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Abstract. Super-resolution addresses the problem
of image upscaling by reconstructing high-resolution
output images from low-resolution input images. One
successful approach for this problem is based on ran-
dom forests. However, this approach has a large
memory footprint, since complex models are required
to achieve high accuracy. To overcome this draw-
back, we present a novel method for constructing
random forests under a global training objective. In
this way, we improve the fitting power and reduce
the model size. In particular, we combine and ex-
tend recent approaches on loss-specific training of
random forests. However, in contrast to previous
works, we train random forests with globally op-
timized structure and globally optimized prediction
models. We evaluate our proposed method on bench-
marks for single image super-resolution. Our method
shows significantly reduced model size while achiev-
ing competitive accuracy compared to state-of-the-
art approaches.

1. Introduction

Single image super-resolution (SR) is a subdo-
main of image reconstruction which addresses the
problem of enhancing image resolution [15, 17, 27].
The goal is to estimate a visually pleasing high-
resolution output image starting from a single low-
resolution input image (see Figure 1). However, this
upscaling is nontrivial, because one pixel in the low-
resolution input image has to account for multiple
pixels in the high-resolution output image. There-
fore, SR is an ill-posed problem for which no unique
solution exists.

As a result, SR is an active research area and
many different approaches have been proposed. The
most popular class of SR algorithms are interpola-
tion methods [13,21,23,28]. In practice, many appli-

Figure 1: Example for super-resolution using an upscaling
factor of 3. From top to bottom: the ground truth image,
the result of bicubic upsampling and the result of our ap-
proach.

cations use bicubic interpolation [23]. This method
is computationally efficient and can handle arbitrary
upscaling factors, but lacks accuracy due to the as-
sumption of smoothness over the entire image. SR
methods based on machine learning techniques over-
come this drawback [3, 8, 11, 12, 35–38]. These ap-
proaches exploit prior knowledge and show signifi-
cantly improved accuracy compared to interpolation
methods. However, they have a higher computational
complexity and additionally require a training phase.

Many learning approaches build on the con-
cept of neighbor embedding, which assumes that
small patches from low-resolution images and their
related high-resolution equivalents form manifolds
with similar local geometry [8]. As a consequence, a
previously unseen patch can be expressed as a com-



bination of known patches in feature space of the
low-resolution domain. The same combination is
then applied in the high-resolution domain to gener-
ate a prediction using the known equivalents of these
patches. Therefore, neighbor embedding approaches
rely on dictionaries of corresponding low-resolution
and high-resolution patch representations. Because
these dictionaries tend to grow very large, recent ap-
proaches make use of sparse coding to learn more
compact dictionary representations and to reduce the
computational complexity [35–37, 39].

One alternative to dictionary approaches is
to directly map from low-resolution to high-
resolution space with Convolutional Neural Net-
works (CNNs) [11, 12]. Today, the best accuracy is
achieved with deep CNNs [24,25]. On the downside,
these approaches are computationally expensive and
training may take multiple days, even though using
powerful GPUs [11]. To overcome this limitation,
Schulter et al. [31] apply Random Forests (RFs) in-
stead. This approach drastically reduces the compu-
tational cost while still achieving high accuracy. As
a result, training can be performed within minutes on
a CPU. However, this approach has a large memory
footprint, since it requires complex models to ensure
high accuracy.

In consequence of the above mentioned limi-
tations of existing approaches, we present a new
training algorithm which constructs RFs with sig-
nificantly reduced model size without compromis-
ing on accuracy. Our method is inspired by recent
works that train RFs under a global training objec-
tive [30, 32, 33]. While previous approaches focus
on either globally optimizing the structure or glob-
ally optimizing the prediction models, we address
both tasks jointly. Due to this optimization strat-
egy, we significantly improve the fitting power of
shallow RFs. As a consequence, we are able to re-
duce the depth and node count and thus lower the
model complexity and memory demands. Our exper-
iments show that we achieve competitive accuracy
compared to existing RF approaches while reducing
model size by a factor of 22.

The remainder of this work is structured as fol-
lows: In Section 2, we present the preliminaries and
discuss related work. Next, we present our novel
training algorithm in Section 3. In Section 4, we
provide a systematic evaluation of our method and
compare it to state-of-the-art approaches.

2. Preliminaries

In the following, we discuss the theoretical foun-
dations our work builds on. First, we briefly
review standard RFs [6] and Gradient Boosting
(GB) [16]. Then, we discuss two relevant RF exten-
sions: Alternating Decision and Regression Forests
(ADRFs) [32, 33] and Global Refinement (GR) [30].

2.1. Random Forests

Decision Trees (DTs) [29] are nonlinear learners
which make predictions based on a number of hier-
archical decisions organized in the structure of a bi-
nary tree. They have proven to be powerful learners
that can fit a training data set perfectly when fully
grown, however, deep DTs introduce a high risk of
overfitting, which results in low generalization [7].

One way to overcome this limitation, is to use an
ensemble of DTs instead of a single DT, which re-
duces variance while maintaining low bias [1, 10, 18,
19]. In fact, a RF [6] is an ensemble that can be in-
terpreted as a nonlinear function

F (x) =
1

T

T∑
t=1

F t(x), (1)

which makes a prediction for a sample x by aver-
aging over T individual DT predictions F t(x). All
trees of the ensemble are independent, therefore,
training a RF corresponds to constructing T distinct
DTs. To create different trees, each DT is trained on
a new training data set generated by randomly draw-
ing samples from the original training data set, also
known as Bagging [5]. Starting from a single root
node, each DT recursively splits the provided train-
ing data set into disjoint subsets in a greedy man-
ner [5]. Each node splits the arriving training data
by evaluating a binary split function σ(x,Θ), where
the parameter Θ is selected from a randomly gener-
ated set [9, 19]. This partitioning is greedily contin-
ued until a stopping criterion is met [2, 26]. Finally,
a prediction model for each leaf node is calculated
locally using the training data arriving at each indi-
vidual leaf [7].

While the above training strategy is simple and
parallelizable, it does not take the final model struc-
ture into account [32, 33]. The final result is com-
puted by averaging locally optimal DT predictions,
however, this does not guarantee a globally optimal
prediction. As a result, the loss function implied by
standard RFs is an average over the losses of the in-



dividual DTs, while ideally, the loss function is eval-
uated on the final output [30]. Therefore, the train-
ing of standard RFs is not directly guidable towards
the optimization of a specific loss function. Two ap-
proaches which try to overcome this drawback by
sharing information between the individual DTs are
ADRFs [32, 33] and GR [30].

2.2. Gradient Boosting

GB [16] is an ensemble method, which combines
several weak learners hd(x) to form a strong learner
F (x). The prediction of the ensemble is computed
as the weighted sum of the different weak learner
predictions. In this work, we consider the individual
weak learners to be equally weighted:

F (x) =
D∑

d=1

hd(x). (2)

GB constructs a strong learner by iteratively adding
weak learners one step at a time. More formally, at
step d a new weak learner is added to the ensemble to
provide a better model Fd(x) = Fd−1(x) + hd(x),
where Fd−1(x) is the current strong learner consist-
ing of d − 1 weak learners. To improve the model,
GB applies gradient descent in function space and fits
hd(x) to approximate the negative gradients

− gd(x) = −
[
∂L(y, F (x))
∂F (x)

]
F (x)=Fd−1(x)

(3)

of a differentiable loss function given the previous
model estimate Fd−1(x). In this work, we use the L2

loss L(y, F (x)) = 1
2‖y − F (x)‖

2
2 as a loss function

which reduces the computation of the negative gradi-
ents to the residuals −gd(x) = y − Fd−1(x) given
the current model estimate. Thus, in each iteration a
new weak learner, e.g., a DT, is trained to compen-
sate for the current residuals [16].

2.3. Alternating Decision and Regression Forests

ADRFs [32, 33] modify the training procedure of
standard RFs by incorporating ideas from GB. In
contrast to GB, where DTs are added sequentially to
the model, ADRFs iteratively increase the depth of
all DTs, while their number remains constant.

The main difference of ADRFs compared to stan-
dard RFs is the replacement of the greedy DT train-
ing strategy by a stage-wise training scheme. Instead
of greedily training all DTs independently of each
other, the depth of the entire RF is iteratively in-
creased stage by stage, where one stage corresponds

to one depth level. Therefore, each iteration extends
the RF by one extra depth level, which corresponds
to splitting all leaf nodes of the current model. In
this case, increasing the depth can be interpreted as
adding a new weak learner in the sense of GB.

The stage-wise training scheme produces a fully
functional RF in each iteration. At each stage this
intermediate RF is used to evaluate the performance
of the current model. The obtained results are then
used to guide the training of the next stage towards a
solution that compensates for the error of the model
in its current state. In this way, ADRFs integrate the
optimization of a global loss function directly into
the tree growing process.

Similar to GB, ADRFs rely on the negative gradi-
ents in Eq. (3) of a differentiable loss function L(·)
to influence the training of the next stage. In this
work, we evaluate the L2 loss between the training
data ground truth y and the RF prediction F (x) de-
fined in Eq. (1) given Fd−1(x), the current state of
the RF trained up to depth d− 1. As a consequence,
the training of ADRFs alternates between updating
the global training objective based on−gd(x) and in-
creasing the depth of the RF. ADRFs do not employ
regularization techniques like shrinkage, because the
number of weak learners is low and the model size
increases exponentially with the depth [31].

2.4. Global Refinement

GR [30] also builds on a global loss optimization
for RFs, but follows a completely different strategy
compared to ADRFs. Instead of optimizing the tree
growing process, GR relearns the prediction models
of existing RFs. Starting from a pre-trained RF the
leaf node predictions of all DTs are jointly retrained
under a global training objective. This is formulated
as a convex optimization problem [4]

min
W

1

2
‖W‖2F +

C

N

N∑
n=1

L(yn, F (xn))

s.t. F (xn) =Wφ(xn) ,

(4)

where the RF prediction is reformulated as the prod-
uct of a weight matrix W and an indicator vector
φ(xn). In this case, W is a matrix holding the pre-
diction models of all leaves and φ(xn) is a binary
embedding vector which encodes leaf membership
induced from the RF structure given xn. The dimen-
sionality of φ(x) equals the total number of leaves
of the RF and the i-th element of φ(xn) is 1 if the
sample xn falls into leaf i. In this work, we choose



the convex loss function L(·) to be the L2 loss. Ad-
ditionally, the Euclidean norm of W is minimized
to reduce the risk of overfitting [34] and the parame-
ter C controls the tradeoff between the regularization
term and the data term.

The refined leaf prediction models in W are used
to overwrite the existing prediction models of the RF.
As a result, the predictions of individual DTs are not
independent of each other and the leaf nodes of the
entire ensemble collaboratively make a prediction.
However, the prediction of the RF is still computed
as defined in Eq. (1).

3. Additive Global Refinement

In contrast to previous methods, we propose to
train RFs with both globally optimized structure and
globally optimized prediction models by combining
the benefits of ADRFs and GR. In particular, ADRFs
globally optimize the structure of RFs, while the
leaf prediction models remain untouched, whereas
GR relearns the leaf prediction models of pre-trained
RFs, while the structure remains untouched. Thus, as
a first straight-forward extension we propose to per-
form GR on top of ADRFs to achieve performance
superior to both methods individually. We refer to
this combination as ADRF+GR.

In addition to this training approach, we propose a
novel refinement strategy which we refer to as Ad-
ditive Global Refinement (AGR). In this way, we
improve upon standard GR by taking advantage of
existing prediction models instead of ignoring them.
While GR discards the existing prediction models of
a RF and replaces them with new ones, our approach
refines existing prediction models. In contrast to GR,
we propose to use the existing prediction models as
a starting point. We perform a global leaf predic-
tion model optimization to calculate prediction mod-
els which compensate for the error of existing pre-
diction models. In this way, we improve the existing
prediction models of a RF instead of relearning them
from scratch.

Thus, AGR can be seen as a variant of GR which
performs a gradient descent [4] step on an existing
RF. The leaf prediction model optimization is used to
apply a step in the steepest descent direction which is
computed by the negative gradient of a differentiable
loss function given the current state of the model.
Therefore, AGR is closely related to a single itera-
tion in the stage-wise training scheme of ADRFs. In
contrast, we do not split the leaf nodes in the cur-

rent model and do not increase the size of the model.
Instead, the gradient descent step is implemented by
optimizing

min
W

1

2
‖W‖2F +

C

N

N∑
n=1

L(−gd(xn), F (xn))

s.t. F (xn) =Wφ(xn) ,

(5)

a modified version of the optimization problem
solved for GR. In contrast to Eq. (4), we evaluate
the L2 loss on the negative gradients −gd(x) from
Eq. (3), which in this case correspond to the cur-
rent residuals, and the reformulated RF prediction.
All other parameters remain the same. As a result,
the prediction models obtained by AGR compensate
for the error of existing prediction models instead of
making an independent prediction. This means that
the new prediction models and the existing prediction
models must be summed up to obtain the final re-
fined prediction models. Therefore, the new predic-
tion models inW are added to the existing prediction
models, instead of replacing them. Since we only
perform a single gradient descent step, we choose the
step size of the update to be 1.

The main advantage of AGR compared to GR is
that our method retains the strength of individual
DTs. In fact, when using GR some leaves have a
high contribution to the final result, while others have
a low contribution. Therefore, the prediction of a sin-
gle DT is highly decorrelated to the final result, be-
cause there is no constraint which enforces coherence
between the individual DT predictions. The deeper
the RF, the higher the risk of overfitting. In fact,
experiments show that the regularization techniques
employed in GR are not sufficient to prevent over-
fitting [30]. As a consequence, Ren et al. [30] pro-
pose an exhaustive iterative post-pruning strategy to
reduce overfitting.

In contrast, prediction models obtained by AGR
are more correlated to the final result, because they
build on locally optimal prediction models. AGR
performs a refinement which approximates the resid-
uals of the current model. These residuals have low
norm as locally optimal prediction models already
provide a good estimate. The deeper the RF, the
lower the norm of the residuals. AGR might over-
fit the residuals for deep RFs, but the contribution
of the refinement to the existing prediction models is
negligible, due to the low norm. Thus, the predic-
tion of a single DT already provides a good estimate
of the final prediction, even in the case of overfitting.



This leads to DTs with higher individual strength and
increased robustness to overfitting.

AGR is applicable to any pre-trained RF for re-
gression and overcomes the drawbacks of standard
GR. We propose to combine ADRFs with our novel
refinement strategy (ADRF+AGR) to achieve high-
est accuracy. However, we also evaluate ADRF+GR
to highlight the benefits of our proposed refinement
method over the straight-forward combination. Ad-
ditionally, we show that refinement strategies are not
only applicable for constant leaf prediction models,
but also for linear leaf prediction models which are
used in RF approaches for SR [31].

4. Evaluation

In this section we evaluate our proposed method
for single image SR [15, 17, 27]. We provide results
on different SR benchmarks, compare against state-
of-the-art approaches and provide an analysis of the
most important parameters of our training algorithm.

4.1. SR framework

For our evaluation, we build on the SR framework
provided by Schulter et al. [31], which is based on
the code of Timofte et al. [35]. The framework uses
bicubic interpolation [23] to obtain the desired output
resolution followed by a sharpening using machine
learning techniques.

First, images are transformed from RGB to
YCbCr color space which separates luminance in-
formation (Y) and color information (Cb and Cr),
because the human visual system is most sensitive
to high frequency changes in luminance [14]. In
contrast, color information only plays a minor role
in the human perception of sharpness. Therefore,
bicubic interpolation is applied to all image chan-
nels, but sharpening is only performed on the Y chan-
nel. The framework works in a patch-based manner,
where overlapping patches are extracted from the lu-
minance channel of the upscaled low-resolution im-
age. For each of these patches, a machine learning
algorithm is used to estimate a high frequency patch
which corrects for the blur in the upscaled patch.
Therefore, the bicubic upscaled patch and the esti-
mated high frequency patch are summed up to ob-
tain the final sharpened patch. Finally, the sharpened
patches are stitched together to obtain the sharpened
output image.

4.2. Experimental setup

We use our proposed approach (ADRF+AGR) to
estimate high frequency patches based on features
extracted from upscaled low-resolution patches. For
the features, we compute the first and second order
derivatives of the upscaled low-resolution patches
and apply dimensionality reduction using PCA [22].
The dimensionality reduction preserves 99.9% of the
average energy [35], which, in this case, results in a
30 dimensional feature vector for each patch.

We use the training data set provided by Yang et
al. [38], which consists of 91 images with a resolu-
tion around 0.1 megapixel. From these images, we
sample a total of one million patches for training and
report the performance on two test data sets, Set5 [3]
and Set14 [39]. These data sets have also been used
for training and benchmarking different SR methods
in [11, 24, 25, 31, 35, 36].

We evaluate the performance by computing the
Peak Signal-to-Noise Ratio (PSNR) [20] between the
ground truth and the predicted image on the lumi-
nance channel. For selected experiments, we re-
port the PSNR improvement over bicubic interpola-
tion which we refer to as gain in dB [11]. In any
case, higher PSNR or gain corresponds to better ac-
curacy. Because we train randomized predictors, all
figures and tables report the mean of three indepen-
dent runs [31]. However, the variation in accuracy
between these runs was negligibly low in all exper-
iments. We use the same RF parameters and split
node optimization as Schulter et al. [31]. In particu-
lar, we set the number of DTs to 15 and the maximum
tree depth to 12.

4.3. Comparison to state-of-the-art

First, we compare the performance of our method
against state-of-the-art methods in terms of accuracy.
Table 1 presents results for multiple SR factors on
Set5 [3] and Set14 [39]. A+ [36], ADRF [31] and
SRCNN [11] show a similar level of accuracy com-
pared to our method. However, all of these meth-
ods are slightly outperformed by recent deep CNN
approaches [24, 25]. Depending on the data set
DRCN [25] performs 0.6 to 1.3 dB better than our
approach. However, one disadvantage of these meth-
ods is that powerful GPUs are required to handle the
computational cost in a reasonable amount of time.
Therefore, we compare the number of Floating-
Point Operations (FLOPs) required to super-resolve a
512×512 image for our approach and SRCNN [11],



Methods

Data Set SR Factor Bicubic A+ [36] ADRF [31] SRCNN [11] SRCNN [12] VDSR [24] DRCN [25] ADRF+AGR
(ECCV) (PAMI) (Ours)

×2 33.66 36.55 36.70 36.34 36.66 37.53 37.63 36.55
Set5 [3] ×3 30.39 32.59 32.58 32.39 32.75 33.66 33.82 32.50

×4 28.42 30.29 30.21 30.09 30.49 31.35 31.53 30.13

×2 30.23 32.28 32.37 32.18 32.45 33.03 33.04 32.27
Set14 [39] ×3 27.54 29.13 29.13 29.00 29.30 29.77 29.76 29.07

×4 26.00 27.33 27.30 27.20 27.50 28.01 28.02 27.25

Table 1: Comparison of state-of-the-art methods for SR on Set5 [3] and Set14 [39]. For each data set and each SR factor,
the three best performing methods are highlighted in shades of green. The best accuracy is achieved by recent deep CNN
approaches. However, their improved accuracy comes at the price of exhaustive computational workload.

which achieve a similar level of accuracy. FLOPs
are an implementation independent metric for the
computational workload of an algorithm, while the
commonly reported execution time [11, 31, 35, 36]
is highly dependent on the specific implementation
and the used hardware. Our approach requires 2.75
GFLOPs, whereas SRCNN requires 4.77 GFLOPs.
Even though SRCNN only uses a shallow CNN ar-
chitecture, our approach is much more efficient due
to the inexpensive evaluation of RFs. Additionally,
deeper CNN architectures [24,25] require even more
FLOPs.

4.4. Parameters

Next, we investigate several parameters which are
crucial to the performance of our approach. In ad-
dition to our proposed method (ADRF+AGR) we
also evaluate a naive combination of ADRF and GR
(ADRF+GR) to highlight the benefits of our ap-
proach over this simple combination.

4.4.1 Maximum depth

The most important parameter concerning accuracy
on previously unseen data is the maximum tree depth
Dmax. Figure 2 shows the accuracy of different RF
approaches as a function ofDmax. In this experiment
we report the gain in dB and vary Dmax in the range
from 0 to 12.

Non-refinement approaches (RF and ADRF) per-
form best with deep DTs which correspond to com-
plex models with large model sizes. In contrast, re-
finement approaches (ADRF+GR and ADRF+AGR)
perform best with more shallow DTs and outperform
non-refinement approaches for low Dmax, but show
overfitting for high Dmax. Overall the best accuracy
is achieved by deep ADRF. One reason for this is
that the global leaf prediction model optimization in-
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Figure 2: Evaluation of the maximum tree depth Dmax

on Set5 [3]. We report the gain which is the PSNR im-
provement over the bicubic baseline in dB as a function of
Dmax. Our approaches significantly outperform RF and
ADRF for low Dmax.

creases the fitting power of a RF significantly. The
weight decay regularization employed in Eqs. (4)
and (5) is not sufficient to prevent overfitting for deep
RFs.

While the accuracy of ADRF+GR decreases for
high Dmax, the accuracy of ADRF+AGR saturates.
One reason for this is that AGR uses the existing
prediction models of a RF as a starting point in-
stead of relearning them from scratch. In this way,
the contribution of the refinement to the final pre-
diction is reduced, because the residuals which serve
as optimization targets have low norm. As a result,
AGR is more robust to overfitting than GR. Interest-
ingly, we observe that the accuracy improvement of
non-refinement approaches between Dmax = 0 and
Dmax = 2 is low. In contrast, the initial Dmax in-
crements for refinement approaches show the high-
est accuracy improvement. One reason for this is
the large size of the training data set which con-
sists of one million training samples. At Dmax = 2



a balanced DT has 4 leaves and the entire training
data set is distributed among these leaves. Therefore,
the average number of samples arriving at a node is
250 000. At Dmax = 2 the partitioning of the train-
ing data set is too coarse to fit local prediction models
which significantly outperform ordinary regularized
linear regression (Dmax = 0). In contrast, refine-
ment approaches can exploit the redundancy of mul-
tiple DTs to improve accuracy at low Dmax.

4.5. Model size

The above analysis shows that all evaluated RF
approaches show similar performance for the best
performing Dmax. Figure 3 presents qualitative
results for different RF approaches for a test im-
age from Set5 [3], which confirm this observation.
Non-refinement approaches perform best with higher
Dmax, which corresponds to complex models with
large model sizes. In contrast, refinement approaches
perform best for lower Dmax, which corresponds
to simpler models with smaller model sizes. Ta-
ble 2 reports the accuracy and model size of differ-
ent RF approaches for their individual best perform-
ing Dmax. Non-refinement approaches show high
memory demands, due to the exponential growth of
the model size with Dmax. In contrast, the model
size obtained by refinement approaches is more than
22 times smaller than the model size obtained by
non-refinement approaches. Interestingly, Schulter et
al. [31] train even deeper ADRFs (Dmax = 15), but
only increase the mean accuracy across different SR
factors by negligible 0.02 dB compared to our ADRF
experiments with Dmax = 12.

Method Dmax PSNR Model Size

RF 12 32.38 447.54

ADRF 12 32.54 446.71

ADRF+GR 6 32.46 19.81

ADRF+AGR 6 32.48 19.81

Table 2: Evaluation of the model size for different meth-
ods. The reported results show the mean PSNR on
Set5 [3] in dB and the model size in MB. Due to the im-
proved fitting power at low Dmax, our approaches show
significantly reduced model size while achieving compet-
itive accuracy.

4.6. Strength and correlation

In this experiment we analyze the strength and
correlation of individual DTs for different methods.

Breiman [6] shows that the generalization error of
RFs depends on the strength and correlation of the in-
dividual DTs. The higher the strength and the lower
the correlation, the lower the generalization error. To
obtain an estimate of the strength, we compute the
relative ratio between the mean PSNR achieved by
the individual DTs and the PSNR achieved by the
RF. Table 3 reports the strength and correlation of
individual DTs for Dmax = 12.

Method PSNR Strength Correlation

RF 32.38 0.98 0.82

ADRF 32.54 0.96 0.65

ADRF+GR 32.32 0.89 0.34

ADRF+AGR 32.47 0.92 0.42

Table 3: Evaluation of strength and correlation for differ-
ent methods. The reported results show the PSNR in dB.
Refinement techniques decrease the strength, but increase
the decorrelation of individual DTs.

Non-refinement approaches (RF and ADRF) show
higher strength, but also higher correlation. In
contrast, refinement approaches (ADRF+GR and
ADRF+AGR) show lower strength and lower corre-
lation. ADRF+GR already shows significant overfit-
ting at Dmax = 12 (see Figure 2). In contrast, the
accuracy of ARF+AGR does not decrease, since the
contribution of the refinement to the final prediction
is low. This experiment proves that AGR helps re-
taining the strength of individual DTs compared to
GR.

5. Conclusion

In this work we presented a method for construct-
ing RFs with reduced model size under a global train-
ing objective. Our method combines the benefits of
ADRFs [32, 33] and GR [30] by constructing RFs
with both globally optimized structure and globally
optimized prediction models. Experiments confirm
that we achieve competitive performance compared
to state-of-the-art RF approaches with significantly
simpler models which correspond to more shallow
DTs. For single image SR, we reduce the memory re-
quirement by a factor of 22 without loss of accuracy.
Moreover, our training strategy improves robustness
to overfitting. In contrast to GR, our AGR builds
on the existing prediction models of RFs instead of
relearning them from scratch. In this way, the con-
tribution of the refinement to the final prediction is



(a) Ground truth (b) Bicubic: 24.04 dB (c) RF: +2.80 dB

(d) ADRF: +3.27 dB (e) ADRF+GR: +3.12 dB (f) ADRF+AGR: +3.23 dB

Figure 3: Qualitative SR results for butterfly from Set5 [3] using an upscaling factor of 3. We report the PSNR for the
bicubic upscaled image and the gain for different RF approaches. While all of these methods achieve a similar level of
visual quality, the size of the used models differs significantly (see Table 2).

reduced. As a result, refined RFs are less prone to
overfitting. Additionally, we show that our SR ap-
proach is more efficient than CNN-based methods.
From an algorithmic point of view we require only
half the operations compared to SRCNN [11] while
achieving competitive accuracy.
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