to introduce a normalization model building on a linear combination
of 2D Gaussian kernels with fixed standard deviations. But instead of
using fixed parameters, we propose to adapt these parameters to the
illumination conditions of the different image regions: By this means,
we can handle bigger illumination changes and avoid manual tuning.

However, the link between a given image and the best parameters
is not straightforward. We therefore want to learn to predict these
parameters from the image using a CNN. Since we do not have a priori
knowledge-the parameters to predict, we cannot train this CNN in a
standard supervised manner. Our solution is to train it jointly in a
supervised way together with another CNN to achieve object detection
under illumination changes.

We call this method Adaptive Local Contrast Normalization (ALCN),
as it is related to previous Local Contrast Normalization methods while
being adaptive. We show that ALCN outperforms previous methods
for illumination normalization by a large margin while we do not
need any manual tuning. It also outperforms Deep Networks including
VGG (Simonyan and Zisserman, 2015) and ResNet (He et al., 2016)
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Fig. 1. We propose a novel approach to illumination normalization, which allows us to deal with strong light changes even when only few training samples are available. We
apply it to 2D detection (first row) and 3D object detection using the methods of Crivellaro et al. (2015) (second row) and of Rad and Lepetit (2017) (third row): Given training
images under constant illumination, we can detect the object and predict its pose under various and drastic illumination. In the third row, green bounding boxes show the ground
truth pose, blue bounding boxes represent the pose obtained with ALCN, and red bounding boxes the pose obtained without normalization. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

trained on the same images, showing that our approach can generalize
better with unseen illumination variations than a single network.

In summary, our main contribution is an efficient method that
makes Deep Networks more robust to illumination changes that have
not been seen during training, therefore requiring much far less train-
ing data. Furthermore, we created new datasets for benchmarking of
object detection and 3D pose estimation under challenging lightening
conditions with distractor objects and cluttered background.

We published a first version of this work in Rad et al. (2017). This
paper extends this work in the following manner:

• We provide an extensive overview of existing normalization meth-
ods.

• We perform thorough ablation studies to justify our contribution.
• We also perform experiments on network design and the impact

of different activation functions.
• We evaluate our normalization method on other applications such

as 3D object detection and pose estimation and face recognition,
which our approach was not trained for.

In the remainder of this paper, we first discuss related work in
Section 2, we then review the existing normalization methods and
introduce our normalization model in Section 3, and we evaluate it on
different applications in Section 4.

2. Related work

Reliable computer vision methods need to be invariant, or at least
robust, to many different visual nuisances, including pose and illumina-
tion variations. In the following, we give an overview of the different,
and sometimes complementary approaches for achieving this.

Image normalization methods. A first approach is to normalize the in-
put image using image statistics. Several methods have been pro-
posed, sometimes used together with Deep Networks such as SLCN
and DLCN: Difference-of-Gaussians (DoG), Whitening, Subtractive and
Divisive Local Contrast Normalization (SLCN and DLCN) (Jarrett et al.,
2009), Local Response Normalization (LRN) (Krizhevsky et al., 2012),

Histogram Equalization (HE), Contrast Limited Adaptive Histogram
Equalization (CLAHE) (Pizer et al., 1987). We detail these methods in
Section 3.1, and compare to them in our experiments in Section 4.

However, illumination is not necessarily uniform over an image:
Applying one of these methods locally over regions of the image
handles local light changes better, but unfortunately they can also
become unstable on poorly textured regions. Our approach overcomes
this limitation with an adaptive method that effectively adjusts the
normalization according to the local appearance of the image.

Invariant features. An alternative method is to use locally invariant
features. For example, Haar wavelets (Viola and Jones, 2004) and the
pairwise intensity comparisons used in Local Binary Patterns (Ojala
et al., 2002) are invariant to monotonic changes of the intensities.
Features based on image gradients are invariant to constants added to
the intensities. In practice, they are also often made invariant to affine
changes by normalizing gradient magnitudes over the bins indexed
by their orientations (Levi and Weiss, 2004). The SIFT descriptors
are additionally normalized by an iterative process that makes them
robust to saturation effects as well (Lowe, 2004). However, it is difficult
to come up with features that are invariant to complex illumination
changes on 3D objects, such as changes of light direction, cast or self
shadows.

Intrinsic images. A third approach is to model illumination explicitly
and estimate an intrinsic image or a self quotient image of the input
image, to get rid of the illumination and isolate the reflectance of the
scene as an invariant to illumination (Wang et al., 2004; Shen et al.,
2011a,b, 2013; Zhou et al., 2015; Nestmeyer and Gehler, 2017; Fan
et al., 2018; Bi et al., 2015). However, it is still difficult to get an
intrinsic image from one single input image that is good enough for
computer vision tasks, as our experiments in Section 4 will show for
2D object detection.

Data-driven robustness. The current trend to achieve robustness to illu-
mination changes is to train Deep Networks with different illuminations
present in the training set (Simonyan and Zisserman, 2015; He et al.,
2016; Huang et al., 2017; Xie et al., 2017). This, however, requires the
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acquisition of many training images under various conditions. As we
will show, our approach performs better than single Deep Networks
when illumination variations are limited in the training set, which can
be the case in practice for some applications.

3. Adaptive local contrast normalization

In this section, we first provide an overview of the existing normal-
ization methods, since we will compare our method against them in
Section 4.2.2. We then introduce our normalization model, then we
discuss how we train a CNN to predict the model parameters for a given
image region and how we can efficiently extend this method to a whole
image.

3.1. Overview of existing normalization methods

We describe below the main different existing methods to make
object detection techniques invariant to light changes. These are also
the methods we will compare to in Section 4. In practice, in our 2D object
experiments presented below, we use a detector in a sliding window fashion,
and we apply these normalization methods, including our Adaptive LCN, to
each window independently.

• Normalization by Standardization (NS). A common method to
be robust to light changes is to replace the input image 𝐼 by:

𝐼NS =
(𝐼 − 𝐼)
𝜎𝐼

, (1)

where 𝐼 and 𝜎𝐼 are respectively the mean and standard deviation
of the pixel intensities in 𝐼 . This transformation makes the result-
ing image window 𝐼NS invariant to affine transformation of the
intensities—if we ignore saturation effects that clip the intensity
values within [0; 255].

• Difference-of-Gaussians (DoG). The Difference-of-Gaussians is a
band-pass filter often used for normalization:

𝐼DoG = (𝑘DoG
2 ⋅ 𝐺𝜎DoG

2
− 𝑘DoG

1 ⋅ 𝐺𝜎DoG
1

) ∗ 𝐼 , (2)

where 𝐺𝜎 is a 2D Gaussian filter of standard deviation 𝜎, and 𝑘1,
𝑘2, 𝜎1, 𝜎2 are parameters. ∗ is the 2D convolution operator. This is
also a common mathematical model for the ON- and OFF-center
cells of the retina (Dayan and Abbott, 2005). In practice, we use
Gaussian filters of size ⌈6𝜎+1⌉, to truncate only very small values
of the Gaussian kernels.

• Whitening. Whitening is sometimes used for illumination nor-
malization. It is related to DoG as learned whitening filters
computed from natural image patches resemble a Difference-
of-Gaussians (Rigamonti et al., 2011; Goodfellow et al., 2013;
Yang et al., 2015a,b). In practice, we first compute the whitening
matrix as the inverse of the square root of the covariance matrix
of the image patches. The columns of the whitening matrix are
all translated versions of the same patch, and we use the middle
column as the whitening convolutional filter (Rigamonti et al.,
2011).

• Local Contrast Normalization (LCN). When working with Deep
Networks, Local Contrast Normalization (LCN) (Jarrett et al.,
2009) is often used. We tried its two variants. Subtractive LCN
is also closely related to DoG as it subtracts from every value in
an image patch a Gaussian-weighted average of its neighbors:

𝐼SLCN = 𝐼 − 𝐺𝜎Sub ∗ 𝐼 , (3)

where 𝜎Sub is a parameter. Divisive LCN, the second variant,
makes the image invariant to local affine changes by dividing the
intensities in 𝐼SLCN by their standard deviation, computed locally:

𝐼DLCN(𝐦) =
𝐼SLCN(𝐦)

max
(

𝑡,
(

𝐺𝜎Div ∗ (𝐼SLCN)2
)

(𝐦)
) , (4)

where (𝐼SLCN)2 is an image made of the squared intensities of
𝐼SLCN, and 𝜎Div is a parameter controlling the size of the region
for the local standard deviation of the intensities. 𝑡 is a small value
to avoid singularities.

• Local Response Normalization (LRN). Local Response Normal-
ization is related to LCN, and is also used in many applica-
tions to normalize the input image, or the output of the neu-
rons (Krizhevsky et al., 2012; Badrinarayanan et al., 2015). The
normalized value at location 𝐦 after applying kernel 𝑖 can be
written as:

𝐼LRN
(𝑖) (𝐦) =

𝐼(𝑖)(𝐦)
(

𝑘 + 𝛼
∑min(𝑁−1,𝑖+𝑛∕2)

𝑗=max(0,𝑖−𝑛∕2) (𝐼(𝑗)(𝐦))2
)𝛽 (5)

where the sum is over the 𝑛 kernel maps around index 𝑖, and
𝑁 is the total number of kernels in the layer. Constants 𝑘, 𝑛, 𝛼
and 𝛽 are then manually selected. Compared to LCN, LRN aims
more at normalizing the image in terms of brightness rather than
contrast (Krizhevsky et al., 2012).

• Histogram Equalization (HE). Histogram Equalization aims at
enhancing the image contrast by better distributing the intensities
of the input image. First, a histogram 𝑝(𝜆𝑖) of the image intensi-
ties, with 𝜆𝑖 any possible quantized intensity value, is built. Then,
a new intensity �̃�𝑖 is assigned to all the pixels with intensity 𝜆𝑖,
with

�̃�𝑖 = 𝜆min + floor
(

(𝜆max − 𝜆min)
𝑖

∑

𝑗=0
𝑝(𝜆𝑗 )

)

. (6)

• Contrast Limited Adaptive Histogram Equalization (CLAHE).
While Histogram Equalization does not take the spatial location
of the pixels into account, CLAHE (Pizer et al., 1987) introduces
spatial constraints and attempts to avoid noise amplification: It
performs Histogram equalization locally, and the histograms are
clipped: If 𝑝(𝜆𝑖) is higher than a threshold �̂�, it is set to �̂� and the
histogram is re-normalized.

• Intrinsic Image. An intrinsic image of an input image 𝐼 can be
obtained by separating the illumination 𝑆 from the reflectance 𝑅
of the scene:

𝐼(𝐦) = 𝑆(𝐦)𝑅(𝐦) . (7)

Eq. (7) is ill-posed, but can be solved by adding various con-
straints (Shen et al., 2011a,b; Zhou et al., 2015). Since 𝑅 is
supposed to be free from illumination effects, it can then be
used as input instead of the original image to be invariant to
illuminations. However, it is still difficult to estimate 𝑅 robustly,
as our experiments will show. Moreover, optimizing over 𝑆 and
𝑅 under constraints is computationally expensive, especially for
real-time applications.

• Self Quotient Image (SQI). The Self Quotient Image (Wang et al.,
2004) aims at estimating the object reflectance field from a 2D
image similarly to the Intrinsic Image method, but is based on the
Lambertian model instead of the reflectance illumination model.
The Self Quotient Image 𝑄 of image 𝐼 is defined by:

𝑄 = 𝐼
𝐺SQI
𝜎 ∗ 𝐼

. (8)

3.2. Normalization model

As our experiments in Section 4 will show, the Difference-of-
Gaussians normalization method performs best among the existing
normalization methods, however, it is difficult to find the standard
deviations that perform well for any input image, as we will discuss
in Section 3.4. We therefore introduce the following formulation for
our ALCN method:

ALCN(𝐼 ; 𝑤) =

( 𝑁
∑

𝑖=1
𝑤𝑖 ⋅ 𝐺𝜎ALCN

𝑖

)

∗ 𝐼 , (9)
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Fig. 2. Overview of our method. (a) We first train our Normalizer jointly with the Detector using image regions from the Phos dataset. (b) We can then normalize images of
previously unseen objects by applying this Normalizer to predict the parameters of our normalization model.

Fig. 3. Four of the ten objects we use from the Phos dataset (Vonikakis et al., 2013) under different illuminations.

where 𝐼 is an input image window, 𝑤 a vector containing the parame-
ters of the method and ALCN(𝐼 ;𝑤) is the normalized image; 𝐺𝜎 denotes
a Gaussian kernel of standard deviation 𝜎; the 𝜎ALCN

𝑖 are fixed standard
deviations, and ∗ denotes the convolution product. In the experiments,
we use ten different 2D Gaussian filters 𝐺𝜎ALCN

𝑖
, with standard deviation

𝜎ALCN
𝑖 = 𝑖∕2 for 𝑖 = 1, 2,… , 10. This model is a generalization of the

Difference-of-Gaussians model, since the normalized image is obtained
by convolution of a linear combination of Gaussian kernels, and the
weights of this linear combination are the parameters of the model.

Using fixed 2D Gaussian filters allows us to have fast running time:
During training, we can perform the Gaussian convolutions on the
samples of the mini-batches. It also makes training easier since the
network has to predict only the weights of a linear combination. During
testing, this allows us to efficiently varies the model parameters with
the image locations efficiently, as will be explained in Section 3.5.

3.3. Joint training to predict the model parameters

As discussed in the introduction and shown in Fig. 2(a), we train
a Convolutional Neural Network (CNN) to predict the parameters 𝑤 of
our model for a given image window 𝐼 , jointly with an object classifier.
We call this CNN the Normalizer.

Like the Normalizer, the classifier is also implemented as a CNN
as well, since deep architectures perform well for such problems. This
will also make joint training of the Normalizer and the classifier easy.
We refer to this classifier as the Detector. Joint training is done by
minimizing the following loss function:

(�̂�, �̂�) = argmin
𝛩,𝛷

∑

𝑗
𝓁
(

𝑔(𝛩) (ALCN(𝐼𝑗 ; 𝑓 (𝛷)(𝐼𝑗 ))
)

; 𝑦𝑗
)

, (10)

where 𝛩 and 𝛷 are the parameters of the Detector CNN 𝑔(⋅) and the
Normalizer 𝑓 (⋅), respectively; 𝓁(⋅; 𝑦) is the negative log-likelihood loss
function. 𝐼𝑗 and 𝑦𝑗 are training image regions and their labels: We
use image regions extracted from the Phos dataset (Vonikakis et al.,
2013), including the images shown in Fig. 3, the labels are either
background or the index of the object contained in the corresponding
image region. We use Phos for our purpose because it is made of various
objects under different illumination conditions, with 9 images captured
under various strengths of uniform illumination and 6 images under
non-uniform illumination from various directions. In practice, we use
Theano (Bergstra et al., 2010) to optimize Eq. (10).

3.4. Different images need different parameters

In order to show that different images need different parameters
when using previous normalization methods, we performed two stud-
ies. For each study we jointly optimizing the four DoG parameters, at
the same time as the Detector:

(�̂�, �̂�) = argmin
𝛩,𝛺

∑

𝑖
𝓁
(

𝑔(𝛩)
(

DoG(𝛺) ∗ 𝐼𝑖
)

; 𝑦𝑖
)

, (11)

where 𝛩 and 𝛺 are the parameters of the Detector CNN 𝑔(⋅) and
DoG respectively, the {(𝐼𝑖, 𝑦𝑖)}𝑖 are annotated training image windows,
and 𝓁(⋅; 𝑦) is the negative log-likelihood loss function.

Effect of brightness. In order to evaluate the effect of brightness, we
split the training set into dark and bright images, by simply threshold-
ing the mean intensity, and training two different detectors, one for
each subset, We will give more details of the dataset in Section 4.1.

We set the intensity threshold to 80 in our experiments. At run-
time, for each possible image location, we first tested if the image patch
centered on this location is dark or bright, and apply the corresponding
CNN. We also trained two more detectors, one for each subset, but this
time with the optimized parameter values obtained on the other subset.

Fig. 4 shows that the optimized parameters found for one subset
are only optimized for that subset and not the other one. It also shows
that larger values for 𝜎DoG

1 and 𝜎DoG
2 perform better on the dark test

images. Fig. 5 shows that our adaptive Normalizer learns to reproduce
this behavior, applying larger receptive fields to darker images and
vice-versa.

Different objects. In order to evaluate how different objects with differ-
ent shapes and material affect on the predicted parameters, we optimize
on only one object of the Phos dataset at a time. As illustrated in Fig. 6,
different kernels are learned for different objects.

3.5. From window to image normalization

Once trained on windows, we apply the Normalizer to the whole
input images by extending Eq. (9) to

ALCN(𝐈) =
𝑁
∑

𝑘=1
𝐺𝜎ALCN

𝑘
∗
(

𝐹𝑘(𝐈) ◦𝐈
)

, (12)
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Fig. 4. Evaluating the relations between brightness and optimized normalization parameter values. We split our dataset into bright and dark images. The best performance on the
dark images is obtained with larger filters than for the bright images.

Fig. 5. Left (a–d): Four input window images of the plastic toy under different illuminations. First row: original window. Second row: window after downscaling, and used as
input to the normalizer. Third row: window after normalization by the filter predicted by the Normalizer. Top-right: Predicted filters using the model of Eq. (9) for the image
windows a–d, shown in 1D for clarity. The filters predicted for dark images are larger than the ones predicted for bright images. Bottom-right: The 10 predicted coefficients 𝑤𝑖
for the image windows a–d.

where 𝐹𝑘(𝐈) is a weight matrix with the same dimension as the input
image 𝐈 for the 𝑘th 2D Gaussian filter, and ◦ is the Hadamard (element-
wise) product. The weight matrix 𝐹𝑘(𝐈) corresponding to the 𝑘th 2D
Gaussian filter is computed as

(

𝐹𝑘(𝐈)
)

𝑖𝑗 = 𝑓𝑘(𝐼𝑖𝑗 ), where (⋅)𝑖𝑗 is the entry
in the 𝑖th row and 𝑗th column of the matrix, 𝐼𝑖𝑗 is the image window
centered at (𝑖, 𝑗) in image 𝐈, and 𝑓𝑘(⋅) is the 𝑘th weight predicted by
the Normalizer for the given image window. This can be done very
efficiently by sharing the convolutions between windows (Giusti et al.,
2013).

Normalization is therefore different for each location of the input
image. This allows us to adapt better to the local illumination condi-
tions. Because it relies on Gaussian filtering, it is also fast, taking only
50 ms for 10 2D Gaussian filters, on an Intel Core i7-5820K 3.30 GHz
desktop with a GeForce GTX 980 Ti on a 128 × 128 image.

3.6. Color image normalization

For some applications, such as 3D object pose estimation, it is
important to be able to normalize not only grayscale images, but also

color images as well, as colors bring very valuable information. To do
so, as in Zhang et al. (2016), we first transform the input color image in
the CIE Lab colorspace, normalize the lightness map L with our method,
and re-transform the image in the RGB space without changing the ab
channels. An example of a normalized color image using this method
is shown in Fig. 7(e).

3.7. Network architecture and optimization details

A relatively simple architecture is sufficient for the Normalizer: In
all of our experiments, the first layer performs 20 convolutions with
5 × 5 filters with 2 × 2 max-pooling. The second layer performs 50
5 × 5 convolutions followed by 2 × 2 max-pooling. The third layer is
a fully connected layer of 1024 hidden units. The last layer returns
the predicted weights. In order to keep optimization tractable, we
downscaled the training images of the target objects by a factor of
10. To avoid border effects, we use 48 × 48 input patches for the
Normalizer, and use 32 × 32 patches as input to the Detector. We use
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Fig. 6. Predicted filters for DoG normalization trained on different objects.

Fig. 7. (a): original RGB image. (b): ab channel in CIE Lab color space. (c): grayscaled image. (d): normalized grayscale image. (e): normalized color image.

the tanh function as activation function, as it performs better than ReLU
on our problem. This difference is because a sigmoid can better control
the large range of intensities exhibited in the images of our dataset,
while other datasets have much more controlled illuminations.

3.8. Generating synthetic images

Since the Phos dataset is small, we augment it by applying simple
random transformations to the original images. We segmented the
objects manually, so that we can change the background easily.

We experimented with several methods to artificially change the
illuminations, and we settled to the following formulas to generate
a new image 𝐼new given an original image 𝐼ref. We first scale the
original image, randomly replace the background, and scale the pixel
intensities:

𝐼interm = 𝑎(bg(scale𝑠(𝐼ref))) + 𝑏 , (13)

where 𝑎, 𝑏, and 𝑠 are value randomly sampled from the ranges [1 −
𝐴; 1 + 𝐴], [−𝐵; +𝐵], and [1 − 𝑆; 1 + 𝑆] respectively. bg(⋅) is a function
that replaces the background of the image by a random background,
which can be uniform or cropped from an image from the ImageNet
(dataset Deng et al. (2009)). scale𝑠(⋅) is a function that upscales or
downscales the original image by a factor 𝑠.

The generated image is then taken as

𝐼new = clip(𝐺(𝐼interm)) , (14)

where 𝐺(⋅) adds Gaussian noise, and clip(⋅) is the function that clips
the intensity values to the [0; 255] interval. This function allows us to
simulate saturation effects, and makes the transformation non-linear,
even in the absence of noise. 𝐼interm is an intermediate image that can
influence the amount of noise: In all our experiments, we use 𝐴 = 0.5,
𝐵 = 0.4, and 𝑆 = 0.1.

We generate 500,000 synthetic images, with the same number of
false and negative images. Once the Normalizer is trained on the Phos
dataset, we can use synthetic images created from a very small number
of real images of the target objects to train a new classifier to recognize
these objects: Some of our experiments presented below use only one
real image. At test time, we run the Detector on all 48 × 48 image
windows extracted from the test image.

4. Experiments

In this section, we first introduce the datasets we used for evaluating
the methods described in the previous section, including our own.
We then present the network architecture and optimization details.
We perform thorough ablation studies to demonstrate our contribu-
tion, by benchmarking on 2D object detection under drastic illumi-
nation changes when only few images are available for training. We
finally evaluate our normalization to improve the robustness to light
changes of state-of-the-art 3D object detection and pose estimation, face
recognition and semantic segmentation methods.

4.1. Datasets

Some datasets have instances captured under different illumina-
tions, such as NORB (LeCun et al., 2004), ALOI (Geusebroek et al.,
2005), CMU Multi-PIE (Gross et al., 2009) or Phos (Vonikakis et al.,
2013). However, they are not suitable for our purposes: NORB has
only 6 different lighting directions; the images of ALOI contain a
single object only and over a black background; CMU Multi-PIE was
developed for face recognition and the image is always centered on the
face; Phos was useful for our joint training approach, however, it has
only 15 test images and the objects are always at the same locations,
which would make the evaluation dubious.

We thus created a new dataset for benchmarking object detection
under challenging lighting conditions and cluttered background. We
will refer to this dataset as the ALCN-2D dataset. As shown in Fig. 8,
we selected three objects spanning different material properties: plastic
(Object #1), velvet (Object #2) and metal (Object #3) (velvet has
a BRDF that is neither Lambertian nor specular Lu et al., 1998, and
the metallic object—the watch—is very specular). For each object, we
have 10 300 × 300 grayscale training images and 1200 1280 × 800
grayscale test images, exhibiting these objects under different illumi-
nations, different lighting colors, and distractors in the background.
The number of test images is therefore much larger than for previous
datasets. We manually annotated the ground truth bounding boxes in
the test images in which the target object is present. In this first dataset,
the objects are intentionally moved on a planar surface, in order to

6
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Fig. 8. The objects for our ALCN-2D dataset, and representative test images. We selected three objects spanning different material properties: plastic (Object #1), velvet (Object
#2), metal (Object #3) (velvet has a BRDF that is neither Lambertian nor specular, and the metallic object – the watch – is very specular). By contrast with previous datasets, we
have a very large number of test images (1200 for each object), capturing many different illuminations and background.

limit the perspective appearance changes and focus on the illumination
variations.

The second dataset we consider is the BOX Dataset from the au-
thors of Crivellaro et al. (2015), which combines perspective and light
changes. It is made of a registered training sequence of an electric box
under various 3D poses but a single illumination and a test sequence of
the same box under various 3D poses and illuminations. Some images
are shown in the second row of Fig. 1. This test sequence was not
actually part of the experiments performed by Crivellaro et al. (2015)
since it was too challenging in scope. The goal is to estimate the 3D
pose of the box.

Finally, we introduce another dataset for 3D pose estimation. This
dataset is made of a training sequence of 1000 registered frames of
the Duck from the Hinterstoisser dataset (Hinterstoisser et al., 2012)
obtained by 3D printing under a single illumination and 8 testing
sequences under various illuminations. Some images are shown in the
third row of Fig. 1. We will refer to this dataset as the ALCN-Duck
dataset.

4.2. Experiments and discussion

For evaluation, we use the PASCAL criterion to decide if a detection
is correct with an Intersection over Union of 0.8, with fixed box sizes
of 300 × 300, reporting Precision–Recall (PR) curves and Areas Under
Curve (AUC) in order to compare the performances of the different
methods.

4.2.1. Explicit normalization vs. illumination robustness with deep learning
As mentioned in the introduction, Deep Networks can learn robust-

ness to illumination variations without explicitly handling them, at
least to some extent. To show that our method allows us to go further,
we first tried to train several Deep Network architectures from scratch,
without normalizing the images beforehand, by varying the number of
layers and the number of filters for each layer. We use one real example
of each object in the ALCN-2D dataset for this experiment. The best
architecture we found performs with an AUC of 0.606. Our method,

however, still performs better with an AUC of 0.787. This shows that
our approach achieves better robustness to illumination than a single
CNN, at least when the training set is limited, as in our scenario.

We also evaluated Deep Residual Learning Network architectures
(He et al., 2016). We used the same network architectures and training
parameters as in He et al. (2016) on CIFAR-10. ResNets with 20, 32,
44, 56 and 110 layers perform with AUCs of 0.456, 0.498, 0.518, 0.589
and 0.565 respectively, which is still outperformed by a much simpler
network when our normalization is used. Between 56 and 110 layers,
the network starts overfitting, and increasing the number of layers
results in a decrease of performance.

4.2.2. Comparing ALCN against previous normalization methods
In our evaluations, we consider different existing methods described

in Section 3.1. In order to assess the effects of different normalization
techniques on the detection performances, we employed the same
detector architecture for the normalization methods, but re-training
it for every normalization method. Fig. 9 compares these methods
on the ALCN-2D dataset. For DoG, Subtractive and Divisive LCN, we
optimized their parameters to perform best on the training set. We
tried different method of intrinsic image decomposition and they per-
form with similar accuracy. In this paper, we use the implementation
of Shen et al. (2013), which performs slightly better on the ALCN-2D
dataset, compare to other implementations. Our method consistently
outperforms the others for all objects of the ALCN dataset. Most of the
other methods have very different performances across the different
objects of the dataset. Whitening obtained an extremely bad score for
all objects, while both versions of LCN failed in detecting Object #3,
the most specular object, obtaining an AUC score lower than 0.1.

4.2.3. Impact of number of real images
Once the Normalizer is trained on the Phos dataset, we freeze its

weights and plug it to a detector to detect target object. To train
the Detector, we use 500,000 synthetically generated images with the
same way as described in Section 3.8. Some synthetic images gener-
ated are shown in Fig. 11. These 500,000 images can be generated
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Fig. 9. Comparing different normalization methods using the best parameter values for each method for Objects #1, #2 and #3 of ALCN-2D. ALCN systematically performs best
by a large margin.

Fig. 10. Evaluating the influence of the number of real images used for training the detector on Objects #1, #2 and #3 of ALCN-2D. The detection accuracy keeps increasing
when using more real images for generating the training set.

Fig. 11. Some synthetic images generated from the object #1 shown in Fig. 8.

either from only one single real image, or more. In Section 4.2.2, we
showed that using only one real image to generate the whole training
set already gives us good results. Fig. 10 illustrates that using more
real images while keeping the total number of synthetically generated
images same as before, improves the performances further, 10 real
images are enough for very good performance. This shows that we can
learn to detect objects under very different drastic illuminations from
very few real examples augmented with simple synthetic examples.

4.2.4. Activation functions
While sigmoid functions were originally used in early neural net-

works and CNNs, the popular choice is now the ReLU operator, because
it often eases tuning the convergence as the derivatives are constant,
while special care is to be taken when using sigmoids.

However, Fig. 12 shows that using the hyperbolic tangent tanh
sigmoid function yields clearly better results than using the ReLU
activation functions on our problem. This difference is because a sig-
moid can control better the large range of intensities exhibited in the
images of our dataset, while other datasets have much more controlled
illuminations.

4.3. Image normalization for other applications

In this section, we evaluate our normalization method on applica-
tions for which it was not trained for: (1) 3D object detection, (2) 3D
object pose estimation, and (3) face detection and recognition.

4.3.1. 3D object pose estimation
As mentioned in the introduction, our main goal is to train Deep

Networks methods for 3D pose estimation, without requiring large
quantities of training data while being robust to light changes. We
evaluate here ALCN for this goal on two different datasets.

BOX dataset. To evaluate ALCN for 3D object detection and pose es-
timation, we first applied it on the BOX dataset described in Section 4.1
using the method of Crivellaro et al. (2015), which is based on part
detection: It first learns to detect some parts of the target object, then
it predicts the 3D pose of each part to finally combine them to estimate
the object 3D pose.

The test videos from Crivellaro et al. (2015) exhibit challenging
dynamic complex background and light changes. We changed the code
provided by the authors to apply ALCN before the part detection. We
evaluated DoG normalization, the second best method according to our
previous experiments, optimized on these training images, against our
Normalizer. Fig. 13 shows the results; ALCN allows us to detect the
parts more robustly and thus to compute much more stable poses.

ALCN-Duck dataset. The method proposed in Rad and Lepetit
(2017) first detects the target object using a detector and then, given
the image window centered on the object, predicts the 3D pose of
the object using a regressor. For both, detector and regressor, Rad
and Lepetit (2017) finetunes convolution and fully connected layers
of VGG (Simonyan and Zisserman, 2015), and achieved very good
results on the LineMOD dataset. However, this dataset does not exhibit
strong light changes, and we evaluated our approach on the ALCN-Duck
dataset described in Section 4.1. Here, we use color images as input to
the detector and the regressor. To apply ALCN to these images, we use
the method proposed in Section 3.6. We normalized color images by
normalizing the L channel in CIE color space. As our experiments show
even if ALCN was trained on grayscale images, we get reasonably good
normalized color images. Fig. 14 shows the normalized images of the
ALCN-Duck dataset.

8



M. Rad, P.M. Roth and V. Lepetit Computer Vision and Image Understanding 194 (2020) 102947

Fig. 12. Influence of the activation function. The plots show the PR curves using our normalization, applying either the ReLU operator, or the sigmoid tanh function as activation
function. tanh appears to perform better, probably because it helps to control the range of intensity values in our test images.

Fig. 13. Comparing ALCN and DoG on the BOX dataset — Video #3 from Crivellaro (Crivellaro et al., 2015). Our ALCN performs best at detecting the corners of the box.

Fig. 14. First row: Original color images from the ALCN-Duck dataset. Second row: Normalized color images after adding the ab channels of the images on the first row to the
normalized L channel of the images by our method.

9
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Table 1
Percentage of correctly estimated poses using the 2D Projection metric of Brachmann et al. (2016), when the method of Rad
and Lepetit (2017) is applied to our ALCN-Duck sequences, with and without ALCN. Using VGG – trained to predict the 3D
pose – alone is not sufficient when illumination changes. ALCN allows us to retrieve accurate poses.

Sequence w/o illumination changes With illumination changes

#1 #2 #3 #4 #5 #6 #7 #8

VGG 100 47.26 18.33 32.65 0.00 0.00 0.00 0.00
VGG+ALCN 100 77.78 60.71 70.68 64.08 51.37 76.20 50.10

Fig. 15. Evaluating different normalization methods for the Viola-Jones detection
method. By simply pre-processing the training and test images using our ALCN, we
can improve the performance of Viola-Jones detection with an AUC from 0.286 to
0.671. ALCN outperforms all the other normalization methods.

Table 1 gives the percentage of correctly estimated poses using the
2D Projection metric (Brachmann et al., 2016) with and without our
ALCN normalization. Rad and Lepetit (2017), with and without ALCN,
performs very well on video sequence #1, which has no illumination
changes. It performs much worse when ALCN is not used on Sequences
#2, #3 and #4, where the illuminations are slightly different from
training. For the other sequences, which have much more challenging
lightening conditions, it dramatically fails to recover the object poses.
This shows that ALCN can provide illumination invariance at a level to
which deep networks such as VGG cannot. Some qualitative results are
shown on the last row of Fig. 1.

4.3.2. Application to the Viola-Jones detector
In this experiment, we evaluate the performance of the Viola-Jones

detection algorithm trained with a training set created from 10 real
images, and normalized using different methods.

Fig. 15 shows that Viola-Jones (Viola and Jones, 2004) performs
very poorly with an AUC of 0.286 in best cases. However, by simply
normalizing the training and test images using our ALCN, Viola-Jones
suddenly performs significantly better with an AUC of 0.671, while it
still does not perform very well with other normalization methods. It
may be surprising that Viola-Jones needs image normalization at all,
as the Haar cascade image features it relies on are very robust to light
changes. However, robustness comes at the price of low discriminative
power. With image normalization, the features do not have to be as
robust as they must be without it.

4.3.3. Application to face recognition
Finally we evaluate our normalization for face recognition to see if

our normalization can improve the performance of current recognition
algorithms. Hence, we test our normalization on YaleBExt (Georghi-
ades et al., 2001) using Eigenfaces (Turk and Pentland, 1991) and
Fisherfaces (Belhumeur et al., 1997), where both perform poorly with
different normalization methods. Han et al. (2013) studied 13 different
normalizations on face recognition. The best recognition rates among
the 13 normalizations are 59.3% and 78.0% vs. 70.5% and 98.6% using
our normalization, with Eigenfaces and Fisherfaces respectively.

5. Conclusion

We proposed an efficient approach to illumination normalization,
which improves robustness to light changes for object detection and
3D pose estimation methods without requiring many training images.
We have shown that our proposed method can bring the power of Deep
Learning to applications for which large quantities of training data are
not available, since it can be plugged easily to other applications.
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