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Abstract

We propose a scalable, efficient and accurate approach
to retrieve 3D models for objects in the wild. Our contri-
bution is twofold. We first present a 3D pose estimation
approach for object categories which significantly outper-
forms the state-of-the-art on Pascal3D+. Second, we use
the estimated pose as a prior to retrieve 3D models which
accurately represent the geometry of objects in RGB im-
ages. For this purpose, we render depth images from 3D
models under our predicted pose and match learned im-
age descriptors of RGB images against those of rendered
depth images using a CNN-based multi-view metric learn-
ing approach. In this way, we are the first to report quanti-
tative results for 3D model retrieval on Pascal3D+, where
our method chooses the same models as human annota-
tors for 50% of the validation images on average. In ad-
dition, we show that our method, which was trained purely
on Pascal3D+, retrieves rich and accurate 3D models from
ShapeNet given RGB images of objects in the wild.

1. Introduction
Retrieving 3D models for objects in 2D images, as

shown in Fig. 1, is extremely useful for 3D scene under-
standing, augmented reality applications and tasks like ob-
ject grasping or object tracking. Recently, the emergence of
large databases of 3D models such as ShapeNet [3] initiated
substantial interest in this topic and motivated research for
matching 2D images of objects against 3D models. How-
ever, there is no straight forward approach to compare 2D
images and 3D models, since they have considerably differ-
ent representations and characteristics.

One approach to address this problem is to project 3D
models onto 2D images, which is known as rendering [24].
This converts the task to comparing 2D images, which is,
however, still challenging, because the appearance of ob-
jects in real images and synthetic renderings can signifi-
cantly differ. In general, the geometry and texture of avail-
able 3D models do not exactly match those of objects in real

Figure 1: Given an RGB image (top), we predict a 3D pose
and a 3D model for objects of different categories (bottom).

images. Therefore, recent approaches [2, 10, 23, 28] use
convolutional neural networks (CNNs) [7, 8, 22] to extract
features from images which are partly invariant to these
variations. In particular, these methods compute image de-
scriptors from real RGB images and synthetic RGB images
which are generated by rendering 3D models under multiple
poses. While this allows them to train a single CNN purely
on synthetic data, there are two main disadvantages:

First, there is a significant domain gap between real and
synthetic RGB images: Real images are affected by com-
plex lighting, uncontrolled degradation and natural back-
grounds. This makes it is hard to render photo-realistic im-
ages from the available 3D models. Therefore, using a sin-
gle CNN for feature extraction from both domains is lim-
ited in performance, and even domain adaption [13] does
not fully account for the different characteristics of real and
synthetic images.
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Second, processing renderings from multiple poses is
computationally expensive. However, this step is manda-
tory, because the appearance of an object can significantly
vary with the pose, and mapping images from all poses to a
common descriptor does not scale to many categories [11].

To overcome these limitations, we propose to first pre-
dict the object pose and to then use this pose as an effective
prior for 3D model retrieval. Inspired by recent works on in-
stance pose estimation [4, 19], we present a robust 3D pose
estimation approach for object categories based on virtual
control points. More specifically, we use a CNN to predict
the 2D projections of virtual 3D control points from which
we recover the pose using a PnP algorithm. This approach
does not only outperform the state-of-the-art for viewpoint
estimation on Pascal3D+ [29], but also supports category-
agnostic predictions. Having an estimate of the 3D pose
makes our approach scalable, as it reduces the matching
process to a single rendering per 3D model.

Additionally, we propose to render depth images instead
of RGB images and to use different CNNs for feature ex-
traction from the real and synthetic domain. Thus, we are
not only able to deal with untextured models, but also to
alleviate the domain gap. We implement our 3D model re-
trieval method using a multi-view metric learning approach,
which is trained on real and synthetic data from Pascal3D+.
In this way, we are the first to present quantitative results for
3D model retrieval on Pascal3D+. Moreover, we demon-
strate that our approach retrieves rich and accurate 3D mod-
els from ShapeNet given unseen images from Pascal3D+.
To summarize, we make the following contributions:

– We present a 3D pose estimation approach for object
categories which significantly outperforms the state-
of-the-art on Pascal3D+. Our method predicts virtual
control points which generalize across categories mak-
ing the approach scalable.

– We introduce a 3D model retrieval approach which uti-
lizes a pose prior. For this purpose, we match learned
image descriptors of RGB images against those of
depth images rendered from 3D models under our pre-
dicted pose. In this way, we retrieve 3D models from
ShapeNet which accurately represent the geometry of
objects in RGB images, as shown in Fig. 1.

2. Related Work
Since there is a vast amount of literature on both 3D pose

estimation and 3D model retrieval, we focus our discussion
on recent works which target these tasks for object cate-
gories in particular.

2.1. 3D Pose Estimation

Many recent works only perform 3-DoF viewpoint es-
timation and predict the object rotation using regression,

classification or hybrid variants of the two. [28] directly
regresses azimuth, elevation and in-plane rotation using a
CNN. [12] compares different variants and presents a re-
gression approach which parameterizes each angle using
trigonometric functions. [25, 26] perform viewpoint clas-
sification by discretizing the range of each angle into a
number of disjoint bins and predicting the most likely bin
using a CNN. [24] uses a fine-grained geometric struc-
ture aware classification, which encourages the correla-
tion between bins of nearby views. [15] formulates the
task as a hybrid classification/regression problem: In ad-
dition to viewpoint classification, a residual rotation is re-
gressed for each angular bin, and the 3D dimensions of
the object are predicted. [14] uses a slightly different
parameterization and predicts a 2D translation to refine
the object localization in a coarse-to-fine hybrid approach.

However, predicting a full 6-DoF pose instead of a
3-DoF viewpoint is desirable for many applications. There-
fore, numerous methods compute both rotation and transla-
tion from 2D/3D keypoint correspondences. [18] recovers
the pose from keypoint predictions and CAD models using
a PnP algorithm. [26] presents a keypoint prediction ap-
proach that combines local keypoint estimates with a global
viewpoint estimate. [17] predicts semantic keypoints and
trains a deformable shape model which takes keypoint un-
certainties into account.

These approaches rely on category-specific keypoints
which do not generalize across categories. In the context
of 3D pose estimation for object instances, [4] therefore
considers virtual control points and predicts their 2D pro-
jections to estimate the pose from object parts. [19] takes
a similar approach, but uses the corners of the object’s 3D
bounding box as virtual control points. This work inspired
our approach, however, it is not directly applicable for ob-
ject category pose estimation, since the ground truth 3D
model of an object must be known at runtime.

2.2. 3D Model Retrieval

One intuitive approach to 3D model retrieval is to rely on
classification. [14] performs fine-grained category recog-
nition and provides a model for each category. [1] uses a
linear classifier on mid-level representations of real images
and renderings from multiple viewpoints to predict both
shape and viewpoint.

However, retrieval via classification does not scale.
Therefore, many recent methods take a metric learning ap-
proach. The most common strategy is to train a single CNN
to extract features from real RGB images and RGB render-
ings. [2] uses a CNN pre-trained on ImageNet [21] as a fea-
ture extractor and matches features of real images against
those of 3D models rendered under multiple viewpoints to
predict both shape and viewpoint. [10] takes a similar ap-
proach, but uses a different network architecture for feature
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extraction. [13] also employs a pre-trained CNN, but addi-
tionally performs non-linear feature adaption to overcome
the domain gap between real and rendered images.

[28] finetunes a pre-trained CNN using lifted structure
embedding [16] and averages the distance of a real image
to renderings from multiple viewpoints to be more invariant
to object pose. [23] presents a CNN architecture that com-
bines information of renderings from multiple viewpoints
into a single object pose invariant descriptor. [11] explicitly
constructs an embedding space using a 3D similarity mea-
sure evaluated on clean 3D models and trains a CNN to map
renderings with arbitrary backgrounds to the corresponding
points in the embedding space.

While it is convenient to use RGB images, it is unclear
how to deal with untextured 3D models or how to set the
scene lighting. Therefore, other methods perform 3D model
retrieval using depth instead of RGB images. [5] uses an
ensemble of autoencoders followed by a domain adaption
layer to match real depth images against depth images of 3D
models. [31] computes image descriptors by fusing global
autoencoder and local SIFT features of depth images. How-
ever, real depth images are not available in many scenarios.

Another approach which alleviates the domain gap and
maps different representations to a common space is multi-
view learning. [6] trains two different networks to map
3D voxel grids and RGB images to a low dimensional em-
bedding space, where 3D model retrieval is performed by
matching embeddings of real RGB images against those of
voxel grids. [30] also presents a multi-view approach using
two networks, but maps LD-SIFT features extracted from
3D models and depth images to a common space. In con-
trast to these methods, we map real RGB images and ren-
dered depth images to a common representation. In this
way, we do not need to perform computationally expensive
3D convolutions for high-resolution voxel grids and do not
rely on real depth images.

3. 3D Pose Estimation and 3D Model Retrieval
Given an RGB image containing one or more objects,

we want to retrieve 3D models with a geometry that corre-
sponds well to the actual objects. Fig. 2 shows our proposed
pipeline. We first estimate the 3D pose of an object from an
image window roughly centered on the object. In this work,
we assume the input image windows are known as in [29]
or given by a 2D object detector [20]. Similar to previous
works [15, 17, 26], we also assume the object category to be
known, as it is a useful prior for both pose estimation and
model retrieval. However, we also show that this informa-
tion is not necessarily required in our approach. In fact, we
can retrieve an accurate pose with only a marginal loss of
accuracy, when the category is unknown.

After we estimated the object pose, we render a number
of candidate 3D models under that pose. In particular, we

render depth images, which allows us to deal with untex-
tured 3D models and to circumvent the problem of scene
lighting. In order to compare the real RGB image to syn-
thetic depth renderings, we extract image descriptors using
two CNNs, one for each domain. Finally, we match these
image descriptors to retrieve the closest 3D model.

3.1. 3D Pose Estimation

The first step in our model retrieval approach is to ro-
bustly compute the 3D pose of the objects of interest. For
this purpose, inspired by [4, 19], we predict the 2D image
locations of virtual control points. More precisely, we train
a CNN to predict the 2D image locations of the projec-
tions of the object’s eight 3D bounding box corners. The
actual 3D pose is then computed by solving a perspective-
n-point (PnP) problem, which recovers rotation and trans-
lation from 2D-3D correspondences. This is illustrated in
the first row of Fig. 2.

However, PnP algorithms require the 3D coordinates of
the virtual control points to be known. Therefore, previ-
ous approaches either assume the exact 3D model to be
given at runtime [19] or predict the projections of static 3D
points [4]. To overcome this limitation, we predict the spa-
tial dimensions D = [dx, dy, dz] of the object’s 3D bound-
ing box and use these to scale a unit cube, which approxi-
mates the ground truth 3D coordinates.

For this purpose, we introduce a CNN architecture which
jointly predicts the 2D image locations of the projections of
the eight 3D bounding box corners (16 values) as well as the
3D bounding box dimensions (3 values). As illustrated in
Fig. 3, we implement this architecture as a single 19 neuron
linear output layer, which we apply on top of the penulti-
mate layer of different base networks such as VGG [22] or
ResNet [7, 8]. During training, we optimize the pose loss

Lpose = Lproj + αLdim + βLreg , (1)

which is a linear combination of the projection loss Lproj,
the dimension loss Ldim and the regularization Lreg. The
meta-parameters α and β control the impact of the different
loss terms. Let Mi be the i-th 3D bounding box corner and
ProjR,t(Mi) its projection using the ground truth rotation R
and translation t, then the projection loss

Lproj = E

[
8∑
i=1

‖ProjR,t(Mi)− m̃i‖Huber

]
(2)

is the expected value of the distances between the ground
truth projections ProjR,t(Mi) and the predicted locations of
these projections m̃i computed by the CNN for the training
set. Being aware of inaccurate annotations in datasets such
as Pascal3D+ [29], we use the Huber loss [9] in favor of the
squared loss to be more robust to outliers.
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Figure 2: Overview of our approach. First row: Given an RGB image of an object, we first predict its 3D pose. We use a
CNN to predict the 2D projections of the object’s 3D bounding box corners (red dots). From these, we recover the object
pose using a PnP algorithm. Second row: We render depth images from 3D models under the estimated pose and extract
image descriptors from the real RGB image and the synthetic depth images using two different CNNs. Finally, we match the
computed descriptors to retrieve the closest 3D model. Our approach supports pre-computed synthetic descriptors.

The dimension loss

Ldim = E

 ∑
i=x,y,z

‖di − d̃i‖Huber

 (3)

is the expected value of the distances between the ground
truth 3D dimensions di and the 3D dimensions d̃i predicted
by the CNN for the training set. To reduce the risk of over-
fitting, the regularization Lreg in Eq. (1) adds weight decay
for all CNN parameters.

3.2. 3D Model Retrieval

Having a robust estimate of the object pose, we render
3D models under this pose instead of rendering them un-
der multiple poses [2, 10, 13, 23]. This significantly re-
duces the computational complexity compared to methods
which process multiple renderings for each 3D model and
provides a useful prior for retrieval. In contrast to recent ap-
proaches [11, 13, 23, 28], we render depth images instead of
RGB images. This allows us to deal with 3D models which
do not have material or texture. Additionally, we circum-
vent the problem of how to set the scene lighting.

Before rendering a 3D model, we re-scale it to tightly fit
into our predicted 3D bounding box. This is done by mul-
tiplying all vertices with the minimum of the ratio between
the predicted 3D dimensions computed during pose estima-
tion and the model’s actual 3D dimensions. In this way,
we improve the alignment between input RGB images and
rendered depth images.

However, since RGB images and depth images have con-
siderably different characteristics, we introduce a multi-
view metric learning approach, which maps images from
both domains to a common representation. We implement

19 Neuron Linear Output Layer

Pose Loss

Last Base Network Layer

First Base Network Layer

Similarity Loss

Last Base Network Layer

First Base Network Layer

Last Base Network Layer

First Base Network Layer

Real Domain CNN

Synth Domain CNN

Input RGB Image Corresponding Depth Image Negative Example Depth Image

Figure 3: The pose loss is computed on the output of the real
domain CNN. The similarity loss is computed on hidden
feature maps extracted from the last base network layer of
the real and synthetic domain CNN.

this mapping using a separate CNN for each domain. For
real RGB images, we extract image descriptors from the
hidden feature activations of the penultimate layer of our
pose estimation CNN (see Fig. 3). As these activations
have already been computed during pose estimation infer-
ence, we get the real image descriptor without any addi-
tional computational cost. For the synthetic depth images,
we extract image descriptors using a CNN with the same ar-
chitecture as our pose estimation CNN, except for the out-
put layer (see Fig. 3).

To finally map images from both domains to a common
representation, we optimize the similarity loss

Lsimilarity = Ldescr + γLreg2 , (4)

which comprises the image descriptor loss Ldescr and the
regularization Lreg2 weighted by the meta-parameter γ.
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The image descriptor loss

Ldescr = E
[
max(0, s+ − s− +m)

]
(5)

minimizes the expected value of the Triplet loss [27] for the
training set. Here, s+ is the Euclidean distance between
the real RGB image descriptor and the corresponding syn-
thetic depth image descriptor, s− is the Euclidean distance
between the real RGB image descriptor and a negative ex-
ample synthetic depth image descriptor, andm specifies the
margin, i.e., the desired minimum difference between s+

and s−. To reduce the risk of overfitting, the regularization
Lreg2 in Eq. (4) adds weight decay for all CNN parameters.

After the optimization of the CNNs, we can pre-compute
descriptors for synthetic depth images. In this case, we gen-
erate multiple renderings for each 3D model, which cover
the full pose space. We then compute descriptors for all
these renderings and store them in a database. At runtime,
we just match descriptors from the viewpoint closest to our
predicted pose, which is fast and scalable, but still accurate
as shown in our experiments.

4. Experimental Results
To demonstrate our 3D model retrieval approach for ob-

jects in the wild, we evaluate it in a realistic setup where we
retrieve 3D models from ShapeNet [3] given unseen RGB
images from Pascal3D+ [29]. In particular, we train our 3D
model retrieval approach purely on data from Pascal3D+,
but use it to retrieve 3D models from ShapeNet. The corre-
sponding results are detailed in Sec. 4.2. As estimating an
accurate object pose is essential for our retrieval approach,
we additionally evaluate our pose estimation approach on
Pascal3D+ in Sec. 4.1.

4.1. 3D Pose Estimation

In the following, we first give a detailed evaluation of our
pose estimation approach. Then, we compare it to previous
methods, outperforming the state-of-the-art for viewpoint
estimation on Pascal3D+. Finally, we demonstrate that we
are even able to top the state-of-the-art without providing
the correct category prior in some cases. For a fair evalua-
tion, we follow the evaluation protocol of [26], which quan-
tifies 3-DoF viewpoint prediction accuracy on Pascal3D+
using the geodesic distance

∆(Rgt, Rpred) =
‖log(RTgtRpred)‖F√

2
(6)

to measure the difference between the ground truth view-
point rotation matrix Rgt and the predicted viewpoint ro-
tation matrix Rpred. In particular, we report two metrics:
MedErr (the median of all viewpoint differences) and
Accπ

6
(the percentage of all viewpoint differences smaller

than π
6 respectively 30◦). Evaluating our approach using

MedErr Accπ
6

Ours - VGG 11.7 0.8076
Ours - VGG+blur 11.6 0.8033
Ours - ResNet 10.9 0.8341
Ours - ResNet+blur 10.9 0.8392

Table 1: Viewpoint estimation using ground truth detections
on Pascal3D+ for different setups of our approach. We re-
port the mean performance across all categories.

the AV P metric [29], which couples 2D object detection
and azimuth classification, is not meaningful as it is very
different from our specific task.

4.1.1 3D Pose Estimation on Pascal3D+

Table 1 presents quantitative results for 3-DoF viewpoint
estimation on Pascal3D+ using our approach in different se-
tups, starting from a baseline using VGG to a more elabo-
rated version building on ResNet. Specific implementation
details and other parameters are provided in the supplemen-
tary material. For our baseline approach (Ours - VGG) we
build on VGG and fine-tune the entire network for our task
similar to [15, 25, 26]. As can be seen from Table 2, this
baseline already matches the state-of-the-art.

When inspecting the failure cases, we see that many of
them relate to small objects. In these cases, object image
windows need to be upscaled to fit the fixed spatial input
resolution of pre-trained CNNs. This results in blurry im-
ages and VGG, which only employs 3×3 convolutions, per-
forms poorly at extracting features from over-smoothed im-
ages. Therefore, we propose to use a network with larger
kernel sizes that performs better at handling over-smoothed
input images such as ResNet50 [7, 8], which uses 7×7 ker-
nels in the first convolutional layer. As presented in Table 1,
our approach with ResNet-backend (Ours - ResNet) signifi-
cantly outperforms the VGG-based version. In addition, the
total number of network parameters is notably lower (VGG:
135M vs. ResNet: 24M).

To further improve the performance, we employ data
augmentation in the form of image blurring. Using ResNet
as a base network together with blurring training images
(Ours ResNet+blur), we improve on theAccπ

6
metric while

maintaining low MedErr (see Table 1). This indicates that
we improve the performance on over-smoothed images, but
do not loose accuracy on sharp images. While our approach
with ResNet-backend shows increased performance in this
setup, we do not benefit from training on blurred images
using a VGG-backend (Ours - VGG+blur). This also con-
firms that VGG is not suited for feature extraction from
over-smoothed images. For all following experiments, we
use our best performing setup, i.e., Ours - ResNet+blur.
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category-specific

aero bike boat bottle bus car chair table mbike sofa train tv mean

MedErr ([17]) 11.2 15.2 37.9 13.1 4.7 6.9 12.7 N/A N/A 21.7 9.1 38.5 N/A
MedErr ([17]*) 8.0 13.4 40.7 11.7 2.0 5.5 10.4 N/A N/A 9.6 8.3 32.9 N/A
MedErr ([26]) 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4 13.6
MedErr ([15]) 13.6 12.5 22.8 8.3 3.1 5.8 11.9 12.5 12.3 12.8 6.3 11.9 11.1
MedErr ([24]**) 15.4 14.8 25.6 9.3 3.6 6.0 9.7 10.8 16.7 9.5 6.1 12.6 11.7
MedErr (Ours) 10.0 15.6 19.1 8.6 3.3 5.1 13.7 11.8 12.2 13.5 6.7 11.0 10.9

Accπ
6

([26]) 0.81 0.77 0.59 0.93 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.8075
Accπ

6
([15]) 0.78 0.83 0.57 0.93 0.94 0.90 0.80 0.68 0.86 0.82 0.82 0.85 0.8103

Accπ
6

([24]**) 0.74 0.83 0.52 0.91 0.91 0.88 0.86 0.73 0.78 0.90 0.86 0.92 0.8200
Accπ

6
(Ours) 0.83 0.82 0.64 0.95 0.97 0.94 0.80 0.71 0.88 0.87 0.80 0.86 0.8392

category-agnostic

aero bike boat bottle bus car chair table mbike sofa train tv mean

MedErr (Ours) 10.9 12.2 23.4 9.3 3.4 5.2 15.9 16.2 12.2 11.6 6.3 11.2 11.5

Accπ
6

(Ours) 0.80 0.82 0.57 0.90 0.97 0.94 0.72 0.67 0.90 0.80 0.82 0.85 0.8133

Table 2: Viewpoint estimation using ground truth detections on Pascal3D+. * The ground truth 3D model must be known at
runtime. ** The approach was trained on vast amounts of RGB renderings from ShapeNet, instead of Pascal3D+ data.

4.1.2 Comparison to the State-of-the-Art

Next, we compare our pose estimation approach to state-of-
the-art methods on Pascal3D+. Quantitative results are pre-
sented in Table 2. Our approach significantly outperforms
the state-of-the-art in both MedErr and Accπ

6
consider-

ing mean performance across all categories and also shows
competitive results for individual categories.

However, the Accπ
6

scores for two categories, boat and
table, are significantly below the mean. We analyze these
results in more detail. The category boat is the most chal-
lenging category due to the large intra-class variability in
shape and appearance. Many detections for this category
are of low resolution and often objects are barely visible
because of fog or mist. Additionally, there are a lot of am-
biguities, e.g., even a human cannot distinguish between the
front and the back of an unmanned canoe. Nevertheless, we
outperform the state-of-the-art for this challenging category.

The low Accπ
6

scores for the category table can be ex-
plained by three factors. First, many tables are partly oc-
cluded by chairs (see table in Fig. 4). Second, the evalu-
ation protocol does not take into account that many tables
are ambiguous with respect to an azimuth rotation of π, π2
or even have an axis of symmetry, e.g., a round table. In
some cases, our system predicts an ambiguous pose instead
of the ground truth pose, while it is not possible to differen-
tiate between the two poses. The evaluation protocol needs
to be changed to take this into account. Last, the number of
validation samples is very small (i.e., 21) and, therefore, the
reported results for this category are highly biased.

4.1.3 Category-Agnostic Pose Estimation

So far, the discussed results are category-specific, which
means that the ground truth category must be known at
runtime. In fact, all methods use a separate output layer
for each category. However, our approach is able to make
category-agnostic predictions which generalize across dif-
ferent categories. In this case, we use a single 19 neuron
output layer which is shared for all categories making our
approach scalable. Our category-agnostic pose estimation
even outperforms the previous category-specific state-of-
the-art for some categories, because it fully leverages the
mutual information between similar categories like bike and
mbike, for example, as shown in Table 2.

4.2. 3D Model Retrieval

Now we demonstrate our 3D model retrieval approach
using our predicted pose. First, we present a quantitative
evaluation of our approach on Pascal3D+. Second, we show
qualitative results for 3D model retrieval from ShapeNet
given images from Pascal3D+. Finally, we use our pre-
dicted 6-DoF pose and 3-DoF dimensions to precisely align
retrieved 3D models with objects in real world images.

4.2.1 3D Model Retrieval from Pascal3D+

Since Pascal3D+ provides correspondences between RGB
images and 3D models as well as pose annotations, we can
train our approach purely on this dataset. In fact, we are
the first to report quantitative results for 3D model retrieval
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aero bike boat bottle bus car chair table mbike sofa train tv mean

Top-1-Acc (Rand) 0.15 0.21 0.36 0.25 0.25 0.10 0.15 0.10 0.28 0.31 0.27 0.27 0.2250
Top-1-Acc (Cano) 0.12 0.25 0.38 0.35 0.45 0.21 0.20 0.15 0.20 0.21 0.49 0.50 0.2925
Top-1-Acc (Off) 0.48 0.33 0.58 0.41 0.75 0.35 0.28 0.10 0.44 0.28 0.62 0.63 0.4375
Top-1-Acc (Pred) 0.48 0.31 0.60 0.41 0.78 0.41 0.29 0.19 0.43 0.36 0.65 0.61 0.4600
Top-1-Acc (GT) 0.53 0.38 0.51 0.37 0.79 0.44 0.32 0.43 0.48 0.33 0.66 0.72 0.4967

Table 3: 3D model retrieval accuracy using ground truth detections on Pascal3D+.

Figure 4: Qualitative results for 3D pose estimation and 3D model retrieval from ShapeNet given images from Pascal3D+ for
all twelve categories. For each category, we show: the query RGB image; the depth image and RGB rendering of the ground
truth 3D model from Pascal3D+ under the ground truth pose from Pascal3D+; the depth image and RGB rendering of our
retrieved 3D model from ShapeNet under our predicted pose. We provide more results in the supplementary material.

on this dataset. For this purpose, we compute the top-1-
accuracy (Top-1-Acc), i.e., the percentage of evaluated sam-
ples for which the top retrieved model equals the ground
truth model. This task is not trivial, because many models
in Pascal3D+ have similar geometry and are hard to distin-
guish. Thus, we evaluate our approach using five different
pose setups, i.e., the ground truth pose (GT), our predicted
pose (Pred), our predicted pose with offline pre-computed
descriptors (Off ), a canonical pose (Cano) and a random
pose (Rand). Table 3 shows quantitative retrieval results.

As expected, we achieve the highest accuracy assuming
the ground truth pose to be known (GT). In this case, our
approach chooses the same 3D models as human annota-
tors for 50% of the validation images on average. How-

ever, if we render the 3D models under our predicted pose
(Pred), we almost match the accuracy of the ground truth
pose setup. For some categories, we observe even better ac-
curacy when using our predicted pose. This proves the high
quality of our predicted pose. Moreover, our approach is
fast and scalable at runtime while almost maintaining accu-
racy by using offline pre-computed descriptors (Off ). For
this experiment, we discretize the pose space in intervals of
10◦ and pre-compute descriptors for the 3D models. At run-
time, we only match pre-computed descriptors from the dis-
cretized pose which is closest to our predicted pose and do
not have to render 3D models online. If we, in contrast, just
render the 3D models under a random pose (Rand) the per-
formance decreases significantly. Rendering models under
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Figure 5: Example failure cases of our 3D model retrieval
approach (same image arrangement as in Fig. 4). Top: The
pose estimation fails because no similar pose was seen dur-
ing training, as a result, the model retrieval fails. In this
case, also the ground truth pose annotation from Pascal3D+
is not accurate. Bottom: While we estimate the pose cor-
rectly, the model retrieval fails due to heavy clutter.

Figure 6: We use our predicted 6-DoF pose and 3-DoF di-
mensions to refine the alignment between the object and a
rendering. Left: A detected object, which is not centered
on the image window. Middle: A rendering which just uses
our predicted 3-DoF rotation. Right: A rendering which
uses our predicted 6-DoF pose and 3-DoF dimensions.

a frontal view (Cano) on the other hand provides a useful
bias for the categories train, bus and tv monitor which are
frequently seen from an almost frontal view in this dataset.
These results confirm the importance of fine pose estimation
in our approach.

4.2.2 3D Model Retrieval from ShapeNet

In contrast to Pascal3D+, ShapeNet provides a significantly
larger spectrum of 3D models. Thus, we now evaluate
our retrieval approach trained purely on Pascal3D+ for 3D
model retrieval from ShapeNet given previously unseen im-
ages from Pascal3D+. Fig. 4 shows qualitative retrieval re-
sults for all twelve categories. Our approach predicts accu-
rate 3D poses and 3D models for objects of different cat-
egories. In some cases, our predicted pose (see sofa in
Fig. 4) or our retrieved model from ShapeNet (see aero-

plane and chair in Fig. 4) are even more accurate than the
annotated ground truth from Pascal3D+. While the geome-
try of the retrieved models corresponds well to the objects
in the query images, the materials and textures typically do
not. The reason for this is that we use depth images for re-
trieval, which do not include color information. This issue
can be addressed by extracting texture information from the
query RGB image or by performing retrieval with RGBD
images. However, this is up to future research. Fig. 5 shows
failure cases of our approach. If the pose estimation fails,
the model retrieval becomes even more difficult. This is also
reflected in Table 3, where we observe a strong decrease in
performance when we render models without pose informa-
tion (Rand and Cano). Also, if there is too much clutter in
the query image, we cannot retrieve an accurate 3D model.

4.2.3 3D Model Alignment

Finally, we use our predicted 6-DoF pose and 3-DoF dimen-
sions to precisely align retrieved 3D models with objects in
real world images. Fig. 6 shows how we improve the 2D ob-
ject localization and the alignment between the object and a
rendering using our predicted pose and dimensions. This is
especially useful if the object detection is not fully accurate,
which is true in almost all situations. In this case, the de-
tected image windows are a bit too small and the objects are
not centered in the image windows. Thus, if we just render
a model under our predicted rotation, re-scale it to tightly
fit into the 2D image window, and center it in the 2D image
window, the alignment is poor. However, if we additionally
use our predicted translation and 3D dimensions for scaling
and positioning, we significantly improve the alignment be-
tween the object and the rendering. This is of tremendous
importance for robotics or augmented reality applications.

5. Conclusion

3D object retrieval from RGB images in the wild is an
important but challenging task. Existing approaches ad-
dress this problem by training on vast amounts of synthetic
data. However, there is a significant domain gap between
real and synthetic images which limits performance. For
this reason, we learn to map real RGB images and synthetic
depth images to a common representation. Additionally, we
show that estimating the object pose is a useful prior for
3D model retrieval. Our approach is scalable as it supports
category-agnostic predictions and offline pre-computed de-
scriptors. We do not only outperform the state-of-the-art for
viewpoint estimation on Pascal3D+, but also retrieve accu-
rate 3D models from ShapeNet given unseen RGB images
from Pascal3D+. Finally, these results motivate future re-
search on jointly learning from real and synthetic data.
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3D Pose Estimation and 3D Model Retrieval for Objects in the Wild
Supplementary Material

In the following, we provide additional qualitative re-
sults for our 3D model retrieval approach in Sec. 6, which
complement those presented in the paper. Furthermore, we
analyze failure cases for both 3D model retrieval and the
underlying 3D pose estimation in Sec. 7. Finally, in Sec. 8
we discuss implementation details, parameter choices, and
other relevant settings.

6. 3D Model Retrieval
Fig. 7 shows additional qualitative results for 3D model

retrieval from ShapeNet [3] given previously unseen images
from Pascal3D+ [29] validation data for all twelve cate-
gories. Our approach predicts accurate 3D poses and 3D
models for objects of different categories.

Fig. 8 presents further 3D model alignment results for
object detections which are not fully accurate. We signifi-
cantly improve the alignment between the object in the im-
age and an RGB rendering of our retrieved 3D model by
taking advantage of our predicted 6-DoF pose and 3-DoF
dimensions compared to just using a 3-DoF viewpoint.

7. Failure Modes
Most failure cases of our 3D pose estimation on Pas-

cal3D+ relate to low-resolution or ambiguous objects.
Fig. 9 shows 3D pose estimation results on low-

resolution image windows from Pascal3D+ validation data.
After re-scaling, the over-smoothed input RGB images lack
details and sharp discontinuities, which results in incorrect
pose predictions. In fact, even for a human it is difficult to
identify the correct object poses in these examples.

Fig. 10 shows additional failure cases, observing that
heavy occlusions, bad illumination conditions and difficult
object poses, which are far from the poses seen during train-
ing, result in incorrect pose predictions.

As shown in Fig. 11, some objects from Pascal3D+ are
symmetrical, which makes their poses not well defined. For
example, it is impossible to differentiate between the front
and back of a symmetric unmanned boat. This issue is even
more apparent for tables: Many tables are ambiguous with
respect to an azimuth rotation of π, π2 or even have an axis
of symmetry, such as a round table. When our approach
predicts one of the possible poses that is not the annotated
ground truth pose, this is considered as a mistake by the
commonly used evaluation protocol [26].

Fig. 12 shows that visual distortions due to wide-angle
lenses (i.e., fish-eye effects), deformed and demolished ob-
jects and heavy occlusions can disturb the model retrieval
step, even if the pose estimation was successful.

8. Implementation Details
In the following, we provide implementation details and

other parameters used in our work:
Intrinsic camera parameters: In Pascal3D+, the ground

truth poses were computed from 2D-3D correspondences
assuming the same intrinsic parameters for all images. We
employ the same parameters in our approach.

Data augmentation: Like others [15, 17, 24, 26], we per-
form data augmentation by jittering ground truth detections
and exclude detections marked as occluded or truncated
from the evaluation. Additionally, we augment samples for
which the longer edge of the ground truth image window is
greater than 224 pixel by applying Gaussian blurring with
various kernel sizes and σ. We randomly sample negative
example 3D models from the available data. All augmenta-
tion parameters are randomized after each training epoch.

Meta parameters: We normalize the projections so that
the image pixel range is mapped to the interval [0,1] and use
the same Huber loss (δ = 0.01) for all 19 estimated values.
Experimentally, we found α = 1, β = 1e−5 and γ = 1e−3

to work well and set m = 1.
Network parameters: We use a batch size of 50, train

our networks for 100 epochs and decrease the initial learn-
ing rate of 1e−4 by one order of magnitude after 50 and 90
epochs, and employ the Adam optimization algorithm.

3D dimensions: For both Pascal3D+ and ShapeNet, 3D
models are normalized to fit within a unit cube centered at
the origin. Thus, we estimate 3D dimensions in model space
in the range [0,1]. Since these dimensions tend to be consis-
tent within a category, estimating them is not a major issue.
Table 4 shows quantitative results for 3D dimension estima-
tion. We achieve high accuracy across all categories.

x y z

Median Absolute Error 0.022 0.015 0.014

Table 4: 3D dimension estimation errors on Pascal3D+. We
report the mean performance across all categories.
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Figure 7: Qualitative results for 3D pose estimation and 3D model retrieval from ShapeNet given images from Pascal3D+ for
all twelve categories. For each category, we show: the query RGB image; the depth image and RGB rendering of the ground
truth 3D model from Pascal3D+ under the ground truth pose from Pascal3D+; the depth image and RGB rendering of our
retrieved 3D model from ShapeNet under our predicted pose.

Figure 8: We use our predicted 6-DoF pose and 3-DoF dimensions to refine the alignment between the object and a rendering.
Left: A detected object, which is not centered on the image window. Middle: A rendering which just uses our predicted 3-
DoF rotation. Right: A rendering which uses our predicted 6-DoF pose and 3-DoF dimensions.
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Figure 9: 3D pose estimation fails due to low-resolution
image windows (same image arrangement as in Fig. 7). In
fact, for more than 55% of Pascal3D+ validation detections
the longer edge of the 2D image window is smaller than
224 pixel, which is the fixed spatial input size of pre-trained
CNNs like VGG [22] or ResNet [7, 8]. If the resolution is
too low, we cannot predict an accurate 3D pose.

Figure 10: 3D pose estimation fails in difficult situations
(same image arrangement as in Fig. 7). We observe that
heavy occlusions (first row), bad illumination conditions
(second row) and difficult object poses (third and fourth
row), which are far from the poses seen during training, re-
sult in incorrect pose predictions. In the last row, we see
that not even the annotated ground truth pose is correct.

Figure 11: Objects with ambiguous poses from Pascal3D+
validation data. First row: It is impossible to differentiate
between the front and back of symmetric boats. Second
row: Tables which are ambiguous with respect to an az-
imuth rotation of π (first image), π2 (second and third image)
or even have an axis of symmetry (fourth image).

Figure 12: 3D model retrieval results for challenging cases
where pose estimation was successful (same image arrange-
ment as in Fig. 7). The test images can exhibit fish-eye ef-
fects due to wide-angle lenses (first and second row), con-
tain deformed or demolished objects (third row), or objects
under heavy occlusions (fourth row), which disturb object
retrieval. Note however that the ground truth 3D models are
not accurate.
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